Решение текстовых задач с помощью линейных уравнений
Содержание
Раньше с помощью уравнений вы часто решали текстовые задачи, так как этот способ наиболее универсален и прост для нахождения ответа. В данном уроке:
- сформулируем основные понятия
- разберем алгоритм действий
- узнаем, на что обращать особое внимание
- прорешаем примеры таких задач
Для лучшего понимания темы вспомним, что такое текстовая задача:
Текстовая задача – описание с помощью слов какой-то ситуации, где в итоге требуется что-то из перечисленного:
— дать количественную характеристику какого-то элемента этой ситуации
— установить наличие какого-то отношения между элементами (либо его отсутствие)
— определить вид этого отношения
О том, что такое линейное уравнение, мы говорили в предыдущем уроке.
Решение задачи и математическая модель
Когда от нас требуется решить задачу, мы должны с помощью правильной цепочки действий над имеющимися в задании данными выполнить указанное в ней требование.
Почему важно научиться решать задачи? Часто они описывают какие-то реальные ситуации, которые вам будут попадаться в жизни дальше. И их придется решать.
В процессе нахождения ответов для разнообразных текстовых задач мы можем математическим языком (с помощью цифр) записать все данные. В результате перевода условия задачи из словесного в математический язык и получается уравнение. Это уравнение часто называют математической моделью ситуации.
Математическая модель — это способ описания реальной жизненной ситуации (задачи) с помощью математического языка.
Мы должны не просто составить уравнение по написанному в задаче условию, но и, конечно, решить его. То есть необходимо найти корень составленного уравнения. Но и найденный корень – это, как правило, еще не решение.
В младших классах вы находили ответы для задач попроще. Далее они станут сложнее и сложнее, и с найденным корнем уравнения нужно будет произвести какие-то дальнейшие действия. А потом необходимо обязательно удостовериться, не противоречит ли полученный ответ логике.
Важно: Иногда бывает, что у задачи нет правильного ответа и нужно быть особо внимательным при его формулировке.
Рассмотрим на самом простом примере
Несколько ребят на уроке труда собирали яблоки в саду около школы. Всего они насобирали $29$ кг яблок. Каждый из учеников собрал по $4$ кг яблок. Сколько ребят собирали яблоки в саду около школы?
Составим уравнение, обозначив количество учеников за $x$. Получим: $$4x = 29$$ $$x = frac <29><4>$$$$x = 7,25$$
У нас получилось нецелое число. Но может ли быть количество ребят нецелым числом? Конечно, нет, поэтому такая задача решения не имеет.
Ответ: решения нет.
Разберем другой пример.
Сейчас папе $46$ лет, а сыну $16$. Сколько лет назад папа был старше сына в $3$ раза?
Сначала найдем разницу в возрасте папы и сына: $$46-16 = 30$$ То есть, сын родился, когда папе было $30$ лет. Эта разница в возрасте будет сохраняться всю жизнь. Например, когда ребенку было $5$ лет, то папе все равно было на $30$ лет больше.
Теперь по условию задачи обозначим за $x$ возраст сына в момент, когда он был в 3 раза младше папы. Тогда папе в это же время было $3x$ лет. А разница между $3x$ и $x$, как мы выяснили, равна $30$ годам.
Составим уравнение: $$3x-x = 30$$ Упростим и решим его: $$2x = 30$$ $$x = 15 (лет)$$ Получили ли мы ответ? Еще нет, так как мы нашли только возраст сына. А в задаче требуется узнать, сколько лет назад случилась описанная ситуация. Если сейчас сыну $16$ лет, а тогда ему было $15$, то найдем разницу: $$16-15 = 1 (год)$$ То есть, мы выяснили, что папе было в $3$ раза больше, чем сыну один год назад. Это и будет ответом на нашу задачу.
Ответ: $1$ год назад.
Как видите, в данном задании найденный корень уравнения еще не был нужным нам ответом, и необходимо было решать дальше.
Важно: корень составленного к задаче уравнения – это часто еще не ответ на поставленный в ней вопрос!
Этапы решения заданий с помощью линейного уравнения
Все перечисленные в примерах выше действия для решения задач с помощью линейных уравнений мы можем свести к одному общему алгоритму:
- Выбрать, какую неизвестную величину обозначить за переменную $x$.
- Через введенную переменную выразить остальные неизвестные величины.
- На основе имеющихся данных составить уравнение и решить его.
- При необходимости найти другие неизвестные величины.
- Проанализировать, соответствуют ли полученные результаты смыслу задачи.
- Сформулировать и записать ответ.
Как правило, легче всего составить уравнение с помощью записи данных задачи в таблицу.
К примеру, решим такую задачу: в столовой на одной полке было в $2$ раза больше кружек, чем на другой. Перед очередным классом с первой полки взяли $16$ кружек, но потом на другую поставили $4$. В итоге на обеих полках оказалось одинаковое количество кружек. Найдите, сколько на каждой полке кружек было первоначально.
Решение. Обозначим исходное количество кружек на второй полке за $x$ и составим таблицу:
Было | Стало | |
$1$-я полка | $2x$ | $2x-16$ |
$2$-я полка | $x$ | $x+4$ |
Так как по условию задачи кружек на обеих полках стало поровну, то $$2x-16 = x+4$$ Упростим и решим, перенеся $x$ влево, а $16$ вправо с противоположным знаком: $$2x-x = 16+4$$ $$x=20$$ Так мы нашли исходное количество кружек на второй полке. Тогда на первой полке было: $$20times 2 = 40 (кружек)$$
Ответ: на первой полке было $40$ кружек, а на второй $20$.
Решение задач с помощью уравнений
Решение задачи обычно свóдится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.
Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.
Запись выражений, содержащих неизвестное
Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.
Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.
Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.
Решение:
Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.
Решение:
Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?
Решение:
В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.
Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:
Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.
Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:
Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:
Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.
Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:
Чтобы освободить уравнение от дробей, умножим обе части на 3
Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:
Мы нашли значение переменной x . Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.
Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.
В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36
x − 3 = 36 − 3 = 33 года маме.
Аналогично определяется возраст остальных членов семьи:
Проверка:
Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.
Решение
Если килограмм яблок стоит x рублей, то на 300 рублей можно купить килограмм яблок.
Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить , то есть 6 килограмм яблок.
Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.
Решение
Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит рублей
Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит , то есть 60 рублей.
Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?
Решение
Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3) , и полученный результат разделить на 3
Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда
3x — стоимость трех бутербродов
А стоимость трех кружек кофе можно записать как 15 × 3 . 15 это стоимость одной кружки кофе, а 3 множитель (Том, Джон и Лео), увеличивающий эту стоимость в три раза.
По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:
Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3 . Пользуясь схемой составим уравнение и решим его:
Итак, стоимость одного бутерброда составляет 25 рублей.
Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.
Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.
Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.
В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:
Положим на левую чашу весов арбуз:
Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.
Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.
На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.
Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.
Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.
Попробуем на левую чашу положить гирю массой 4 кг
Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.
Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.
Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.
Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.
Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».
Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?
Возраст дочери можно обозначить через x . Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x . В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x
В выражении можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x
Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x . Воспользуемся весами. На левую чашу положим возраст отца (3x) , а на правую чашу возраст сына (2x)
Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ) . Ведь логично, что возраст отца больше возраста сына.
Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x . Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.
Весы выровнятся, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца
Теперь весы выровнялись. Получилось уравнение , которое решается легко:
В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.
Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2) , то есть 40 лет.
Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.
Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую
Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство
Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае
В этот раз получается уравнение . Корень уравнения по прежнему равен 20
То есть уравнения и являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.
Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.
Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение . Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение . Решим это уравнение
Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему лет, а отцу 40 + 20 лет.
Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.
Примеры решения задач
Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?
Решение
Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x . То есть от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.
Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради
и добавим эти две тетради во вторую пачку
Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:
Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей
Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.
Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2
Получается уравнение . Решим данное уравнение:
Первую пачку мы обозначали через переменную x . Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.
А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22 , то есть 8 шт .
Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?
Решение
Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение
Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.
Второй человек в минуту очищал три картофелины, и поскольку он работал минут, то всего он очистил картофелин.
Вместе они очистили 400 картофелин
Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:
В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.
А второй человек работал минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25 , то есть 90 мин .
Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?
Решение
Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x
Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.
А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x , то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.
В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.
Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:
Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:
Получили уравнение . Решим его:
В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.
А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2 . Значит для приготовления смеси было взято 19,2 кг чая второго сорта.
Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на минут более. Как длинны были дороги?
Решение
Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.
В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.
Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:
Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и обратить внимание на следующий момент:
Следует обратить внимание на момент, где велосипедист на обратном пути употребил времени на минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S .
Итак, обозначим длину первой дороги через S . Этот путь велосипедист проехал со скоростью 8 км/ч . Время за которое он преодолел этот путь будет обозначаться выражением , поскольку время это отношение пройденного расстояния к скорости
Обратная дорога для велосипедиста была длиннее на 3 км . Поэтому её расстояние будет обозначаться через выражение S + 3 . Эту дорогу велосипедист проехал со скоростью 9 км/ч . А значит время за которое он преодолел этот путь будет обозначаться выражением .
Теперь составим уравнение из имеющихся выражений
Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на больше.
Чтобы уравнять весы прибавим к левой части эти самые минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.
Чтобы минут перевести в часы, нужно разделить их на 60
минут составляют часа. Прибавляем эти часа к левой части уравнения:
Получается уравнение . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S
Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.
А расстояние второй дороги мы обозначили через выражение S + 3 , и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3 , то есть 18 км .
Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?
Решение
Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой
Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».
Расстояние как мы помним, определяется по формуле . Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v .
Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км , а вторая пройдет 3(v − 10) км . При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эти два выражения знаком равенства. Тогда получим уравнение . Решим его:
В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v . Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.
Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.
Решение
Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч , а против течения — (v − 2) км/ч .
В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть расстояния будут одинаковыми.
Расстояние определяется по формуле . Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.
Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км , а за 11 часов против течения — 11(v − 2) км . Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение . Решим его:
Значит собственная скорость теплохода составляет 20 км/ч.
При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.
Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t , далее составили уравнение, содержащее эту переменную и нашли её значение.
Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.
Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q
Ещё можно ввести ограничение для переменной t , указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением t ∈ Q укажем, что её значение должно быть больше нуля:
Если решив уравнение, мы получим отрицательное значение для переменной t , то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию t ∈ Q , t > 0 .
Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x . В такой задаче решение искалось бы на множестве натуральных чисел
Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).
Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.
Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально
Решение
Обозначим через x плотников, прибывших на ремонт первоначально.
Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел
Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x .
Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2
А количество маляров увеличим на 4
Теперь количество плотников и маляров будут обозначаться через следующие выражения:
Попробуем составить уравнение из имеющихся выражений:
Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:
Получили уравнение . Решим его:
Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной. Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.
А количество маляров было обозначено через выражение 2,5 x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8 , то есть 20 .
Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие x ∈ N. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.
Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:
Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.
Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?
Решение
Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X
Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%
Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%
Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14
Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14
Значит первоначально в бидоне было 20 литров молока.
Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?
Решение
Попробуем сначала узнать сколько золота и серебра будет содержáться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.
Определим сколько золота будет содержáться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:
Определим сколько серебра будет содержáться в 15 кг сплава:
Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x
Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:
В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10 . Из них золота будет , а серебра .
Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x , поскольку так мы обозначили массу первого сплава:
Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет , а серебра .
Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x , поскольку так мы обозначили массу второго сплава:
Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет сплава, а серебра будет сплава. В последнюю графу записываем массу полученного сплава 15
Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.
Далее для удобства проценты будем выражать в десятичной дроби.
В первом сплаве золота было 0,10x , а во втором сплаве золота было 0,40(15 − x) . Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10x + 0.40(15 − x) = 3 . Решим это уравнение:
Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x , и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг .
Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.
Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90x + 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10
Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?
Решение
Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x . Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержáться 0,06x тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − x тоннах богатой руды будет содержáться 0,11(20 − x) тонн меди.
В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержáться 20 × 0,08 = 1,6 тонн.
Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение 0,06x + 0,11(20 − x) = 1,6
Решим данное уравнение:
Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.
Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?
Решение
Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:
Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t
Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t
Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.
Это позволяет нам приравнять выражение 250t к выражению 300t , поскольку оба выражения описывают длину одной и той же дистанции
Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250t = 300t в правой части время нужно уменьшить на единицу:
Получилось простейшее уравнение. Решим его:
При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:
S = 250 × 6 = 1500 м
А при скорости 300 метров в минуту спортсменка пробегает дистанцию за t − 1 , то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:
S = 300 × 5 = 1500 м
Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?
Решение
Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.
Скорость сближения определяется вычитанием меньшей скорости из большей:
10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)
С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6
2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.
Решим эту задачу с помощью уравнения.
Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км
После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.
Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:
Воспользуемся правой частью этого уравнения для составления своего уравнения.
Расстояние, пройденное всадником, будет описываться выражением 10t . Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15 .
На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:
Получилось простейшее уравнение. Решим его:
Задачи для самостоятельного решения
Решение
Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч
Обозначим время, за которое товарный поезд приезжает в город, через переменную t . Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75
Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t . Решим его:
Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам
Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше
48 × (3 − 0,75) = 144 − 36 = 108 км
Ответ: расстояние между городами равно 108 км.
Решение
Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65t + 60t = 150
Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.
Ответ: автомобили встретились через 1,2 часа.
Решение
Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x . В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15 .
В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685
Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.
Во втором цехе было 3x рабочих, то есть 3 × 100 = 300 . А в третьем цехе было 3x − 15 , то есть 3 × 100 − 15 = 285
Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.
Решение
Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов .
Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.
В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x + 1,25(18 − x) = 22
Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должна была отремонтировать 10 моторов.
А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.
Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.
Решение
Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение x + 0.30x = 91
Значит до повышения цены товар стоил 70 рублей.
Ответ: до повышения цены товар стоил 70 рублей.
Решение
Пусть x — исходное число. Увеличим его на 25%. Получим выражение x + 0,25x . Приведем подобные слагаемые, получим x + 0,25x = 1.25x .
Узнаем какую часть исходное число x составляет от нового числа 1,25x
Если новое число 1,25x считать за 100%, а исходное число x составляет от него 80%, то уменьшив новое число на 20% можно получить исходное число x
Ответ: чтобы получить исходное число, новое число нужно уменьшить на 20%.
Решение
Пусть x — первоначальное число. Увеличим его на 20%. Получим выражение x + 0,20x . Приравняем эту сумму к числу 144, получим уравнение x + 0,20x = 144
Ответ: первоначальное значение числа равно 120.
Решение
Пусть x — первоначальное число. Уменьшим его на 10%. Получим выражение x − 0,10x . Приравняем эту разность к числу 45, получим уравнение x − 0,10x = 45
Ответ: первоначальное значение числа равно 50.
Решение
Пусть x рублей — первоначальная цена альбома. Снизим эту цену на 15%, получим x − 0,15x . Снизим цену ещё на 15 руб., получим x − 0,15x − 15 . После этих снижений альбом стал стоить 19 руб. Приравняем выражение x − 0,15x − 15 к числу 19, получим уравнение x − 0,15x − 15 = 19
Ответ: первоначальная цена альбома составляет 40 руб.
Решение
Если 80% массы теряется, то на оставшиеся 20% будут приходиться 4 т сена. Пусть x тонн травы требуется для получения 4 т сена. Если 4 т будут составлять 20% травы, то можно составить уравнение:
Ответ: для получения 4 т сена, нужно накосить 20 т травы.
Решение
Пусть x кг 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора.
В 1 кг 10%-го раствора соли содержится 0,1 кг соли. А в x кг 20%-го раствора соли содержится 0,20 x кг соли.
После добавления x кг 20%-го раствора в новом растворе будет содержáться 0,12(1 + x) кг соли. Сложим выражения 0,1 и 0,20x , затем приравняем эту сумму к выражению 0,12(1 + x) . В результате получим уравнение 0,1 + 0,20x = 0,12(1 + x)
Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.
Решение
Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.
В первом растворе будет содержáться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение
Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.
Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
45 thoughts on “Решение задач с помощью уравнений”
Вау новый урок. Я рад что вернулись)) После работы обязательно буду учить этот урок.
не смог решить ни одной задачи из примеров решения…
Как составлять линейные уравнения к задачам
Решение текстовых задач с помощью линейных уравнений
Содержание
Раньше с помощью уравнений вы часто решали текстовые задачи, так как этот способ наиболее универсален и прост для нахождения ответа. В данном уроке:
- сформулируем основные понятия
- разберем алгоритм действий
- узнаем, на что обращать особое внимание
- прорешаем примеры таких задач
Для лучшего понимания темы вспомним, что такое текстовая задача:
Текстовая задача – описание с помощью слов какой-то ситуации, где в итоге требуется что-то из перечисленного:
— дать количественную характеристику какого-то элемента этой ситуации
— установить наличие какого-то отношения между элементами (либо его отсутствие)
— определить вид этого отношения
О том, что такое линейное уравнение, мы говорили в предыдущем уроке.
Решение задачи и математическая модель
Когда от нас требуется решить задачу, мы должны с помощью правильной цепочки действий над имеющимися в задании данными выполнить указанное в ней требование.
Почему важно научиться решать задачи? Часто они описывают какие-то реальные ситуации, которые вам будут попадаться в жизни дальше. И их придется решать.
В процессе нахождения ответов для разнообразных текстовых задач мы можем математическим языком (с помощью цифр) записать все данные. В результате перевода условия задачи из словесного в математический язык и получается уравнение. Это уравнение часто называют математической моделью ситуации.
Математическая модель — это способ описания реальной жизненной ситуации (задачи) с помощью математического языка.
Мы должны не просто составить уравнение по написанному в задаче условию, но и, конечно, решить его. То есть необходимо найти корень составленного уравнения. Но и найденный корень – это, как правило, еще не решение.
В младших классах вы находили ответы для задач попроще. Далее они станут сложнее и сложнее, и с найденным корнем уравнения нужно будет произвести какие-то дальнейшие действия. А потом необходимо обязательно удостовериться, не противоречит ли полученный ответ логике.
Важно: Иногда бывает, что у задачи нет правильного ответа и нужно быть особо внимательным при его формулировке.
Рассмотрим на самом простом примере
Несколько ребят на уроке труда собирали яблоки в саду около школы. Всего они насобирали $29$ кг яблок. Каждый из учеников собрал по $4$ кг яблок. Сколько ребят собирали яблоки в саду около школы?
Составим уравнение, обозначив количество учеников за $x$. Получим: $$4x = 29$$ $$x = frac $$$$x = 7,25$$
У нас получилось нецелое число. Но может ли быть количество ребят нецелым числом? Конечно, нет, поэтому такая задача решения не имеет.
Ответ: решения нет.
Разберем другой пример.
Сейчас папе $46$ лет, а сыну $16$. Сколько лет назад папа был старше сына в $3$ раза?
Сначала найдем разницу в возрасте папы и сына: $$46-16 = 30$$ То есть, сын родился, когда папе было $30$ лет. Эта разница в возрасте будет сохраняться всю жизнь. Например, когда ребенку было $5$ лет, то папе все равно было на $30$ лет больше.
Теперь по условию задачи обозначим за $x$ возраст сына в момент, когда он был в 3 раза младше папы. Тогда папе в это же время было $3x$ лет. А разница между $3x$ и $x$, как мы выяснили, равна $30$ годам.
Составим уравнение: $$3x-x = 30$$ Упростим и решим его: $$2x = 30$$ $$x = 15 (лет)$$ Получили ли мы ответ? Еще нет, так как мы нашли только возраст сына. А в задаче требуется узнать, сколько лет назад случилась описанная ситуация. Если сейчас сыну $16$ лет, а тогда ему было $15$, то найдем разницу: $$16-15 = 1 (год)$$ То есть, мы выяснили, что папе было в $3$ раза больше, чем сыну один год назад. Это и будет ответом на нашу задачу.
Ответ: $1$ год назад.
Как видите, в данном задании найденный корень уравнения еще не был нужным нам ответом, и необходимо было решать дальше.
Важно: корень составленного к задаче уравнения – это часто еще не ответ на поставленный в ней вопрос!
Этапы решения заданий с помощью линейного уравнения
Все перечисленные в примерах выше действия для решения задач с помощью линейных уравнений мы можем свести к одному общему алгоритму:
- Выбрать, какую неизвестную величину обозначить за переменную $x$.
- Через введенную переменную выразить остальные неизвестные величины.
- На основе имеющихся данных составить уравнение и решить его.
- При необходимости найти другие неизвестные величины.
- Проанализировать, соответствуют ли полученные результаты смыслу задачи.
- Сформулировать и записать ответ.
Как правило, легче всего составить уравнение с помощью записи данных задачи в таблицу.
К примеру, решим такую задачу: в столовой на одной полке было в $2$ раза больше кружек, чем на другой. Перед очередным классом с первой полки взяли $16$ кружек, но потом на другую поставили $4$. В итоге на обеих полках оказалось одинаковое количество кружек. Найдите, сколько на каждой полке кружек было первоначально.
Решение. Обозначим исходное количество кружек на второй полке за $x$ и составим таблицу:
Было | Стало | |
$1$-я полка | $2x$ | $2x-16$ |
$2$-я полка | $x$ | $x+4$ |
Так как по условию задачи кружек на обеих полках стало поровну, то $$2x-16 = x+4$$ Упростим и решим, перенеся $x$ влево, а $16$ вправо с противоположным знаком: $$2x-x = 16+4$$ $$x=20$$ Так мы нашли исходное количество кружек на второй полке. Тогда на первой полке было: $$20times 2 = 40 (кружек)$$
Ответ: на первой полке было $40$ кружек, а на второй $20$.
Составление и решение задач с помощью линейных уравнений в 7-м классе
Разделы: Математика
Основная цель: учить составлять уравнения к задаче.
В ходе урока учащиеся смогут:
- находить связи между данными в задаче;
- использовать виды сравнения при составлении задач;
- решать линейные уравнения;
- составлять уравнения по тексту задачи;
- составлять задачу по схеме;
- составлять задачи к данному уравнению;
- оценить результат своей работы и результат работы групп;
- работать в группе.
Этапы урока:
- Обзор
- Мотивация
- Составление и решение задач
- Применение. Работа в группе
- Обмен информацией
- Рефлексия
- Итог урока
- Домашнее задание
Материалы к уроку:
- Таблички с формулами: S = v · t, А = N · t, Д = N · t, С = Ц · К.
- Листы бумаги с незаполненными таблицами.
- Карточки для работы в группах.
- Ватман, фломастеры.
Ход урока
I. Обзор
— Даны два числа: 30 и 12.
— Свяжите между собой два числа: 30 и 12. (Учащиеся, используя виды сравнений, связывают эти числа различными действиями).
1) (Сумма): 30 + 12 = 42
2) (Разностное сравнение): 30 – 12 = 18
3) (Кратное сравнение): 30: 12 = 2,5 (раз)
4) (Нахождение дроби от числа): |
5) (Нахождение процентов от числа): | • 100% = 40% |
— Сформулируйте вопрос к каждому действию.
(Ответы учащихся:
— Чему равна сумма чисел 30 и 12?
— На сколько одно число больше (меньше) другого?
— Во сколько раз одно число больше другого?
— Какую часть составляет одно число от другого?
— Сколько процентов составляет одно число от другого?)
В ходе обсуждения повторяются так же правила нахождения дроби от числа, процента от числа.
II. Мотивация
Учитель: Итак, используя эти два числа 30 и 12, мы составим задачи. Ещё Джанни Родари говорил, что чтобы научиться думать, надо научиться придумывать. Эти слова можно перефразировать так: «Для того чтобы научиться решать задачи, надо научиться их составлять».
— Как составлять задачи? Как авторы учебников составляют задачи?
Вот этому мы сегодня будем учиться.
— Представим себе: утро, вы собираетесь и идёте в школу (проходите какое – то расстояние S), далее, вы идете в школу, родители – на работу (выполняете какую – то работу Р). Для чего работать? Заработать деньги (Д – деньги). Для чего нужны деньги? Чтобы покупать в магазине товар (С – стоимость).
На доске появляется такая схема:
III. Составление задач и решение задач вместе с учителем
— Начнем с задач на стоимость.
— Cоставим задачу, извлекая данные из таблицы:
Величины | Цена, р. | Кол-во, кг | Стоимость, р. |
---|---|---|---|
I яблоки | 30 | 2 | 60 |
II груши | 120 | 3 | 360 |
На 1 | Всего: 420 |
(В таблице выделенные данные становятся неизвестными величинами, а невыделенные – известными).
Дети составляют задачу по схеме: 30; 120; на 1; 420.
Мама купила яблоки и груши на сумму 420 рублей. Сколько килограммов яблок купила мама, если яблоки стоят 30 рублей за килограмм, а груши – 120 рублей?
(можно задать еще 3 вопроса к этой задаче по числу выделенных чисел).
(учащиеся рассуждая, заполняют пустые клетки таблицы)
Величины | Цена, р. | Кол-во, кг | Стоимость, р. |
---|---|---|---|
I яблоки | 30 | х | 30х |
II груши | 120 | х + 1 | 120(х + 1) |
На 1 | Всего: 420 |
Пусть х(кг) купили яблок, тогда груш купили (х + 1)кг; 30х(р.) уплатили за яблоки и 120(х + 1)р. уплатили за груши.
Зная, что за всю покупку уплатили 420 рублей, составим и решим уравнение: 30х + 120(х + 1) = 420 .
30х + 120х + 120 = 420
150х + 120 = 420
150х = 420 — 120
150х = 300
х = 300 : 150
х = 2.
Итак, 2кг яблок купила мама.
(проверим ответ, сверяя с данными таблицы № 1).
Ответ: мама купила 2кг яблок.
— Составим еще 2 уравнения к этой задаче.
— Сформулируйте вопрос на нахождение количества купленных груш.
Сколько килограммов груш купила мама?
Величины | Цена, р. | Кол-во, кг | Стоимость, р. |
---|---|---|---|
I яблоки | 30 | у — 1 | 30(у — 1) |
II груши | 120 | у | 120у |
На 1 | Всего: 420 |
Пусть у (кг) груш купила мама, тогда (у — 1)кг купили яблок. 30(у — 1)р. — она уплатила за яблоки; 120у (р.) – мама уплатила за груши.
По условию задачи известно, что за всю покупку мама уплатила 420 рублей.
Составим и решим второе уравнение: 30(у — 1) + 120у = 420 .
30у — 30 + 120у = 420
150у = 420 + 30
150у = 450
у = 3.
Итак, 3кг яблок купила мама.
(Сверяем полученный результат с данными в таблице № 1).
Ответ: мама купила 3кг яблок.
— Сформулируйте вопрос на нахождение стоимости яблок.
Сколько денег мама уплатила за яблоки?
Величины | Цена, р. | Кол-во, кг | Стоимость, р. |
---|---|---|---|
I яблоки | 30 | z / 30 | z |
II груши | 120 | (z / 30) + 1 | 120 · ((z / 30) + 1) |
На 1 | Всего: 420 |
Составим и решим уравнение: z + 120((z / 30) + 1) = 420 .
z + 120(z / 30) + 120 = 420
z + 4z + 120 = 420
5z = 420 — 120
5z = 300
z = 60.
Итак, 60 рублей мама уплатила за яблоки.
(проверим ответ, сверяя с данными таблицы № 1). Получилось!
Ответ: 60 рублей мама уплатила за яблоки.
— Сформулируйте четвертый вопрос.
Сколько денег мама уплатила за груши?
Величины | Цена, р. | Кол-во, кг | Стоимость, р. |
---|---|---|---|
I яблоки | 30 | (a / 120) — 1 | 30((a / 120) — 1) |
II груши | 120 | a / 120 | а |
На 1 | Всего: 420 |
Составим и решим уравнение: 30((a / 120) — 1) + а = 420 .
30a / 120 — 30 + а = 420
a / 4 — 30 + а = 420
5a / 4 — 30 = 420
5a / 4 = 420 + 30
5a / 4 = 450
a = 360.
Итак, за груши мама уплатила 360 рублей.
(проверим ответ, сверяя с данными таблицы № 1). Получилось!
Ответ: 360 рублей мама уплатила за груши.
— К составленным четырем уравнениям придумайте задачи на движение, работу.
(Заслушиваются составленные задачи, в ходе обсуждения корректируется текст задач).
IV. Применение (Работа в группах)
(Формируется 6 групп по 4 человека в каждой группе. Задачи предлагаются на разные темы).
Задание группе №1
А) Решить задачу, заполняя таблицу:
У кассира набралось монет достоинством в 50, 20 и 10 р. всего на сумму 1600 рублей. Определить, сколько было монет каждого достоинства, если число 20-рублевых монет было на 10 меньше, чем 50-рублевых, а число 10-рублевых монет было в 2 раза больше, чем 50-рублевых.
Величины | N — достоинство | К — кол-во, шт. | Д — деньги, р. |
---|---|---|---|
I монеты по 50 р. | 50 | ||
II монеты по 20 р. | 20 | ||
III монеты по 10р. | 10 | ||
На 10; в 2 раза | Всего: 1600 |
Б) Составить задачу про монеты 20, 10, 5 р. Рассказать условие задачи по её уравнению
5х + 3·(х + 40) + 2·(х + 40)·3 = 4800.
В) Проверить тождество 50·3 + 20·(3 + 5) + 10(3·5) = 460.
Заменить в тождестве число 3 всюду буквой в. Составить задачу и решить её.
Задание группе № 2
А) Длина прямоугольника в 2 раза больше его ширины. Когда длину прямоугольника увеличили на 3м, а ширину оставили той же самой, то площадь прямоугольника увеличилась на 36м 2 . Найти первоначальные размеры прямоугольника. (Изобразить условие на рисунке).
Б) Составить и решить задачу про площади двух прямоугольников на основе уравнения
(х + 12)2х — х·2х = 48.
В) Составить и решить аналогичную задачу на основе тождества
(20 + 5)·4·20 — 20·(4·20) = 400.
Проверить тождество. Всюду в нем заменить число 20 буквой у.
Задание группе № 3
А) Решить задачу, заполняя таблицу:
Величины | v – скорость, км/ч | t – время, ч | S – расстояние, км |
---|---|---|---|
I | |||
II |
По круговой дорожке, длина которой 360м, движутся навстречу друг другу два конькобежца. Скорость первого конькобежца на 2м/с больше скорости второго. Определить скорости конькобежцев, если они встречаются через каждые 90с.
Б) Рассказать и решить задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.
Задание группе № 4
А) Решите задачу:
Во дворе бегают куры и поросята, причем число голов равно 19, а число ног 54. Сколько кур и сколько поросят?
Б) Составить и решить похожую задачу к следующему уравнению:
4в + 2·(10 – в) = 38.
В) Составить задачу про число вершин 15 различных многоугольников (из них 8 квадратов, а остальные – треугольники) на основе тождества
4·8 + 3(15 – 8) = 53. Заменить в тождестве число 8 буквой у. Рассказать условие задачи. Решить задачу.
Задание группе № 5
А) Мастер изготовляет на 8 деталей в час больше, чем ученик. Ученик работал 6 часов, мастер – 8 часов, и вместе они изготовили 232 детали. Сколько деталей в час изготовлял ученик?
Б) Рассказать и решить аналогичную задачу на основе следующего уравнения:
30х + 30(х — 2) = 240.
В) Составить и решить задачу на основе числового тождества
20·8 + 20(8 – 3) = 260. Всюду в тождестве заменить число 8 буквой а.
Задание группе № 6
А) Решить задачу, заполняя таблицу:
Величины | V – скорость, км/ч | t – время, ч | S – расстояние, км |
---|---|---|---|
I | |||
II. |
Фермер ехал от села до станции на велосипеде со скоростью 15км/ч, а от станции до города поездом со скоростью 50км/ч. Весь путь он проехал за 5ч. Сколько часов он ехал на велосипеде и сколько поездом, если поездом он проехал расстояние, на 55км большее, чем на велосипеде?
Б) Составить и решить задачу на основе следующего уравнения:
12к — 4·(6 – к) = 8.
В) Составить и решить задачу на основе тождества:
6·80 — 5·(100 – 80) = 380.
Проверить это равенство. Заменить в нем число 80 буквой х. Рассказать условие составленной задачи.
V. Обмен информацией
Группы представляют результаты своей работы: зачитывают задачи, показывают решение и схемы, определяют вид задачи, отвечают на вопросы, которые возникли у учащихся.
VI. Рефлексия
Учащиеся оценивают свою работу на уроке, оценивают ответы учащихся, что получилось, чему ещё надо научиться.
VII. Итог урока
VIII. Домашнее задание
1) Составить уравнение на основе тождества, заменив в нем число 30 буквой k:
2) Составить задачу к полученному уравнению.
Итак, в ходе урока учащиеся продемонстрируют умение:
- определять вид текстовой задачи;
- устанавливать связи между компонентами задачи;
- находить способ решения, соответствующий условию задачи;
- составлять символические схемы и таблицы;
- составлять уравнение к задаче;
- составлять задачи по заданному уравнению.
Решение задач с помощью уравнений
Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.
Введение
В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.
Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.
Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.
Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.
Алгоритм решения текстовых задач с помощью уравнений
Для решения задачи с помощью уравнения делают следующие действия:
- Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
- Решают уравнение.
- Истолковывают результат.
Примеры решений
Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?
Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.
Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.
Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.
Монет в мешке: $48$
Монет в сундуке: $48cdot 3=144$
Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?
Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.
Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.
Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.
Муки в первом мешке: $700cdot 3=2100$ кг.
Муки во втором мешке: $700$ кг.
Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:
Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:
Избавимся от коэффициента при неизвестном и получим ответ:
Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.
Картошки в первом мешке: $15cdot 4=60$ кг.
Картошки во втором мешке: $15$ кг.
Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.
Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:
По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)
Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.
Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).
Первоначальная скорость машин: $v=60$ км/ч.
Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?
Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.
По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:
$$x-50-3cdot 150=1,5(x-3cdot 200)$$
Осталось решить данное уравнение относительно $x$ и истолковать ответ.
Упростим и раскроем скобки в правой части, тогда получим:
Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac =frac $.
Запишем с учётом перевода дробей и упростим:
Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:
Домножим обе части на 2 и получим ответ:
Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$
Кол-во цемента в первой бригаде: $800-50=750$ кг.
Кол-во цемента во второй бригаде: $800$ кг.
Задачи для самостоятельного решения
По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?
Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.
В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$
Ответ: Рабочие отработали 6 дней.
Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?
Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:
1 фунт и половина кирпича = целый кирпич.
Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?
Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:
$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:
Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.
Ответ: 9,5 копеек стоит бутыка без пробки.
На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?
Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:
Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.
Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?
Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:
$$2x-10+0,3cdot 2x-0,3cdot 10=65$$
$$2x+0,3cdot 2x=65+10+0,3cdot 10$$
Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.
Алгебра. 7 класс
Конспект урока
Решение задач с помощью линейных уравнений
Перечень рассматриваемых вопросов:
• Решение линейных уравнений.
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.
Решить уравнение – значит найти все его корни или установить, что их нет.
Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.
Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.
Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.
Свободный член – член уравнения, не содержащий неизвестного.
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
Решить уравнение – значит найти все его корни или установить, что их нет.
Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.
Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.
Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Мы уже рассматривали примеры функциональных зависимостей между величинами как математические модели реальных процессов. Теперь рассмотрим текстовые задачи, математическими моделями которых являются линейные уравнения и уравнения, сводящиеся к линейным.
Решить задачу можно с помощью системы уравнений, а можно с помощью одного уравнения. Рассмотрим на примере задачи.
Из города А в город В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути – со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 54 км/ч. Ответ дайте в км/ч.
При решения текстовых задач эффективно построение схем и составление таблиц.
Используя сравнение скоростей, указанное в задаче, и обозначая скорость первого автомобиля икс, запишем скорость второго автомобиля на протяжении всего пути:
Скорость первого автомобиля: x, скорость второго автомобиля: x – 15x – 15/
Теперь заполним вспомогательную таблицу.
Условие, что автомобили прибыли в пункт назначения одновременно, используем для составления уравнения. Выражаем время первого автомобиля, которое он затратил на весь путь, через x.
Время первого автомобиля:
Время второго автомобиля:
Сократим на S ≠ 0 и умножим на 2.
Умножим обе части на 90x(x – 15), получим:
Решением уравнения будут корни:
Условию уравнения удовлетворяет только x = 60
Ответ: 60 км/ч – скорость первого автомобиля.
Составим алгоритм решения текстовых задач при помощи уравнений.
Решать задачу с помощью уравнения следует в такой последовательности:
1) обозначить переменной одну из неизвестных величин;
2) другие неизвестные величины (если они есть) выразить через введенную переменную;
3) по условию задачи установить соотношение между неизвестными и известными значениями величин и составить уравнение;
4) решить полученное уравнение;
5) проанализировать решение уравнения и найти неизвестную величину, а при необходимости и значения остальных неизвестных величин;
6) записать ответ к задаче.
Решите задачу двумя способами.
В первый день со склада было отпущено 20% имевшихся груш. Во второй день 180% от того количества груш, которое было отпущено в первый день. В третий день ‑ оставшиеся 88 кг. Сколько кг груш было на складе первоначально?
Разберем 2 способа решения этой задачи.
Для первого способа составим вспомогательную таблицу:
Значит, первоначально было 200 кг груш.
Составим вспомогательную аблицу:
Ответ: 200 кг груш.
Разбор заданий тренировочного модуля.
Задание 1. Запишите выражение для нахождения цены 1 кг сахара (в руб.), если n тонн сахара стоят m рублей.
Для решения задачи, вспомним, сколько килограммов содержится в одной тонне:
Так как стоимость n тонн сахара = m рублей, то, чтобы найти, сколько стоит 1 кг сахара, нужно стоимость разделить на количество:
Цена персиков на 30 р. выше, чем цена абрикосов. Для консервирования компота купили 5 кг персиков и 7 кг абрикосов. По какой цене покупали фрукты, если вся покупка обошлась 850 рублей?
Пусть цена абрикосов – x рублей. Тогда x + 20x + 20 – цена персиков.
Всего купили персиков: 5(x + 30) и абрикосов 7x.
Так как на всю покупку затратили 850 руб., имеем выражение:
5(x + 30) + 7x = 850
Раскроем скобки: 5x + 150 + 7x = 850
Перенесем слагаемые, не содержащие переменной, в правую часть, меняя знак на противоположный:
[spoiler title=”источники:”]
http://b6.cooksy.ru/articles/kak-sostavlyat-lineynye-uravneniya-k-zadacham/
http://resh.edu.ru/subject/lesson/7274/conspect/
[/spoiler]
Нередко уравнения выручают нас при решении самых разнообразных задач – по математике, физике, механике, экономики и других областей.
Рассмотрим общий порядок решения задач с помощью уравнений.
1. Вводим переменные. Иными словами, буквами x, y, z мы обозначаем неизвестные нам величины, которые нам необходимо найти по условию задачи либо которые необходимы для отыскания искомых величин.
2. Составляем уравнение (систему уравнений) – при помощи введенных переменных и данных в условии задачи величин.
3. Решаем составленное уравнение (систему уравнений) и анализируем полученные данные (отбираем из решений те, которые подходят по смыслу задачи).
4. Если буквами x, y, z были обозначены не искомые величины, то при помощи полученных результатов находим ответ на вопрос задачи.
Применим полученные знания на практике и решим задачи.
Задача 1.
Для перевозки 60 т груза понадобилось некоторое количество машин. Из-за ремонта на дороге на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, что привело к увеличению общего числа машин на 4 единицы. Какое количество машин было необходимо первоначально?
Решение.
1. Обозначим через х первоначальное количество машин. Тогда всего было использовано (х + 4) машин.
2. Предполагалось, что каждая машина равномерно празделит 60 т груза, т.е. на одну машину будет погружено 60/х т, но фактически на 1 машину было погружено 60/(х + 4) т, что на 0,5 меньше, чем планировалось.
3. На основе введенных переменных и выведенных выражений составим и решим уравнение:
60/х – 60/(х + 4) = 0,5
60/х – 60/(х + 4) = 0,5 ∙ 2х(х + 4)
120(х + 4) – 120х = х(х + 4)
120х + 480 – 120х = х2 + 4х
х2 + 4х – 480 = 0.
По теореме Виетта, х1 + х2 = -4, а х1 ∙ х2 = -480. Значит, х1 = -24, х2 = 20.
4. Анализируем полученные результаты. Число -24 не подходит по смыслу задачи (количество машин не может быть выражено отрицательным числом). Значит, наше решение – х2 = 20, т.е. первоначально понадобилось 20 машин.
Ответ: 20.
Задача 2.
Моторная лодка, двигаясь со скоростью 20 км/ч, прошла расстояние между А и В по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между А и В составляет 60 км. Найти скорость течения реки.
Решение.
1. Примем за х скорость течения реки.
2. Т.к. по условию задачи лодка двигалась в обоих направлениях (туда и обратно), то по течению она шла со скоростью (20 + х) км/ч, против течения – со скоростью (20 – х) км/ч.
3. Чтобы найти время, нужно расстояние разделить на скорость, т.е. t = s/v. Иными словами, путь по течению займет у лодки 60/(20 + х) ч, а обратный путь – путь против течения займет 60/(20 – х) ч. По условию известно, что весь путь занял 6 ч 15 мин, т.е. 25/4 ч.
4. Используя вышеизложенные сведения, составим и решим уравнение:
60/(20 + х) + 60/(20 – х) = 25/4
60/(20 + х) + 60/(20 – х) = 25/4 ∙ 4(20 + х)(20 – х)
240(20 – х) + 240(20 + х) = 25(20 + х)(20 – х)
4800 – 240х + 4800 + 240х = 25(400 – х2)
9600 = 10000 – 25х2
25 х2 = 10000 – 9600
25 х2 = 400
х2 = 16
х1 = -4, х2 = 4.
5. Анализируем полученные результаты. Число -4 не подходит по смыслу задачи (скорость течения не может быть выражена отрицательным числом). Значит, наше решение – х2 = 4, т.е. скорость течения реки составляет 4 км/ч.
Ответ: 4.
Задача 3.
Есть кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова необходимо прибавить к этому куску , чтобы получившийся новый сплав содержал 40% меди?
Решение.
1. Примем за х массу добавленного олова. Тогда массу получившегося сплава мы обозначим как (12 + х) кг. Этот сплав содержит 40% меди, значит в новом сплаве меди будет 0,4(12 + х).
2. Исходный сплав массой 12 кг содержал 45% меди, значит, в нем было меди 0,45 ∙ 12 кг.
3. Т.к. масса меди в исходном и в новом сплаве одинакова, приходим к уравнению:
0,4(12 + х) = 0,45 ∙ 12
4,8 + 0,4х = 5,4
0,4х = 5,4 – 4,8
0,4х = 0,6
х = 0,6 : 0,4
х = 1,5.
Значит, к исходному сплаву необходимо добавить 1,5 кг олова.
Ответ: необходимо 1,5 кг олова.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Методика по просьбам трудящихся.
Я уже писал о “вопросной” системе решения текстовых задач. Суть её в том, что для решения задачи нужно выписывать вопросы, которые начинаются со слова “сколько…?”, вне зависимости от того, знаем мы ответ на них или нет. Каждый такой вопрос образует одну величину в задаче, поэтому для более старших детей можно заменять некоторые вопросы на названия величин. Например вопрос “сколько километров проезжает машина за каждый час?” неплохо заменяется на величину “скорость машины”.
Эта система оказывается настолько мощной, что позволяет решить практически любую текстовую задачу. В том числе, задачи, требующие составления уравнений.
В качестве примера и основы статьи я возьму классическую задачу для третьего класса про велосипеды.
В Детском Мире продавали двухколесные трехколесные велосипеды. Максим пересчитал все велосипеды и все колеса, получилось 12 велосипедов и 27 колес. Сколько трехколесных велосипедов продавали в Детском мире?
Составим список вопросов для этой ситуации. Кроме того, на каждый вопрос постараемся дать ответ. Я не буду сейчас увлекаться объяснением, как из текста извлечь значения величин, и как понять, какие вопросы должно задавать (это слишком долго).
У меня получился такой список.
Остались 4 пустые ячейки, в которые мы не можем вписать ответы – их нет в тексте, и нельзя вычислить из имеющихся.
В этом месте начинается подбор. Он в таких задачах есть всегда, просто иногда это неявный подбор в виде уравнения. Учителю в этой ситуации рекомендуется задать вопрос: “а если бы ты знал ответ на один из этих вопросов, смог бы ответить на все остальные?”
Обычно ученик отвечает утвердительно и даже указывает на вопрос, но если нет, то можно и натолкнуть – предложить свой “например”.
Первый раз подбор всегда надо осуществлять явно, поэтому учитель предлагает написать карандашом в качестве ответа “любое” число. Важно следить, чтобы это число на совпало с ответом (такое часто бывает при переучивании старшеклассников, поэтому для них нужно подбирать задачи позаковыристее, но не в плане сложного уравнения, а такие, чтобы решить было легко, но чтобы или выбор “икса” был неочевиден, или числа “напрашивались” бы неправильные).
И исходя из этого “карандашного” числа вычислить ответы на все остальные вопросы.
Так как учитель проследил, что число неправильное, в какой-то момент ребенок столкнется с противоречием в задаче. Не всегда это противоречие видно сразу, иногда приходится на него намекнуть (поэтому для первых раз нужно выбирать задачи с легко обнаруживаемыми противоречиями).
Сейчас на примере покажу, и будет ясно, что я имею в виду.
Скажем, ребенок решил, что ему поможет ответ на вопрос номер 2 – “сколько двухколёсных велосипедов?”. Он отвечает на него, допустим, числом 3. Тогда он легко вычисляет, что трёхколёсных велосипедов будет 12-3=9, колёс у двухколёсных будет 3*2=6 штук, колёс у трёхколёсных будет 9*3=27 штук. Эти все вычисления записываются в список карандашом:
Я специально выбрал в качестве нулевого приближения число 3, чтобы противоречие было очевидным: если мы сложим все получившиеся колёса, то будет явно больше 27. Но ребёнок может и не заметить этого сразу. Можно сказать, что противоречие есть и предложить поискать его – довольно быстро найдёт. А то и прямо показать.
Карандашные числа стираются, и пишутся по новой. Через пару итераций выясняется, что противоречия нет, только если в качестве ответа на 2й вопрос взять число 9 (12-9=3, 9*2=18, 3*3=9, 18+9=27)
В принципе, задача решена, на этом надо бы заканчивать. Но мы разбираем решение задач через уравнения. Поэтому.
Что брать за икс?
За “икс” берём то число, которое мы подбирали (а не то, что спрашивается в задаче). И после этого ответ на каждый вопрос записываем выражением:
Это оказывается довольно легко для 7-8 класса, а в младших и не требуется.
А вот что трудно – это из этих выражений составить уравнение. Можно спросить ученика “как ты понял, что три не подходит, а девять подойдёт?” Ну, и если уж не может сказать, то помочь – если брать три, то сумма ответов на 6й и 7й вопросы не будет равна 27, а если взять 9, то сумма ответов на 6й и 7й вопросы будет равна 27. Тут хотя бы у одного из собеседников предполагается умение записывать фразу математической записью.
x*2+(12-x)*3=27
То есть, вот это противоречие, которое мы искали вначале, оно же является критерием подбора, и оно же является фактом, на который составляется уравнение. Это и есть ключевой момент. И пока ученик не может видеть эти противоречия – у него не получится составить уравнение к задаче иначе, как по ключевым словам.
Прямая пропорциональность:
у=kx, k≠ 0
где k – коэффициент пропорциональности; y, x – пропорциональные переменные.
Свойство прямой пропорциональности:
x₁:x₂=y₁:y₂
Обратная пропорциональность
у=k:x, k≠ 0, x≠0
Свойство обратной пропорциональности:
x₁:x₂=y₂:y₁
————————
Прямая пропорциональность
Правило.
Если две величины связаны между собой так, что
увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны.
Прямая пропорциональность
.|а₁ — b₁|
↓а₂ — b₂↓
Обратная пропорциональность.
Правило.
Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны.
.|а₁ — b₁↑
↓а₂ — b₂|
Цели и задачи урока:
- Систематизировать способы введения переменной
в текстовых задачах через повторение вариантов
составления уравнений и закрепление навыков
составления краткой записи. - Развивать логическое мышление учащихся, учить
сравнивать, анализировать, выбирать наиболее
рациональное решение, формировать правильную
математическую речь. - Развивать навыки самостоятельности,
самообучения.
Форма урока: урок обобщения навыков,
исследовательская работа.
Оборудование урока:
- Магнитная доска.
- Индивидуальные доски учащихся, фломастеры.
- Таблички для обобщения, формулировки выводов.
- Кружки разного размера для работы на доске.
- Раздаточный материал для учащихся с текстом
задач /приложение 1/.
Структура урока:
1. Организационный этап. (2 мин)
2. Пропедевтический этап. Актуализация опорных
знаний и умений учащихся (3 мин).
3. Постановка цели и задач урока (1 мин).
4. Выбор переменной в задачах (10 мин).
5. Способы составления уравнений (15 мин).
6. Итог урока (3 мин)
7. Комментирование домашнего задания (1 мин).
8. Самостоятельная работа (10 мин)
На доске:
- Тема урока, число (центральная доска слева).
- Примеры для устного счета (дополнительная доска
слева). - Домашнее задание (дополнительная доска справа)
- Тексты задач 1д, 1е из раздаточного материала
(доп.доска справа внутри, т.е. не видна в начале
урока)
1. Организационный этап (2 мин).
Перед началом урока (до звонка) учитель
собирает тетради с домашней работой.
Учитель: Здравствуйте, ребята!
Садитесь.
Откройте тетради, запишите число. В дневник
запишите домашнее задание (показывает на доске):
№1373в, задача №3 в приложении.
Закройте дневники, подготовьте доски,
поиграем в «молчанку».
2. Актуализация опорных знаний и умений
учащихся. (3 мин).
Учитель раскрывает дополнительную доску,
учащиеся пишут ответы на индивидуальных досках:
- Привести подобные слагаемые:
- Записать в виде десятичной дроби: 40%; 20%; 185%; 7%.
- Выразить значение десятичной дроби в процентах:
0,35; 02; 0,03; 1,25. - Найти 2/3 oт x; 5/7 от a.
- Найти число, если 3/4 его составляют r. Найти
число, если 5/7 его составляют n; - Выделить целую часть 5/3; 3/2; 8/3.
Учащиеся по просьбе учителя записывают ответ
на индивидуальной доске, показывают учителю
ответ. При затруднении кто – либо из учащихся
комментирует решение. При значительном
затруднении решение записывается в тетрадь. Но к
данному уроку эти задания должны быть достаточно
отработаны и только повторяются.
3. Постановка цели и задач урока (1 мин).
Учитель: Мы говорили ранее, что
умение решать задачи является основным. Задачи
можно решать по-разному. Одним из способов
является решение с помощью составления
уравнения. Этим способом мы с вами только
начинаем овладевать. Важным моментом для умения
решения задачи с помощью уравнений является
выбор переменной. Ведь это самое начало решения!
А как начнешь дело, так и его закончишь.
Сегодня на уроке мы повторим некоторые
возможные способы выбора переменной, рассмотрим
достоинства и недостатки этих способов.
А в конце урока мы должны будем определиться
в ответе на вопрос: как же вводить переменную и
составить уравнение, чтобы задача легче
решалась? Запишите тему урока.
4. Выбор переменной в задачах (10 мин).
Предлагаем отработанный блок вопросов для
работы с условием текстовой задачи:
Учитель: Посмотрите на задачу 1а
(см. Приложение 1).
Прочитайте условие задачи.
- О чем говориться в задаче? (Предполагаемый
ответ: в задаче говорится о поле) - На какие части можно условно разделить поле в
задаче? (I участок, II участок) - Какая величина характеризует поле? (Площадь
поля) - В чем она измеряется? (Гектарах)
- Какова площадь поля? (2,4 га)
- Какова площадь первого участка?
(Неизвестна) - Какова площадь второго участка?
(Неизвестна) - Какова зависимость между неизвестными
величинами? (s1>s2 на 0,8 га)
В процессе беседы по типовым вопросам на доске и
в тетрадях учащихся появляется краткая запись
условия задачи
- Какую смысловую нагрузку несет значение
величины s=2,4га? (Если к площади первого участка
прибавить площадь второго участка, то получим
значение площади всего поля или 2,4 га по условию
задачи).
Если в задаче неизвестны значения каких-либо
величин, но известна зависимость между ними, то
задачу можно решать с помощью составления
уравнения. Для этого необходимо ввести
переменную и составить уравнение.
- Значение какой величины можно обозначить
через переменную? (Площадь второго поля
обозначим через х, т.к. она меньшая) - Как выразить другую величину? ((х+0,8)га)
- Можно ли обозначить буквой значение другой
величины? (Да: площадь первого поля обозначим
через у)
В результате этой части беседы краткая запись
дополняется кружками, обозначающими зависимость
между величинами:
- Каким из этих способов предпочтительнее
вводить переменную? (Первым, но незначительно.
Способы практически равнозначны)
Разберем в парах введение переменной в
задаче 1б (см. Приложение 1)
Учащиеся работают в парах с соседом по парте.
Один ученик задает вопросы, другой отвечает.
Считаем необходимым отметить, что одним из
навыков решения задачи является умение задавать
вопросы самому себе. К данному уроку работа над
умением задавать вопросы велась неоднократно.
Две пары учеников выполняют работу на доске.
После пары проверяют записи на доске друг у друга
вместе с классом. Лучшую запись оставляют на
доске. Ответы учащихся оцениваются друг другом.
Учитель комментирует сам или требует
комментариев от учащихся по вопросу выставления
оценок. В результате на доске остается запись:
- Какой способ введения переменной
рациональнее? (Первый) - Можно ли вводить переменную вторым способом?
(Да, если выполнить преобразования: y : 3 = y * 1/3 = 1/3 y)
Аналогично организовать работу над задачами
1в, 1г.
Получить на доске краткие записи работы:
В соответствии с уровнем подготовки школьников
следует уделять внимание логическим пояснениям
и математическим преобразованиям в каждом
случае. Обязательно подвести учащихся к выводу,
что любой способ введения переменной является
правильным, но не любой – самым легким для
последующего решения.
Учитель: Какие зависимости между
неизвестными величинами мы уже рассмотрели?
(Больше – меньше, одна величина является частью
от другой, в том числе процентной) Рассмотрим
другие случаи зависимости: (тексты
дублировать на дополнительной доске, краткая
запись – в результате беседы)
Необходимо отметить, что мы уделяем особое
внимание символическим обозначениям. Мы вводим
свои условные знаки, которые являются как бы
мостиком при переводе информации с русского на
математический язык. Так, зависимость между
величинами мы обозначаем кружками, которые
позволяют легче усвоить смысл уравнивания
величин с помощью весов, а разность обозначаем в
виде гири, которая к этому времени
трансформировалась в прямоугольник. Поэтому
наиболее тяжелая для учащихся зависимость
«разность чисел» легко переформулируется в
«больше – меньше».
Учитель: Подведем итог нашей работы.
Нужно, чтобы учащиеся самостоятельно сделали
ряд выводов:
- Существуют различные зависимости между
величинами (больше – меньше, часть – целое,
сумма, разность) - Выбор переменной может быть любым.
- От выбора переменной зависит дальнейшее
решение задачи.
5. Способы составления уравнений (15 мин).
Учитель: Мы уже отметили, что
умение ввести переменную для решения задачи
очень важно. Но в тексте задачи обычно несколько
условий, характеризующих зависимость между
величинами. Причем никогда не сообщается,
при помощи какого условия надо вводить
переменную. Кроме того, решение не
ограничивается введением переменной. Давайте
вспомним, как расчленять условие задачи на
отдельные части.
Прочитайте задачу №2 (см.Приложение)
- О чем говорится в задаче? (В задаче
говорится о возрасте) - На какие части можно условно разделить
возраст? (Возраст отца и возраст сына) - Знаем ли мы возраст отца? (Нет)
- Знаем ли мы возраст сына? (Нет)
- Прочитайте условие, которое связывает
возраст отца и возраст сына. (Их два: сын младше
отца в 4 раза; отец старше сына на 27 лет) - Переформулирем эти условия так, чтобы
использовалась уже известная зависимость.
(Возраст сына в 4 раза меньше, чем возраст отца;
возраст отца на 27 лет больше возраста сына) - Переформулируем условия так, чтобы
сравнивался возраст отца с возрастом сына.
(Возраст отца больше возраста сына в 4 раза,
возраст отца больше возраста сына на 27 лет) - Переформулируем условия так, чтобы
сравнивался возраст сына с возрастом отца. (Возраст
сына меньше возраста отца на 27 лет. Возраст сына
меньше возраста отца в 4 раза.).
В результате на доске и в тетрадях учащихся
появляется основная краткая запись (учащиеся
в тетради её не делают, но на доске эта запись
будет в работе в течение всего решения):
- В задаче выделились два условия и вопрос.
(Вопрос: сколько лет отцу?) - Каким способом можно решать задачу? (Задачу
можно решать с помощью уравнения, так как
значения обеих величин неизвестны, а известна
зависимость между ними) - С помощью какого условия можно ввести
переменную? (Возраст сына на 27 лет меньше, чем
возраст отца). - Для чего тогда можно использовать второе
условие? (Второе условие можно использовать
для составления уравнения.) На доске
прикрепляются таблички:Для введения
переменнойДля составления
уравнения - Составьте в тетради и на доске краткую запись:
- Составьте схемы уравнений и сами уравнения по
второму условию. Учащиеся составляют в
тетради и на доске схемы и уравнения по ним: - Какой вариант кажется вам рациональнее? (Обычно
учащиеся выбирают третье уравнение. Остальные
решать пока не умеем. Обводим его в рамку.)
Желательно учителю выписывать выбранные
уравнения на отдельной доске для того, чтобы
учащиеся сделали общий вывод. -
Возможно ли обозначить переменной
значение другой величины? Введите переменную
по-другому, составьте схемы уравнений, сами
уравнения, сделайте вывод.
Дети составляют краткую запись, схемы
уравнений, уравнения самостоятельно в тетрадях.
На дополнительных досках работают два ученика.
Вместе выбираем уравнение, которое наиболее
удобно для решения. Сравниваем его с
первоначальным, делаем выводы: схемы для
составления уравнений одинаковые, т.к. условие
для составления уравнения не изменилось. Схемы
можно было не составлять. Уравнения отличаются
незначительно.
- Можно ли было использовать первое условие для
составления уравнения, а второе – для введения
переменной. (Да) Меняем таблички с надписями
«для составления уравнения», «для введения
переменной» местами в основной краткой записи. - Можно ли ввести переменную по-другому,
используя условия для тех же целей? (Да)
Учащиеся самостоятельно составляют схемы
уравнений, уравнения. На доске записываем только
то, которое они считают рациональным.
Составляем краткую запись, схемы уравнений,
уравнения самостоятельно в тетрадях. Вместе
выбираем уравнение, которое наиболее удобно для
решения, записываем его на доске.
6. Итог урока (3 мин).
При подведении итога урока учащиеся
просматривают вторую часть классной работы,
подсчитывают количество возможных вариантов
составления уравнения в зависимости от введения
переменной в задачу (пишут: I способ, II способ…).
Повторяют вывод, уже сделанный для каждого
способа. Учителю при самостоятельной работе
учащихся необходимо следить за тем, чтобы
наиболее рациональные варианты стояли на
различных местах по порядку, иначе учащиеся
могут сделать неправильный вывод.
7. Комментирование домашнего задания (1 мин).
Учитель: Дома вы будете решать
пример (№1373в) и задачу № 3 из приложения. Каким
способом будете вводить переменную? Верно,
каждый своим способом. Решение задачи полностью
записать в тетради.
- Так какой же способ самый правильный?
(Никакой, правильные все) - Какой саамы рациональный и легкий для
решения? (Учащиеся могут назвать разные варианты)
Запишите решение тем способом, который кажется
вам рациональнее.
8. Самостоятельная работа (10 мин).
Учащиеся записывают решение уравнения и
сдают тетради на проверку. Из опыта работы можем
утверждать, что учитель успевает проверить
работу учащихся и выставить отметки за урок за
время выполнения всем классом самостоятельной
работы. Учащиеся выполняют следующую домашнюю
работу в этих же тетрадях.
Использование данной методики работы над
текстовой задачей дает хорошие результаты.
Учебник: Н.Я. Виленкин и др., Математика, 6 класс.