Как составить уравнение сторон треугольника по координатам его вершин?
Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.
Пример.
Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)
Составить уравнения сторон треугольника.
Решение:
1) Составим уравнение прямой AB, проходящей через 2 точки A и B.
Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:
Таким образом, уравнение стороны AB
2) Прямая BC проходит через точки B(7;-4) и C(3;7):
Отсюда уравнение стороны BC —
3) Прямая AC проходит через точки A(-5;1) и C(3;7):
Уравнение стороны AC —
Решить треугольник Онлайн по координатам
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Как составить уравнение сторон треугольника по трём координатам вершин?
Знаток
(457),
закрыт
12 лет назад
Рафиль Ахматдинов
Профи
(857)
12 лет назад
Пусть координаты вершин А (Ха, Уа) ; В (Хв, Нв) ; С (Хс, Ус) .
Уравнение стороны АВ (У-Уа) /(Ув-Уа) =(Х-Ха) /(Хв-Ха) или (У-Ув) /(Уа-Ув) =(Х-Хв) /(Ха-Хв) ,
где У и Х это текущие координаты, т. е буквы, а остальные величины – числа
Например, координаты вершин А (2, 3); В (5, -2); С (0, 0),
тогда уравнение АВ: (У-3)/(-2-3)=(Х-2)/(5-2) или (У+2)/(3+2)=(Х-5)/(2-5), дальше арифметика.
Аналогично и остальные стороны, главное не перепутать позиции чисел.
Уравнения сторон треугольника
Как составить уравнение сторон треугольника по координатам его вершин?
Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.
Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)
Составить уравнения сторон треугольника.
1) Составим уравнение прямой AB, проходящей через 2 точки A и B.
Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:
Таким образом, уравнение стороны AB
2) Прямая BC проходит через точки B(7;-4) и C(3;7):
Отсюда уравнение стороны BC —
3) Прямая AC проходит через точки A(-5;1) и C(3;7):
Please wait.
We are checking your browser. mathvox.ru
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6feec975ec1900b0 • Your IP : 178.45.155.83 • Performance & security by Cloudflare
Решить треугольник Онлайн по координатам
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Как составить уравнения сторон треугольника
Есть множество способов определить треугольник. В аналитической геометрии один из этих способов — задать координаты трех его вершин. Эти три точки определяют треугольник однозначно, но для полноты картины нужно еще составить уравнения сторон, соединяющих вершины.
Инструкция
Вам заданы координаты трех точек. Обозначим их как (x1, y1), (x2, y2), (x3, y3). Предполагается, что эти точки являются вершинами некоторого треугольника. Задача состоит в том, чтобы составить уравнения его сторон — точнее уравнения тех прямых, на которых лежат эти стороны. Эти уравнения должны иметь вид:
y = k1*x + b1;
y = k2*x + b2;
y = k3*x + b3.Таким образом, вам предстоит найти угловые коэффициенты k1, k2, k3 и смещения b1, b2, b3.
Убедитесь, что все точки различны между собой. Если какие-то две совпадают, то треугольник вырождается в отрезок.
Найдите уравнение прямой, проходящей через точки (x1, y1), (x2, y2). Если x1 = x2, то искомая прямая вертикальна и ее уравнение x = x1. Если y1 = y2, то прямая горизонтальна и ее уравнение y = y1. В общем случае эти координаты не будут равны друг другу.
Подставляя координаты (x1, y1), (x2, y2) в общее уравнение прямой, вы получите систему из двух линейных уравнений:k1*x1 + b1 = y1;
k1*x2 + b1 = y2.Вычтите одно уравнение из другого и решите полученное уравнение относительно k1:k1*(x2 – x1) = y2 – y1, следовательно, k1 = (y2 – y1)/(x2 – x1).
Подставляя найденное выражение в любое из исходных уравнений, найдите выражение для b1:((y2 – y1)/(x2 – x1))*x1 + b1 = y1;
b1 = y1 – ((y2 – y1)/(x2 – x1))*x1.Поскольку уже известно, что x2 ≠ x1, можно упростить выражение, умножив y1 на (x2 – x1)/(x2 – x1). Тогда для b1 вы получите следующее выражение:b1 = (x1*y2 – x2*y1)/(x2 – x1).
Проверьте, не лежит ли третья из заданных точек на найденной прямой. Для этого подставьте значения (x3, y3) в выведенное уравнение и посмотрите, соблюдается ли равенство. Если оно соблюдается, следовательно, все три точки лежат на одной прямой, и треугольник вырождается в отрезок.
Тем же способом, что описан выше, выведите уравнения для прямых, проходящих через точки (x2, y2), (x3, y3) и (x1, y1), (x3, y3).
Окончательный вид уравнений для сторон треугольника, заданного координатами вершин, выглядит так:(1) y = ((y2 – y1)*x + (x1*y2 – x2*y1))/(x2 – x1);
(2) y = ((y3 – y2)*x + (x2*y3 – x3*y2))/(x3 – x2);
(3) y = ((y3 – y1)*x + (x1*y3 – x3*y1))/(x3 – x1).
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.