Как составить уравнения реакции горения металлов

Электронная библиотека

Металлы отличаются от других твердых горючих веществ тем, что на их поверхности в процессе окисления образуются твердые оксиды, пленка которых препятствует прямому контакту реагирующих веществ. Опыты по возгоранию металлов показали, что некоторые из них (Fe, Al, Zn, Sn) в компактном состоянии способны гореть только в виде кусочков, проволочек, фольги, ленты. В виде же порошка они способны даже самовозгораться и гореть в большой массе. Другие металлы (К, Na, Li) способны возгораться и гореть в компактном состоянии и в большой массе.

На способность металлов возгораться и гореть большое влияние оказывают химические и физические свойства как самих металлов, так и их оксидов. Особенно большое влияние на возгораемость и характер горения оказывают температуры плавления и кипения металлов и их оксидов. По этим физическим свойствам металлы подразделяются на летучие и нелетучие.

Все эти металлы имеют низкую температуру плавления и при горении находятся в жидком состоянии. Температура кипения их (кроме калия) ниже температуры плавления оксидов, поэтому на жидком металле могут находиться твердые оксиды.

При контакте металлов с источником зажигания, например с пламенем, они нагреваются и окисляются. Оксиды всех металлов, приведенные в табл. 7.7, пористы и не способны изолировать поверхность металла от дальнейшего окисления, а следовательно, и нагревания. Через некоторое время металл расплавляется и начинает испаряться.

Пары его диффундируют сквозь пористый твердый оксид в воздух. Когда концентрация паров в воздухе будет достаточная для воспламенения, возникает горение. Зона диффузионного горения (короткое пламя) устанавливается вблизи поверхности оксида, и большая часть теплоты реакции передается металлу, в результате этого он нагревается до температуры кипения. Кипение металла вызывает разрыв корки оксида и более интенсивное горение.

Особенности горения и тушения металлов и гидридов металлов

Горение металлов

По характеру горения металлов их делят на две группы: ле­тучие и нелетучие. Летучие металлы обладают относительно низкими температурами фазового перехода — температура плав­ления менее 1000 К, температура кипения не превышает 1500 К. К этой группе относятся щелочные металлы (литии, натрий, ка­лий и др.) и щелочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше. Тем­пература плавления, как правило, выше 1000 К. а температура кипения — больше 2500 К (табл. 1).
Механизм горения металлов во многом определяется состоянием их окисла. Температура плавления летучих металлов зна­чительно ниже температуры плавления их окислов. При этом по­следние представляют собой достаточно пористые образования.

При поднесении источника зажигания к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу, про­исходит их воспламенение. Зона диффузионного горения устанав­ливается у поверхности, большая доля тепла перелается металлу, и он нагревается до температуры кипения. Образующиеся пары, свободно диффундируя через пористую окисную пленку, посту­пают в зону горения. Кипение металла вызывает периодическое разрушение окисной пленки, что интенсифицирует горение. Про­дукты горения (окислы металлов) диффундируют не только к по­верхности металла, способствуя образованию корки окисла, но и в окружающее пространство, где, конденсируясь, образуют твер­дые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весь­ма плотная окисная пленка, которая хорошо сцепляется с по­верхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, на­пример, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плот­ной окисной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно часто наблюдается при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под окисной пленкой с последую­щим внезапным ее разрывом. Это, естественно, приводит к рез­кой интенсификации горения.

Основными параметрами их горения являются время воспламе­нения и сгорания. Из теории диффузионного горения следует, что время сгорания частицы металла tг пропорционально квадрату ее диаметра do. Экспериментальные данные показывают, что фактическая зависимость несколько отличается от теоретической. Так, для алюминия tг

Повышение концентрации кислорода в атмосфере интенсифицирует горение металла. Частички алюминия диаметром (53 ÷ 66) 10 -3 мм в атмосфере, содержащей 23% кис­лорода, сгорают за 12,7·10 -3 с, а при повышении концентрации окислителя до 60% — за 4,5·10 -3 с.

Однако для пожарно-технических расчетов большой интерес представляет не время сгорания частицы металла, а скорость рас­пространения пламени по потоку взвеси частиц металла в окис­лителе. В табл.2 приведены экспериментальные данные по скорости распространения пламени и массовой скорости выгора­ния взвеси частиц диаметрами менее 10 -2 мм и 3·10 -2 мм алю­миния в воздухе при различном коэффициенте избытка воздуха.

Результаты и обсуждение

Горение металлов, их сплавов, металлосодержащих веществ, в т.ч. металлоорганических веществ согласно ГОСТ 27331-87 подразделяются на 3 класса:

  1. класс Д1 – горение легких металлов (алюминий, магний и их сплавы, кальций, титан), условно «тяжелых» металлов (цирконий, ниобий, уран и др.);
  2. класс Д2 – горение щелочных металлов (литий, натрий, калий и др.);
  3. класс Д3 – (металлоорганические соединения: алюмо-, литий-, цинк- органика, гидриды алюминия, лития и др.).

Каждый из перечисленных металлов и их гидридов в обычном состоянии представляет собой твердое вещество, кроме металлоорганических соединений (МОС), представляющих собой жидкости.

Из особенностей металлов, которые имеют прямое отношение к их пожаро-, взрывоопасности и горению необходимо отметить следующие:

  • склонность к самовозгоранию при обычных условиях (т.е. пирофорность);
  • способность взрываться в состоянии аэровзвеси;
  • взаимодействие горящих металлов с водой, некоторыми газовыми огнетушащими составами: хладонами (хлорфторуглеводороды), азотом (например, магний) и др.

Способностью самовоспламеняться обладают щелочные металлы, стружка, металлические порошки, имеющие неокисленную активную поверхность, гидриды металлов, МОС (классы пожаров Д2, Д3).

Наиболее пожаро-, взрывоопасными металлами, горение которых происходит по классу Д1, являются легкие металлы в виде продуктов их переработки: порошков разной дисперсности, стружки. Металлы в виде изделий различной конфигурации (листы, профили и т.п.) поджечь практически невозможно, если обеспечиваются условия преобладания теплоотвода над теплоприходом.

Гидриды металлов занимают промежуточное положение между металлами и органическими соединениями. Связано это с тем, что при их разложении выделяется водород, что можно рассматривать как аналогию процесса выделения горючих газов при пиролизе органических материалов, сгорающих в газовой фазе [1]

При этом гидриды металлов значительно различаются между собой по своим физико-химическим свойствам, по механизму горения и воспламенения. Так, гидриды титана, ниобия, тантала и т. д. являются по существу растворами водорода в металле и имеют переменный состав с металлическим типом связи. Они горят в основном в тлеющем режиме, пламенное горение водорода практически отсутствует.

В то же время литий-алюминий гидрид (ЛАГ), гидриды алюминия (ГА) и лития (ГЛ) – ярко выраженные индивидуальные соединения с ионной (для ГЛ – частично ковалентной) связью, характеризующиеся наличием режимов пламенного и гетерогенного горения [2]

ГА и гидриды щелочных металлов проявляют пирофорные свойства, активно взаимодействуют с влагой воздуха, при небольшом нагреве активно выделяют водород и вследствие этого в состоянии аэровзвеси образуют гибридные взрывоопасные смеси с воздухом.

При повышенных температурах и при горении возможно взаимодействие азота с наиболее активными гидридами, например, ГА.

Небольшое разбавление азота воздухом может привести к очень «жесткому» взрыву аэровзвеси ГА, поэтому не для всех гидридов металлов можно использовать азот в качестве защитной атмосферы. Иногда для этого приходится использовать аргон.

Таким образом, характер горения металлов и металлосодержащих веществ исключает применение воды, водопенных средств тушения и ряда газовых огнетушащих составов, т. к. при контакте этих средств с горящими металлами происходит их взаимодействие, приводящее к разгоранию.

В России и мировой практике для тушения пожаров классов Д1, Д2, Д3 применяются огнетушащие порошковые составы специального назначения (ОПСН). При создании рецептуры таких составов учитываются следующие факторы:

  • основное вещество, определяющее этот состав (от 80 до 95% об.), не должно содержать в молекуле атом кислорода (не поддерживать горение) и не вступать с металлом в химическую реакцию;
  • ОПСН должны иметь определенный фракционный состав (как правило, в диапазоне 50-75 мкм);
  • ОПСН не должны слеживаться в процессе хранения, что достигается включением в их состав антислеживающих гидрофобизирующих добавок, а также обладать рядом других эксплуатационных свойств в соответствии с общепринятыми техническими требованиями;

В настоящее время наиболее распространены для тушения пожаров классов Д1, Д2, Д3 ОПСН на основе хлоридов щелочных металлов (KCl – Россия и NaCl – Европа, США). В качестве огнетушащих составов для металлов существует ряд жидкостных составов (например, на основе борных эфиров), но они не нашли широкого применения в практике пожаротушения.

Основным принципом достижения положительного результата при тушении металлосодержащих веществ (по классам Д1, Д2, Д3) является создание с помощью ОПСН защитного полного покрытия очага горения, препятствующего доступу кислорода воздуха в зону горения. Такое покрытие должно быть достаточно плотным, иметь необходимую толщину слоя порошка по всей поверхности очага горения, что достигается при определенном удельном расходе порошка (кг/м2).

Тушение металлов и металлосодержащих веществ имеет ряд особенностей, присущих каждой группе веществ по классам Д1, Д2, Д3 в т.ч.:

  1. для тушения металлов по классу Д1 ОПСН должен отвечать критериям, приведенным выше, при этом основу порошка составляет, например, хлорид калия с плотностью около 1 г/см3).;
  2. для тушения гидридов металлов (Д3) применяется ОПСН с характеристиками, аналогичными для ОПСН, применяемого для тушения по классу Д1;
  3. для металлорганических веществ, являющихся жидкостями при обычных условиях, ОПСН должен иметь плотность, близкую к плотности этих веществ (

0,7-0,8 г/см3), что обеспечивается введением в состав порошка негорючей добавки с низкой плотностью (перлит, вермикулит), что также способствует адсорбции МОС и улучшает надежность тушения.

При тушении натрия [3]

возникает так называемый «капиллярный» или фитильный эффект горения за счет роста оксидных образований, прорастающих через слой порошка, по которым жидкий натрий проникает и горит в виде фитиля. Для предотвращения роста оксидов обычно используют специальные добавки.

Тушение металлов и металлосодержащих соединений ОПСН коренным образом отличается от тушения, например, углеводородных ЛВЖ, ГЖ (классы пожаров A, B, C) порошками общего назначения. В случае тушения пожаров класса Д (Д1, Д2, Д3) основная задача при подаче ОПСН заключается в создании на поверхности очага горения слоя порошкового покрытия, желательно равной высоты, что достигается путем использования так называемых успокоителей, присоединяемых к подающему устройству (на выходе подающего ствола) огнетушителей, порошковых автомобилей. Использование насадки-успокоителя при подаче ОПСН необходимо при тушении порошков металлов и их гидридов, при этом практически предотвращается образование аэровзвеси огнетушащего порошка. Для тушения пожаров классов A, B, C применяется распылительное устройство типа «пистолет», при этом создается порошковое облако над очагом горения, которое способствует достижению тушения.

ОПСН можно применять для тушения радиоактивных металлов. При использовании, например, огнетушащего состава на основе хлорида калия, значительно снижается выделение радиоактивных аэрозолей.

Однако использование порошкового пожаротушения тоже имеет свои недостатки:

  • огнетушащий порошковый состав в отличие от воды не обладает охлаждающим действием. Надежное тушение можно достичь при охлаждении металлов до температуры ниже температуры их самовоспламенения. А температура горящих металлов, как правило, значительно выше температуры самовоспламенения, поэтому процесс тушения металлов и их гидридов носит длительный характер;
  • практически все выпускаемые автомобили порошкового тушения имеют ограниченные технические возможности и не могут обеспечить надежное тушение в помещениях объемом более 300-600 м3. Максимальная высота подачи ОПСН в зависимости от типа автомобиля порошкового тушения и давления в емкости составляет 10-25 м, при этом максимальное расстояние подачи порошка по горизонтали составляет 40-60 м, что является в ряде случаев недостаточным для того, чтобы обеспечить доставку порошка к месту загорания.

Горение – алюминий

Массовая скорость испарения пггф материала в режиме кипения определяется скоростью поступления тепла из зоны горения, которая пропорциональна разности температур горения Тг и кипения Тк. Поскольку Тт в рассматриваемой области давлений почти не изменяется, а Тк увеличивается с увеличением давления, то разность Тг-Тк уменьшается с ростом давления и вместе с этим уменьшается скорость газификации ( испарения) металла тгф а ( Тг-ТК) / ЬИСЯ. Таким образом, при увеличении давления происходит приближение зоны горения к поверхности металла и парофазное горение может прекратиться. Следовательно, при горении алюминия существует область давлений, в которой механизм горения алюминия контролируется скоростью его испарения, и в этой области происходит постепенный переход от парофазного горения при наличии кипения к горению в отсутствие кипения, при котором могут преобладать реакции на поверхности металла. [31]

Близкая к этому значению температура горения алюминия приводится в работах [ 11, с. Температуре 3533 К по формуле (1.15), описывающей кривую кипения, соответствует давление р 3 22 МПа. Отсюда ясно, что при давлениях, больших 3 22 МПа. [33]

Пожары класса D: горят ли металлы?

Фраза «горение металлов» у многих вызывает недоумение. Люди далекие от вопросов пожарной безопасности уверены, что металлы не горят. Однако это не совсем так. Некоторые металлы способны не просто гореть, но даже самовоспламеняться.

Основные опасности, которые несут в себе разные металлы:

  • Алюминий – легкий электропроводный металл с довольно низкой температурой плавления (660°С), в связи с чем при пожаре может произойти разрушение алюминиевых конструкций. Но самым опасным является алюминиевый порошок, который несет в себе угрозу взрыва и может гореть.
  • Кадмий и многие другие металлы под воздействием высоких температур выделяют токсичные пары. Поэтому тушение горящих металлов следует производить в защитных масках.
  • Щелочные металлы (натрий, калий, литий) вступают в реакцию с водой, образуя при этом водород и количество теплоты, необходимой для его воспламенения.
  • Чугун в виде порошка при воздействии высоких температур или огня может взорваться. Искры от чугуна могут спровоцировать возгорание горючих материалов, находящихся вблизи.
  • Сталь, которая не считается горючим металлом, также может загореться, если она находится в порошкообразном состоянии или в виде опилок.
  • Титан – прочный металл, основной элемент стальных сплавов. Плавится он при высоких температурах (2000°С) и в больших конструкциях или изделиях не горит. Но маленькие детали из титана вполне могут воспламениться.
  • Магний – один из главных элементов в легких сплавах, придающий им пластичность и прочность. Гореть могут хлопья и порошок магния. Твердый магний также может воспламениться, но только если его нагреть до температуры выше 650°С.

Как видно, гореть способны в основном измельченные металлы в виде порошка, стружки, опилок. Помимо указанных опасностей, металлы могут также стать причиной травм, ожогов и увечий людей.

Тушение пожаров класса D

Горение класса D происходит на поверхности металла при очень высокой температуре и сильным искрообразованием.

Вода как огнетушащее вещество совершенно не подходит для металлических изделий и порошков, так как многие из них вступают в реакцию с ней, вследствие чего пожар может только усилиться. Также попадание воды на горящий металл может способствовать разбрызгиванию его на людей и окружающие предметы.

Песком также нельзя тушить горящие металлы. Его применение может привести к взаимодействию этих двух материалов и усилить горение.

Для тушения металлов чаще всего используют специальные сухие порошки. Причем для каждого метала необходимо подбирать свой состав.

Горение магния и сплавов на его основе подавляется посредством сухих молотых флюсов, применяемых при их плавке. Флюсы способствуют отделению очага возгорания от воздуха с помощью образующейся жидкой пленки.

Горение металлов и сплавов

Общеизвестна способность к горению щелочных и щелочноземельных металлов (калия, натрия, лития, магния и др.). Однако менее известно, что в отдельных ситуациях, в т.ч. в определенных условиях пожара, способны гореть металлы и сплавы, обычно не считающиеся горючими. Из наиболее распространенных к таковым относятся различные сплавы на основе алюминия, широко применяемые в строительстве, машиностроении и других областях.

Как известно, устойчивость алюминия к окислению обусловлена наличием на его поверхности тонкой (около 0,0002 мм), очень плотной и беспористой пленки окисла. Однако алюминий, нагретый на воздухе до температуры, близкой к точке плавления (660 0 С), все же начинает окисляться далее, при этом скорость окисления существенно увеличивается по мере повышения температуры выше температуры плавления. Необходимо отметить, что реакция алюминия с кислородом экзотермична и сопровождается значительно большим выделением тепла, нежели реакция окисления других ме­таллов (1675 кДж/моль) [93].

Усиливает окисление алюминия присутствие в нем примесей магния, кальция, натрия, кремния, меди. Особенно же легко окисляются при нагревании алюмомагниевые сплавы, на поверхности которых образуются рыхлые окисные пленки [94].

В таблице 1.19 приведены температуры самовоспламенения на воздухе алюмомагниевых сплавов с различным содержанием в сплаве магния.

Температуры самовоспламенения алюмомагниевых сплавов

на воздухе (порошки 0-50 мкм, ДТА)[94]

Содерж. Mg в спла- ве, % масс. 9,1 15,5 20,0 28,0 34,8 45,4 49,9 61,6 75,0 85,0 90,0 95,0
Т самовоспл., 0 С не горит

Интересно отметить, что температура самовоспламенения отнюдь не снижается монотонно при увеличении содержания Мg от 0 до 100 %; экстремально низкую температуру самовоспламенения имеют сплавы, содержащие примерно равные части Mg и Al.

Конечно, приведенные данные характеризуют свойства сплавов в мелкодисперсном виде. Как известно, склонность металла (сплава) к воспламенению и температура воспламенения сильно зависят от его агрегатного состояния — чем металл более дисперсен, чем больше поверхность его соприкосновения с воздухом, тем легче прогреть до критической температуры каждую частичку и тем легче идет процесс окисления, вплоть до самовоспламенения. И все же, на крупных пожарах, при больших тепловых потоках отмечались случаи, когда горели не только металлы и сплавы в измельченном состоянии, но и в буквальном смысле металлоконструкции. Такие вещи пожарные наблюдали, например, при горении складов из легких металлических конструкций (алюминиевых сплавов) со сгораемым (пенополиуретановым) утеплителем.

Особую роль здесь может играть среда. Повышенное содержание кислорода резко увеличивает возможность загорания и интенсивность горения любого материала, в том числе металла (сплава). Специалистам это хорошо известно по описаниям пожаров на подводных лодках, в медицинских камерах оксигенальной терапии, на производствах, связанных с потреблением газообразного и (что особенно опасно) жидкого кислорода.

Широко известно, что горение может возникнуть при попадании в кислородный баллон, шланг, трубопровод минерального масла вследствие самовозгорания последнего. Гораздо менее известно, что возникновение горения возможно в результате трения деталей в атмосфере кислорода: при открывании и закрывании вентилей и задвижек, срабатывании клапанов и переключающих устройств, регулировании редукторов, в момент пуска и остановки машин 96. Опасно здесь не только трение металла о металл; при срабатывании отсечных клапанов или резком открытии вентилей возникает высокоскоростной поток кислорода, сопровождающийся формированием волн сжатия, ударных волн и резким возрастанием давления и температуры кислорода [99]. Конечно, указанные процессы, как правило, не обеспечивают выделения тепловой энергии, достаточной для воспламенения непосредственно металла и сплава. На практике загорание последних происходит через цепочку: “тепло­выделение — загорание неметаллических материалов, жировых веществ или отложений — загорание металла”. К неметаллическим материалам и изделиям такого рода относятся прокладки из паронита, фибры, резины, фторопласта. Загорание может возникнуть при попадании в ток кислорода сварочного грата, прокатной окалины [95, 100].

О склонности различных металлов и сплавов к горению в токе кислорода можно судить по данным табл. 1.20.

Предельные давления кислорода, при которых

возможно горение различных металлов [95]

(толщина образца — 3 мм, температура — 20 0 С,

образец расположен горизонтально)

Металл (сплав) Р, Мпа
Сталь Ст3, Ст10 0,02
Алюминий, сплавы АМЦ, АМг 0,1
Медистый чугун 1,1
Нерж.сталь (13 % Cr, 19 %Mn) 1,5
Сталь 3 ´ 13 2,2
Нерж. сталь Х18Н10Т 2,6
Медь, латунь, никель > 4,2

Из приведенных данных следует, что наиболее склонны к горению в кислороде самые распространенные марки конструкционных сталей (низкоуглеродистые, нелегированные), а также алюминий и сплавы на его основе.

Скорость горения металлов в кислороде зависит от геометрических размеров изделия и давления кислорода. С увеличением размеров и толщины изделия скорость, естественно, падает; с увеличением давления — возрастает. Представление об абсолютных величинах скоростей горения дают сведения, приведенные в таблице 1.21.

Скорости горения металлов и сплавов в кислороде

При давлении газа 1-10 МПа

(образцы толщиной 3 мм, горизонтально расположенные) [95]

Металл (сплав) U, см/сек
Малоуглеродистая сталь 0,4-1,4
Сталь Х18Н9 1,2-1,7
Медистый чугун 0,4-1,0
Сплав АМЦ 6,9-11,2
Сплав АМг6 7,4 -9,9

Визуальными признаками горения металла (сплава) является раз­ру­шение конструкции (предмета) в зоне горения. От выгоревшей детали часто остается ажурный “скелет”. Горение сопровождается разбрызгиванием металла, особенно интенсивным, если оно происходит в токе газа. В этом случае на месте пожара обнаруживаются множественные мелкие частички застывшего металла и окислов металла. Аналогичный разброс частиц происходит при горении электрической дуги, в которой процессы горения металла имеют место наряду с плавлением.

Горение металлов и сплавов на пожаре может вносить существенные коррективы в картину термических поражений, в формирование очаговых и “псевдоочаговых” признаков. По мере возможности это необходимо учитывать. Склонность того или иного металла (сплава) к экзотермическому взаимодействию с кислородом воздуха (горению) может быть установлена экспертом аналитическим путем, например, исследованием пробы металла методом ДТА. Подробнее об этом см. ч. III.

Инструментальные методы исследования

источники:

http://melt-spb.ru/svojstva/gorenie-alyuminiya-2.html

http://megalektsii.ru/s20805t4.html

Правило № 1.

В левой части уравнения записываем горючее вещество и воздух в виде:

Правило № 2.

В правой части уравнения записываем продукты реакции горения, учитывая, что:

Правило № 3.

Уравниваем реакцию горения для того, чтобы в исходных веществах и получившихся из них продуктах реакции содержалось одинаковое количество одинаковых атомов. При этом коэффициенты и индексы перемножаются:

Правило № 4.

Кислород, входящий в состав горючего вещества, например,

участвует в реакции горения, как и кислород воздуха, в качестве окислителя.

Химические свойства кислорода

Взаимодействие кислорода с простыми веществами

Кислороду присуща высокая химическая активность. Многие вещества реагируют с кислородом при комнатной температуре. Так, например, свежий срез яблока довольно быстро приобретает бурую окраску, это происходит вследствие химических реакций между органическими веществами, содержащимися в яблоке, и кислородом, содержащимся в воздухе. С простыми веществами кислород, как правило, реагирует при нагревании. В металлическую ложечку для сжигания веществ поместим уголек, нагреем его в пламени спиртовки докрасна и опустим в сосуд с кислородом. Наблюдаем яркое горение уголька в кислороде. Уголь – простое вещество, образованное элементом углеродом. В реакции кислорода с углеродом образуется углекислый газ:

Стоит отметить, что многие химические вещества имеют тривиальные названия. Углекислый газ – это тривиальное название вещества. Тривиальные названия веществ используются в повседневной жизни, многие из них имеют давнее происхождение. Например, пищевая сода, бертолетова соль. Однако у каждого химического вещества есть и систематическое химическое название, составление которого регламентируется международными правилами – систематической химической номенклатурой.

Так, углекислый газ имеет систематическое название оксид углерода (IV).

Углекислый газ является сложным веществом, бинарным соединением, в состав которого входит кислород. Поместим в ложечку для сжигания веществ серу и нагреем. Сера плавится, затем загорается. На воздухе сера горит бледным, почти незаметным, синим пламенем. Внесем серу в сосуд с кислородом – сера горит ярким синим пламенем. В реакции серы с кислородом образуется сернистый газ:

Сернистый газ, как и углекислый газ, относится к группе оксидов. Это оксид серы (IV) – бесцветный газ с резким едким запахом. Теперь внесем в сосуд с кислородом подожженный красный фосфор. Фосфор горит ярким, ослепительным пламенем. Сосуд заполняется белым дымом. Белый дым – это продукт реакции, мелкие твердые частицы оксида фосфора (V):

В кислороде способны гореть не только неметаллы. Металлы также энергично взаимодействуют с кислородом. Например, магний горит в кислороде и на воздухе ослепительным белым пламенем. Продукт реакции – оксид магния:

Попробуем сжечь в кислороде железо. Раскалим в пламени спиртовки стальную проволоку и быстро опустим в сосуд с кислородом. Железо горит в кислороде с образованием множества искр. Вещество, полученное в результате реакции, называют железной окалиной:

Снопы искр, образующихся при горении бенгальского огня, объясняются сгоранием порошка железа, входящего в состав этих пиротехнических изделий. После рассмотренных реакций можно сделать важные выводы: кислород реагирует как с металлами, так и неметаллами; часто эти реакции сопровождаются горением веществ. Продуктами реакций кислорода с простыми веществами являются оксиды. Обратите внимание, что при взаимодействии кислорода с простыми веществами – металлами и неметаллами образуются сложные вещества – оксиды. Такой тип химических реакций называют реакциями соединения.

Реакция соединения – реакция, в результате которой из двух или нескольких менее сложных по строению веществ, образуются более сложные по строению вещества

Взаимодействие кислорода со сложными веществами

Кислород способен вступать в реакции и со сложными веществами. В качестве примера рассмотрим реакцию, которая протекает при горении бытового газа, который состоит из метана CH4. По горению метана в конфорке печи можно сделать выводы, что реакция протекает с выделением энергии в виде тепла и света. Каковы продукты этой реакции?

СН4 + 2О2 = СО2 + 2Н2О.

Продукты реакции оксиды: углекислый газ (оксид углерода (IV)) и вода (оксид водорода). В реакции кислорода с минералом пиритом FeS2 (важный минерал железа и серы) получают оксиды серы и железа. Реакция происходит при нагревании:

4FeS2 + 11O2 = 8SO2 + 2Fe2O3

Окисление – горение и медленное окисление

Горение – это первая химическая реакция, с которой познакомился человек. Огонь… Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Без огня человек не сварит пищу, сталь, без него невозможно движение транспорта. Огонь стал нашим другом и союзником, символом славных дел, добрых свершений, памятью о минувшем.

С химической точки зрения горение – это химическая реакция, сопровождающаяся выделением потока раскаленных газов и энергии в виде тепла и света. Можно сказать, что кислород, вступая в реакцию с простыми веществами, окисляет их:

Простое вещество + Кислород окисление → Продукты окисления (оксиды) + Энергия.

Окисление веществ может и не сопровождаться горением, то есть выделением пламени. Такие процессы называют медленным окислением. Медленное окисление – процесс постепенного взаимодействия веществ с кислородом, с медленным выделением теплоты, не сопровождающийся горением. Так, например, углекислый газ образуется не только при горении углерода в кислороде, но и при медленном окислении органических веществ кислородом воздуха (гниении, разложении).

Итог статьи:

  • В реакции простых веществ с кислородом, образуются оксиды
  • Реакции простых веществ с кислородом протекают, как правило, при нагревании
  • Реакции простых веществ с кислородом – это реакции соединения
  • Тривиальные названия химических веществ не отражают химического состава веществ, используются в повседневной практике, многие из них сложились исторически
  • Систематические названия химических веществ отражают химический состав вещества, соответствуют международной систематической номенклатуре
  • Реакция соединения – реакция, в результате которой, из двух или нескольких менее сложных по строению веществ, образуются более сложные по строению вещества
  • Кислород способен реагировать со сложными веществами
  • Горение – химическая реакция, сопровождающаяся выделением энергии в виде тепла и света
  • Медленное окисление – процесс постепенного взаимодействия веществ с кислородом, с медленным выделением теплоты, не сопровождающийся горением

Урок 18. Физические и химические свойства кислорода

В уроке 18 «Физические и химические свойства кислорода» из курса «Химия для чайников» выясним, какие физические и химические свойства имеет кислород и узнаем о реакциях горения.

Как у любого химического вещества, у кислорода есть свой набор физических и химических свойств, по которым его можно отличить от других веществ.

Физические свойства

По своим физическим свойствам простое вещество кислород относится к неметаллам. При нормальных условиях он находится в газообразном агрегатном состоянии. Кислород не имеет цвета, запаха и вкуса. Масса кислорода объемом 1 дм 3 при н. у. равна примерно 1,43 г.

При температуре ниже −183 °С кислород превращается в голубую жидкость, а при −219 °С эта жидкость переходит в твердое вещество. Это означает, что температура кипения кислорода равна: t кип.= −183 °С, а температура плавления составляет: t пл.= −219 °С. Кислород плохо растворяется в воде.

Химические свойства

Кислород является химически активным веществом. Он способен вступать в реакции с множеством других веществ, однако для протекания большинства этих реакций необходима более высокая, чем комнатная, температура. При нагревании кислород реагирует с неметаллами и металлами.

Если стеклянную колбу наполнить кислородом и внести в нее ложечку с горящей серой, то сера вспыхивает с образованием яркого пламени и быстро сгорает (рис. 80).

Химическую реакцию, протекающую в этом случае, можно описать следующим уравнением:

В результате реакции образуется вещество SO2, которое называется сернистым газом. Сернистый газ имеет резкий запах, который вы ощущаете при зажигании обычной спички. Это говорит о том, что в состав головки спички входит сера, при горении которой и образуется сернистый газ.

Подожженный красный фосфор в колбе с кислородом вспыхивает еще ярче и быстро сгорает, образуя густой белый дым (рис. 81).

При этом протекает химическая реакция:

Белый дым состоит из маленьких твердых частиц продукта реакции — P2O5.

Если в колбу с кислородом внести тлеющий уголек, состоящий в основном из углерода, то он также вспыхивает и сгорает ярким пламенем (рис. 82).

Протекающую химическую реакцию можно представить следующим уравнением:

Продуктом реакции является CO2, или углекислый газ, с которым вы уже знакомы. Доказать образование углекислого газа можно, добавив в колбу немного известковой воды. Помутнение свидетельствует о присутствии CO2 в колбе.

Возгорание уголька можно использовать для отличия кислорода от других газов. Если в сосуд (колбу, пробирку) с газом внести тлеющий уголек и он вспыхнет, то это указывает на наличие в сосуде кислорода.

Кроме неметаллов, с кислородом реагируют и многие металлы. Внесем в колбу с кислородом раскаленную стальную проволоку, состоящую в основном из железа. Проволока начинает ярко светиться и разбрасывать в разные стороны раскаленные искры, как при горении бенгальского огня (рис. 83).

При этом протекает следующая химическая реакция:

В результате реакции образуется вещество Fe3O4 (железная окалина). В состав формульной единицы этого вещества входят три атома железа, причем один из них имеет валентность II, а два других атома имеют валентность III. Поэтому формулу этого вещества можно представить в виде FeO * Fe2O3.

На заметку: Реакцию железа с кислородом используют для резки стальных изделий. Для этого определенный участок детали сначала нагревают с помощью кислородногазовой горелки. Затем направляют на нагретое место струю чистого кислорода, для чего перекрывают кран поступления горючего газа в горелку. Нагретое до высокой температуры железо вступает в химическую реакцию с кислородом и превращается в окалину. Так можно разрезать очень толстые железные детали.

Реакции горения

Общим для рассмотренных нами реакций является то, что при их протекании выделяется много света и теплоты. Очень многие вещества именно так взаимодействуют между собой.

Рассмотренные выше реакции простых веществ серы, фосфора, углерода и железа с кислородом являются реакциями горения.

Реакциями горения называются химические реакции, протекающие с выделением большого количества теплоты и света.

Кроме простых веществ, в кислороде горят и многие сложные вещества, например метан CH4. При горении метана образуются углекислый газ и вода:

В результате этой реакции выделяется очень много теплоты. Вот почему ко многим домам подведен природный газ, основным компонентом которого является метан. Теплота, выделяющаяся при горении метана, используется для приготовления пищи и других целей.

На заметку: Некоторые химические реакции протекают очень быстро. Такие реакции называют взрывными или просто взрывами. Например, взаимодействие кислорода с водородом может протекать в форме взрыва.

Горение может протекать не только в кислороде, но и в других газах. Об этих процессах вы узнаете при дальнейшем изучении химии.

Горение веществ на воздухе и в кислороде

Вы уже знаете, что в состав окружающего нас воздуха входит кислород. Поэтому многие вещества горят не только в чистом кислороде, но и на воздухе.

Горение на воздухе протекает чаще всего гораздо медленнее, чем в чистом кислороде. Происходит это потому, что в воздухе лишь одна пятая часть по объему приходится на кислород. Если уменьшить доступ воздуха к горящему предмету (а следовательно, уменьшить доступ кислорода), горение замедляется или прекращается. Отсюда понятно, почему для тушения загоревшегося предмета на него следует набросить, например, одеяло или плотную тряпку.

На заметку : При пожарах для тушения горящих предметов часто используют пену (рис. 84). Она обволакивает горящий предмет и прекращает доступ к нему кислорода. Горение сначала замедляется, а затем прекращается совсем.

Некоторые вещества, быстро сгорающие в кислороде, на воздухе не горят вообще. Так, если нагреть железную проволоку на воздухе даже до белого каления, она все равно не станет гореть, тогда как в чистом кислороде быстро сгорает с образованием раскаленных искр.

Краткие выводы урока:

  1. При обычных условиях кислород — газ, не имеющий цвета, запаха и вкуса, плохо растворимый в воде.
  2. Кислород обладает высокой химической активностью. Он вступает в химические реакции со многими простыми и сложными веществами.
  3. Химические реакции, протекающие с выделением большого количества теплоты и света, называют реакциями горения.
  4. В чистом кислороде вещества горят намного быстрее, чем на воздухе.

Надеюсь урок 18 «Физические и химические свойства кислорода» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Кислород: химия кислорода

Кислород

Положение в периодической системе химических элементов

Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кислорода

Электронная конфигурация кислорода в основном состоянии :

+8O 1s 2 2s 2 2p 4 1s 2s 2p

Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.

Физические свойства и нахождение в природе

Кислород О2 — газ без цвета, вкуса и запаха, немного тяжелее воздуха. Плохо растворим в воде. Жидкий кислород – голубоватая жидкость, кипящая при -183 о С.

Озон О3 — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода.

Кислород — это самый распространённый в земной коре элемент. Кислород входит в состав многих минералов — силикатов, карбонатов и др. Массовая доля элемента кислорода в земной коре — около 47 %. Массовая доля элемента кислорода в морской и пресной воде составляет 85,82 %.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.

Способы получения кислорода

В промышленности кислород получают перегонкой жидкого воздуха.

Лабораторные способы получения кислорода:

  • Разложение некоторых кислородосодержащих веществ:

Разложение перманганата калия:

Разложение бертолетовой соли в присутствии катализатора MnO2 :

2KClO3 → 2KCl + 3O2

Разложение пероксида водорода в присутствии оксида марганца (IV):

2HgO → 2Hg + O2

Соединения кислорода

Основные степени окисления кислород +2, +1, 0, -1 и -2.

Степень окисления Типичные соединения
+2 Фторид кислорода OF2
+1 Пероксофторид кислорода O2F2
-1 Пероксид водорода H2O2

Пероксид натрия Na2O2 и др.

-2 Вода H2O

Оксиды металлов и неметаллов Na2O, SO2 и др.

Соли кислородсодержащих кислот

Кислородсодержащие органические вещества

Основания и амфотерные гидроксиды

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

[spoiler title=”источники:”]

http://chemege.ru/kislorod/

[/spoiler]

Горение
– сложный физико-химический процесс,
основу которого составляют химические
реакции окислительно-восстановительного
типа, приводящие к перераспределению
валентных электронов между атомами
взаимодействующих молекул.

Примеры
реакций горения

метана:
СН4
+ 2О2
= СО2
+ 2Н2О;

ацетилена:
С2Н2
+ 2,5О2
= 2СО2
+ Н2О;

натрия:
2Na
+ Cl2
= 2NaCl;

водорода:
Н2
+ Cl2
= 2НCl,
2
+ О2
= 2Н2О;

тротила:
С6Н2(NO2)3CH3
= 2,5H2O
+ 3,5CO
+ 3,5C
+1,5N2.

Сущность
окисления – отдача окисляющимся
веществом валентных электронов
окислителю, который, принимая электроны,
восстанавливается, Сущность восстановления
– присоединение восстанавливающимся
веществом электронов восстановителя,
который, отдавая электроны, окисляется.
В результате передачи электронов
изменяется структура внешнего (валентного)
электронного уровня атома. Каждый атом
при этом переходит в наиболее устойчивое
в данных условиях состояние.

В
химических процессах электроны могут
полностью переходить из электронной
оболочки атомов одного вещества
(элемента) в оболочку атомов другого.

Так,
при горении металлического натрия в
хлоре атомы натрия отдают по одному
электрону атомам хлора. При этом на
внешнем электронном уровне атома натрия
оказывается восемь электронов (устойчивая
структура), а атом, лишившийся одного
электрона, превращается в положительно
заряженный ион. У атома хлора, получившего
один электрон, внешний уровень заполняется
восемью электронами, и атом превращается
в отрицательно заряженный ион. В
результате действия кулоновских
электростатических сил происходит
сближение разноименно заряженных ионов
и образуется молекула хлорида натрия
(ионная связь):

Na+
+ Cl
= Na+Cl
или
2Na
+ Cl2
= 2Na+Cl.

Атом
магния имеет в наружном слое два
электрона. При взаимодействии с кислородом
два атома магния отдают четыре электрона
молекуле (двум атомам) кислорода и
превращаются в положительные двухзарядные
ионы. Последние связываются с
образовавшимися отрицательно заряженными
ионами кислорода в кристаллы оксида
магния MgO:

4е



2Mg
+ O2
= 2Mg2+O2–.

Таким
образом, горение магния (окисление)
сопровождается переходом его электронов
к кислороду. В других процессах электроны
внешних оболочек двух разных атомов
поступают как бы в общее пользование,
стягивая тем самым атомы молекул
(ковалентная
или атомная
связь):

.

И,
наконец, один атом может отдавать в
общее пользование свою пару электронов
(молекулярная связь):

.

Выводы
из положений современной теории
окисления–восстановления:

  1. Сущность
    окисления заключается в потере электронов
    атомами или ионами окисляющегося
    вещества, а сущность восстановления –
    в присоединении электронов к атомам
    или ионами восстанавливающегося
    вещества. Процесс, при котором вещество
    теряет электроны, называется окислением,
    а присоединение электронов –
    восстановление.

  2. Окисление
    какого-либо вещества не может произойти
    без одновременного восстановления
    другого вещества. Например, при горении
    магния в кислороде или воздухе происходит
    окисление магния и одновременно –
    восстановление кислорода. При полном
    сгорании образуются продукты, неспособные
    к дальнейшему горению (СО2,
    Н2О,
    НСl
    и т.д.), при неполном – получившиеся
    продукты способны к дальнейшему горению
    (CO,
    H2S,
    HCN, NH3,
    альдегиды
    и
    т.д.).
    Схема: спирт
    – альдегид – кислота.

В
условиях пожара при горении органических
веществ в воздухе чаще всего полного
сгорания не происходит. Признаком
неполного сгорания является наличие
дыма, содержащего несгоревшие частицы
углерода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Процесс горения отлично знаком человеку. Помните, как первобытные люди дорожили огнём? Да и сегодня огню приписывается символическое значение: олимпийский огонь, который зажигают в преддверии игр, или вечный огонь, горящий в память о погибших. Но нас сейчас будет интересовать не история огня, а сам процесс горения с химической точки зрения и уравнения химических реакций.

Фото: depositphotos.com
Фото: depositphotos.com

Итак,

горение – это взаимодействие веществ с кислородом.

Если мы сжигаем какое-то вещество в воздухе, а потом его же сожжём в чистом кислороде, то во втором случае процесс будет куда интенсивнее. Всё дело в том, что в воздухе кислорода содержится всего 21 процент, то есть концентрация его меньше, чем в собственно чистом кислороде. Поэтому и горение на воздухе менее интенсивное, чем в чистом кислороде. И это первое, что нужно запомнить.

Все видели, как что-то горит, и все знают, что при этом появляется свет и выделяется тепло. Это тоже особенность процесса горения – он, как правило, протекает с выделением энергии (тепловой и световой). Но иногда для запуска горения требуется нагреть компоненты. Например, бумага воспламенится и при обычной температуре, а вот чтобы поджечь металлическую проволоку или стеклянный стакан, понадобится их сильно нагреть.

Ну а теперь мы перейдём непосредственно к химическим уравнениям и рассмотрим подробно горение простых и сложных веществ.

Горение простых веществ

При сгорании простого вещества всегда образуется его оксид.

Например:

С + О2 = СО2

4Р + 5О2 = 2Р2О5

2Сu + O2 = 2CuO

Напомню, что, как правило, эти реакции протекают с выделением тепла.

Горение сложных веществ

При сгорании сложного вещества почти всегда образуются оксиды входящих в него элементов.

Например:

СН4 + О2 = СО2 + 2Н2О

2Н2S + 3O2 = 2Н2О + 2SO2

2ZnS + 3O2 = 2SO2 + 2ZnO

Но тут нужно помнить, что при недостатке кислорода может образоваться оксид только одно элемента. Так, аммиак при недостатке кислорода сгорает по такой схеме:

4NH3 + 3O2 = 6H2O + 2N2

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Добавить комментарий