Как составить условие к задаче с уравнением

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение – это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ – уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Примеры решений

Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?

Решение:

Пусть $x$ – количество монет в мешке, а значит в сундуке: $3x$ монет.
После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48cdot 3=144$

Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?

Решение:

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700cdot 3=2100$ кг.

Муки во втором мешке: $700$ кг.

Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.

Решение:

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

$$4x-40=x+5$$

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

$$4x-x=5+40$$

Упростим выражения:

$$3x=45$$

Избавимся от коэффициента при неизвестном и получим ответ:

$$x=15$$

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.

Решение:

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ – расстояние, $v$ – скорость, $t$ – время)

$$2(v+20)=4(v-20)$$

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

$$v+20=2v-2cdot 20$$

$$v+20=2v-40$$

$$20+40=2v-v$$

$$v=60$$

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Решение:

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3cdot 150=1,5(x-3cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

$$x-500=1,5x-1,5cdot 600$$

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac{15}{10}=frac{3}{2}$.

Запишем с учётом перевода дробей и упростим:

$$x-500=frac{3}{2}x-frac{3}{2}cdot frac{600}{1}$$

$$x-500=frac{3x}{2}-frac{3}{1}cdot frac{300}{1}$$

$$x-500=frac{3x}{2}-900$$

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

$$900-500=frac{3x}{2}-x$$

$$400=frac{3x}{2}-frac{x}{1}$$

$$400=frac{3x-2x}{2}$$

$$400=frac{x}{2}$$

Домножим обе части на 2 и получим ответ:

$$x=800$$

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Задачи для самостоятельного решения

Условие

№1.

Задача Э. Безу.

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Решение

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

$$48n-12cdot 30+12n=0$$

$$48n+12n=12cdot 30$$

$$60n=360$$

$$n=frac{360}{60}$$

$$n=6$$

Ответ: Рабочие отработали 6 дней.

Условие

№2.

Задача В.И Арнольда.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Решение

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

$1+0,5k=k$

$1=k-0,5k$

$0,5k=1$

$k=1:0,5$

$k=2$

Ответ: Кирпич весит 2 фунта.

Условие

№3.

Задача В.И Арнольда

Бутылка с пробкой стоит 10 копеек, причем бутылка на
9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Решение

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство – получим:

$$p+9+p=10$$

$$2p=10-9$$

$$2p=1$$

$$p=1:2$$

$$p=0,5$$

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

Условие

№4.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Решение

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

$$5x+x+x-5=555$$

$$7x=555+5$$

$$x=560:7$$

$$x=80$$

Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.

Условие

№5.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Решение

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3(2x-10)=65$$

$$2x-10+0,3cdot 2x-0,3cdot 10=65$$

$$2x+0,3cdot 2x=65+10+0,3cdot 10$$

$$2,6x=65+13$$

$$2,6x=78$$

$$x=78:2,6$$

$$x=30$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.

Следующая тема

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение – это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ – уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Примеры решений

Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?

Пусть $x$ – количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48cdot 3=144$

Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700cdot 3=2100$ кг.

Муки во втором мешке: $700$ кг.

Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

Избавимся от коэффициента при неизвестном и получим ответ:

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ – расстояние, $v$ – скорость, $t$ – время)

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3cdot 150=1,5(x-3cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac<15><10>=frac<3><2>$.

Запишем с учётом перевода дробей и упростим:

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

Домножим обе части на 2 и получим ответ:

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Задачи для самостоятельного решения

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

Ответ: Рабочие отработали 6 дней.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство – получим:

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3cdot 2x-0,3cdot 10=65$$

$$2x+0,3cdot 2x=65+10+0,3cdot 10$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.

Ковалевская Н. Л. Образцы оформления заданий на уроках математики. № 10 2012

Н. Л. Ковалевская, учитель высшей категории, методист высшей категории, г. Минск

Образцы оформления заданий на уроках математики

В ходе работы на уроках математики возникают частные вопросы оформления отдельных заданий: решения задач, нахождения значения числовых выражений, уравнений, неравенств, выполнения геометрических заданий.

Рассмотрим примерные рекомендации по оформлению отдельных заданий младшими школьниками в тетрадях по математике.

Во-первых, необходимо научить младших школьников легко определять количество строк, которые следует пропускать. Между работами — 4 клетки, внутри работы между заданиями — 2 клетки, внутри заданий между действиями — 1 клетку (образец 1).

Требования к написанию цифр как в однозначных числах, так и в многозначных предъявляются единые. Каждая цифра пишется с наклоном в отдельной клетке, прислоняясь к её правой стороне. Особенно это требование актуально при выполнении действий с многозначными числами. Образцы написания цифр представлены в учебном наглядном пособии «Демонстрационный набор письменных цифр и математических знаков».

Во II классе учащимся удобнее все буквы в тетрадях по математике писать высотой в целую клетку (аналогично письму на уроках языка). В III и IV классах высота букв при повышении скорости письма может уменьшаться до 2/3 высоты клетки.

После даты, слов Домашняя работа, Классная работа, Задача точка не ставится. Слова Примеры, Уравнения, Неравенств, Математический диктант, Контрольный устный счёт в начальных классах не пишутся.

Как ученику II класса (именно в этом возрасте они начинают записывать дату выполнения работы) научиться определять место начала записи даты? Например, можно договориться отсчитывать от начала страницы (или от полей) 10 полных клеток, а в 11-й начинать запись даты, тогда будет достигнуто единство оформления письменных записей и ученику легко будет расположить дату посередине страницы.

Оформление математических диктантов может быть выполнено разными способами. Учащиеся I класса пишут под диктовку числа, учатся писать математические диктанты, записывая результаты в строку через запятую. Начиная со II класса результаты диктанта можно оформлять в строку или в столбики. Учащиеся должны быть научены фиксировать ответы поразному. Перед математическим диктантом учитель оговаривает с учащимися способ записи ответов. При записи результатов математического диктанта в строку учащиеся пишут каждый последующий результат через запятую. В случае отсутствия ответа на месте его ученик ставит прочерк. В противном случае проверка результатов выполненного диктанта вызовет затруднения, как у учителя, так и учащихся (при самопроверке и при взаимопроверке). (Образец 2.)

Запись результатов математического диктанта может быть выполнена в столбики. Для этого перед началом диктанта учитель сообщает классу количество заданий предстоящего диктанта (10 или 12). Учащиеся до диктанта записывают половину порядковых номеров ответов (5 или 6) в первый столбик, а вторую половину — во второй, отступив вправо от записанных номеров заданий первого столбика оговоренное количество клеток, например 10. Порядковые номера заданий записываются с круглой скобкой. В ходе выполнения математического диктанта учащиеся записывают ответ рядом с порядковым номером. Ответы, в которых учащийся сомневается, могут быть им пропущены. Заполнение их возможно и при самопроверке. Перед тем как отдать работу на проверку учителю или однокласснику, ученик должен рядом с номерами невыполненных заданий поставить прочерк. (Образец 3.)

В IV классе при изучении нумерации многозначных чисел фиксация результатов математического диктанта может производиться в один столбик. (Образец 4.)

В оформление задачи входит слово Задача, запись решения и ответа.

Слово Задача записывается с большой буквы посередине строки. Ориентировочно необходимо отступить от левого края страницы 10 клеток. Если запись слова Задача располагается на той же странице, что и дата, то учащимся удобно провести по воздуху линию от первой цифры даты вниз, так как первая буква слова будет расположена под первой цифрой даты. (См. образец 1.)

В I классе решение задачи записывается в виде числового выражения. Значение числового выражения (ответ задачи) подчёркивается. Полный ответ задачи проговаривается устно. (Образец 5.)

Задача. Наде 7 лет, а её сестра на 3 года старше. Сколько лет сестре?

Со ІІ класса пишутся слова Задача и Ответ. Второклассники учатся оформлять запись решения составной задачи. При записи решения задачи по действиям каждое действие пишется с новой строки. В начале строки ставится порядковый номер действия с круглой скобкой, отступается одна клетка и записывается действие. (Образец 6.)

Задача. В одном аквариуме было 24 рыбки, а во втором — на 8 рыбок меньше. Сколько рыбок было в двух аквариумах?

Запись решения задачи может быть оформлена выражением. В этом случае порядковый номер в начале строки не ставится. (Образец 7.)

В III и IV классах решение может быть оформлено по действиям без пояснений, с полными или краткими пояснениями, с вопросами, с планом, а также выражением. Если решение задачи записывается выражением, то нет необходимости делать пояснения после действия. Результат поясняется только в ответе.

Решение задачи по действиям с краткими пояснениями оформляется следующим образом. Пояснения к каждому из действий формулируются кратко (словосочетанием). Сразу после наименования ставится тире, и с маленькой буквы записывается пояснение, в котором заключается основной смысл ответа на поставленный вопрос. (Образец 8.)

Задача. В одной коробке 20 кг печенья, а в другой 12 кг. Из второй коробки продали 8 кг печенья. Во сколько раз в первой коробке стало больше печенья, чем во второй?

Решение задачи по действиям с полными пояснениями оформляется следующим образом. (Образец 9.)

Задача. Расфасовали 70 кг яблок и несколько килограммов груш в пакеты. Один пакет с яблоками весит 10 кг, а с грушами — 9 кг. Сколько было килограммов груш, если пакетов с яблоками и грушами получилось поровну?

Решение задачи с вопросами предполагает постановку вопросов к каждому из действий. Вопрос записывается с большой буквы с начала строки. После него ставится вопросительный знак, а затем с новой строки записывается действие. Порядковый номер действия в этом случае ставится один раз перед вопросом. (Образец 10.)

Задача. В коробке было 16 конфет. Четвёртую часть всех конфет съел брат, остальные конфеты разделили поровну между собой три сестры. Сколько конфет съела каждая сестра?

Решение этой же задачи можно оформить с планом. (Образец 11.)

При необходимости выполнить письменные вычисления решение задачи записывается сразу в столбик. (Образец 12.)

Задача. Из двух городов одновременно навстречу друг другу вышли два поезда. Расстояние между городами 564 км. Один поезд шёл со скоростью 42 км/ч. С какой скоростью шёл другой поезд, если они встретились через 6 ч?

Если решение задачи записывается выражением, при этом необходимо произвести письменные вычисления, они располагаются под выражением. (Образец 13.)

Задача. Товарный и пассажирский поезда вышли одновременно навстречу друг другу из двух городов. Товарный поезд шёл со скоростью 56 км/ч и прошёл 224 км. Пассажирский поезд шёл со скоростью 74 км/ч. Какое расстояние до встречи прошёл пассажирский поезд?

Наименование пишется после каждого действия задачи или после выражения в скобках с маленькой буквы. В записи наименования допускаются сокращения (обязательно должно заканчиваться на согласный). После сокращения ставится точка, в случаях, если это сокращение не является общепринятым. Точка не ставится в наименованиях, обозначающих единицы измерения длины: мм, см, дм, м, км, единицы измерения веса: г, кг, т, ц, единицы измерения времени: сут, ч, мин, с.

Слово Ответ записывается с начала строки, после него ставится двоеточие. После двоеточия на первом месте желательно записать число (результат решения задачи), а после него с маленькой буквы пояснение к нему. Ответ задачи может записываться как целыми словами, так и с использованием общепринятых сокращений (километров — км, метров — м, километров в час — км/ч и т. п.). Ответ записывается к каждой задаче. В случае если задача решается несколькими способами, делается пометка «1 способ, 2 способ» и ответ записывается один раз. Если решение задачи записано по действиям, а затем выражением, то ответ тоже записывается один раз. Если решение задачи выполнялось с полным пояснением, с записью вопросов по действиям, ответ может быть записан кратко. При этом записывается числовое значение и наименование либо число и словосочетание, отражающие ответ задачи. (См. образцы 9, 10, 11.) Если решение задачи записано выражением, по действиям с краткими пояснениями или без них, то ответ задачи должен быть полным (в виде числа и предложения). (См. образцы 6, 7, 8, 12, 13.)

К задаче может быть выполнена краткая запись. Она записывается после слова Задача. Между строками пропускается одна клетка. Буквы и цифры пишутся в соответствии с рассмотренными выше требованиями.

Запись нахождения значения математического выражения также оформляется единообразно. Если математическое выражение состоит из одного действия, которое решается устно, ученик записывает его в строку и рядом — его ответ. При записи нескольких таких выражений между столбиками рекомендуется пропускать в сторону 3 клетки, а вниз между столбиками — 2. (Образец 14.)

Если математическое выражение состоит из одного действия, и для его решения требуются письменные вычисления, то оно сразу записывается в столбик и вычисляется. В строке можно разместить несколько математических выражений с письменными вычислениями при условии, что вправо между ними необходимо пропускать не менее 3 клеток. (Образец 15.)

При письменном умножении на трёхзначное число следует рекомендовать учащимся размещать на одной строке только 2 примера, так как при записи происходит значительный сдвиг влево. При необходимости на строке размешается математическое выражение, а рядом проверка вычислений. (Образец 16.)

Учащийся вправе сам принять решение о рациональном размещении на странице выполненных заданий. К примеру, если необходимо выполнить несколько примеров на деление многозначных чисел и сделать к ним проверку, на одной строке можно разместить примеры на деление, а под ними проверку. В таких случаях рекомендуется отступать вниз 2 клетки. (Образец 17.)

Если математическое выражение состоит из нескольких действий, решение которых предполагает устные вычисления, то учащийся сначала определяет порядок действий (его можно надписать над выражением), затем производит устные вычисления и записывает ответ. Выполнять запись устных действий не нужно. (Образец 18.)

Если математическое выражение состоит из нескольких действий, решение которых предполагает письменные вычисления, то сначала оно записывается в строку. Определяется порядок выполнения действий. Затем каждое действие записывается под выражением и выполняется. Полученный конечный результат записывается в первоначальную запись после знака «равно». (Образец 19.)

Решение простейшего уравнения записывается в столбик: само уравнение, способ нахождения неизвестного, результат вычисления (значение неизвестного), проверка решения уравнения. Можно расположить решение двух уравнений в 2 столбика. При этом между уравнениями в сторону необходимо отступить 3 клетки. Слова Решение и Проверка, которые используются в образце оформления уравнения на страницах учебника, в тетрадях учащимися не записываются. (Образец 20.)

Решение уравнений в два действия также записывается в столбик. Расположение двух таких уравнений также допустимо на одной строке при условии, что их решение не требует письменных вычислений. (Образец 21.)

Если при решении уравнения необходимо выполнять письменные действия с многозначными числами, их следует располагать справа от записи решения уравнения. (Образец 22.)

Сравнение чисел, выражений, величин. При сравнении двух чисел они записываются на строке с интервалом в одну клетку. В ней учащийся ставит знак. (Образец 23.)

При сравнении многозначных чисел учащийся производит сравнение поразрядно. Достаточно обратить внимание на различающиеся цифры в разрядах, начиная с высшего, подчеркнуть их. Во второй строке можно записать только те цифры, которыми различаются числа. Это будет основанием для сравнения чисел. (Образец 24.)

Если число необходимо сравнить с выражением, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значения выражения и сопоставления его с числом. (Образец 25.)

Если необходимо сравнить два выражения, то в записи между ними также оставляется клетка. Знак может быть вставлен только после нахождения значений обоих выражений. Найденные значения выражений целесообразно записать на следующей строке и после их сопоставления поставить знак сравнения между ними, а затем и на верхней строке в исходном выражении. (Образец 26.)

При сравнении величин обращается внимание на единицы их измерения. Если величины выражены в одинаковых единицах измерения, то сравнение производится так же, как и сравнение чисел. Знак ставится между величинами после установления их равенства или неравенства. (Образец 27.)

Если сравниваются величины, выраженные в разных единицах измерения, необходимо оценить возможность их сравнения без приведения их к единым единицам измерения; если это возможно, поставить требующийся знак. (Образец 28.)

При сравнении величин, выраженных в разных единицах измерения, чаще всего обязательным условием является приведение их к одинаковым единицам (меньшим или большим). Запись лучше зафиксировать на следующей строке. После сопоставления преобразованных величин можно поставить знак равенства или неравенства и затем перенести его в исходное выражение. (Образец 29.)

Задания геометрического характера могут включать только вычерчивание геометрических фигур, только нахождение параметров геометрических фигур, либо задание на нахождение параметров и вычерчивание фигур.

Если задание предполагает только вычерчивание фигуры (фигур), от предыдущего задания отступают две клетки и чертят заданную геометрическую фигуру.

Если задание предполагает только нахождение параметров геометрической фигуры, то ученик должен оформить выполнение задания как решение задачи: слово Задача, решение (нахождение параметров геометрической фигуры), ответ. Если в задаче не требуется вычерчивание фигуры, этого и не нужно делать. (Образец 30.)

Длина прямоугольника 12 см, а ширина в 4 раза меньше. Вычисли периметр прямоугольника.

Если задание предполагает нахождение параметров и вычерчивание фигуры, то оформляется это тоже как задача. Ученик должен привыкнуть к тому, что любые вычисления (даже устные) при нахождении параметров должны быть зафиксированы письменно. Сначала проводятся вычисления, затем вычерчивается фигура с полученными данными. (Образец 31.)

Начерти прямоугольник, длина которого 9 см, а ширина на 4 см меньше. Вычисли его периметр.

В задании может быть задана длина первого отрезка. Второй и третий отрезки необходимо найти, а затем начертить. В таком случае ребёнку удобно начертить данный отрезок, вычислить размер второго отрезка (с записью действия), начертить полученный отрезок, затем найти длину третьего отрезка (с записью действия) и тогда его начертить. (Образец 32.)

Начерти отрезки. Длина первого 1 дм 1 см, второй на 8 см короче первого, а третий — в два раза длиннее второго.

Это же задание учащийся может оформить иначе. (Образец 33.)

Если к заданию было записано слово Задача, значит, к нему предполагается и Ответ.

Если необходимо произвести сравнение отрезков, значит, записывается слово Задача, после вычерчивания отрезков записывается математическое действие, с помощью которого производилось сравнение (вычитание, деление). Завершается выполнение задания записью ответа.

Отметим некоторые особенности вычерчивания отрезков.

  • Чертим отрезки, отступая от левого края страницы 1 полную клетку.
  • Все отрезки необходимо чертить друг под другом, при этом их начальные точки должны находиться на одном расстоянии от левого края страницы.
  • Пропуски между отрезками вниз составляют 1 клетку.
  • Края отрезков отмечаются небольшими штрихами.

Нахождение значения выражения с переменной записывается следующим образом. (Образец 34.)

Решение задач с помощью уравнений

Решение задачи обычно свóдится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.

Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.

Запись выражений, содержащих неизвестное

Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.

Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.

Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?

Решение:

В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.

Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:

Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.

Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:

Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:

Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.

Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:

Чтобы освободить уравнение от дробей, умножим обе части на 3

Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:

Мы нашли значение переменной x . Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.

Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.

В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36

x − 3 = 36 − 3 = 33 года маме.

Аналогично определяется возраст остальных членов семьи:

Проверка:

Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.

Решение

Если килограмм яблок стоит x рублей, то на 300 рублей можно купить килограмм яблок.

Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить , то есть 6 килограмм яблок.

Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.

Решение

Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит рублей

Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит , то есть 60 рублей.

Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?

Решение

Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3) , и полученный результат разделить на 3

Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда

3x — стоимость трех бутербродов

А стоимость трех кружек кофе можно записать как 15 × 3 . 15 это стоимость одной кружки кофе, а 3 множитель (Том, Джон и Лео), увеличивающий эту стоимость в три раза.

По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:

Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3 . Пользуясь схемой составим уравнение и решим его:

Итак, стоимость одного бутерброда составляет 25 рублей.

Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.

Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.

Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.

В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:

Положим на левую чашу весов арбуз:

Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.

Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.

На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.

Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.

Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.

Попробуем на левую чашу положить гирю массой 4 кг

Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.

Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.

Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.

Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.

Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».

Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?

Возраст дочери можно обозначить через x . Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x . В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x

В выражении можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x

Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x . Воспользуемся весами. На левую чашу положим возраст отца (3x) , а на правую чашу возраст сына (2x)

Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ) . Ведь логично, что возраст отца больше возраста сына.

Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x . Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.

Весы выровнятся, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца

Теперь весы выровнялись. Получилось уравнение , которое решается легко:

В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.

Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2) , то есть 40 лет.

Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.

Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую

Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство

Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае

В этот раз получается уравнение . Корень уравнения по прежнему равен 20

То есть уравнения и являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.

Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.

Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение . Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение . Решим это уравнение

Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему лет, а отцу 40 + 20 лет.

Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.

Примеры решения задач

Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?

Решение

Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x . То есть от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.

Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради

и добавим эти две тетради во вторую пачку

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей

Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.

Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2

Получается уравнение . Решим данное уравнение:

Первую пачку мы обозначали через переменную x . Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.

А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22 , то есть 8 шт .

Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?

Решение

Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение

Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.

Второй человек в минуту очищал три картофелины, и поскольку он работал минут, то всего он очистил картофелин.

Вместе они очистили 400 картофелин

Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:

В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.

А второй человек работал минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25 , то есть 90 мин .

Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?

Решение

Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x

Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.

А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x , то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.

В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:

Получили уравнение . Решим его:

В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.

А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2 . Значит для приготовления смеси было взято 19,2 кг чая второго сорта.

Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на минут более. Как длинны были дороги?

Решение

Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.

В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.

Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:

Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и обратить внимание на следующий момент:

Следует обратить внимание на момент, где велосипедист на обратном пути употребил времени на минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S .

Итак, обозначим длину первой дороги через S . Этот путь велосипедист проехал со скоростью 8 км/ч . Время за которое он преодолел этот путь будет обозначаться выражением , поскольку время это отношение пройденного расстояния к скорости

Обратная дорога для велосипедиста была длиннее на 3 км . Поэтому её расстояние будет обозначаться через выражение S + 3 . Эту дорогу велосипедист проехал со скоростью 9 км/ч . А значит время за которое он преодолел этот путь будет обозначаться выражением .

Теперь составим уравнение из имеющихся выражений

Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на больше.

Чтобы уравнять весы прибавим к левой части эти самые минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.

Чтобы минут перевести в часы, нужно разделить их на 60

минут составляют часа. Прибавляем эти часа к левой части уравнения:

Получается уравнение . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S

Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.

А расстояние второй дороги мы обозначили через выражение S + 3 , и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3 , то есть 18 км .

Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?

Решение

Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой

Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».

Расстояние как мы помним, определяется по формуле . Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v .

Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км , а вторая пройдет 3(v − 10) км . При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эти два выражения знаком равенства. Тогда получим уравнение . Решим его:

В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v . Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.

Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Решение

Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч , а против течения — (v − 2) км/ч .

В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть расстояния будут одинаковыми.

Расстояние определяется по формуле . Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.

Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км , а за 11 часов против течения — 11(v − 2) км . Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение . Решим его:

Значит собственная скорость теплохода составляет 20 км/ч.

При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.

Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t , далее составили уравнение, содержащее эту переменную и нашли её значение.

Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.

Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q

Ещё можно ввести ограничение для переменной t , указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением tQ укажем, что её значение должно быть больше нуля:

Если решив уравнение, мы получим отрицательное значение для переменной t , то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию tQ , t > 0 .

Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x . В такой задаче решение искалось бы на множестве натуральных чисел

Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).

Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.

Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально

Решение

Обозначим через x плотников, прибывших на ремонт первоначально.

Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел

Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x .

Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2

А количество маляров увеличим на 4

Теперь количество плотников и маляров будут обозначаться через следующие выражения:

Попробуем составить уравнение из имеющихся выражений:

Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:

Получили уравнение . Решим его:

Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной. Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.

А количество маляров было обозначено через выражение 2,5 x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8 , то есть 20 .

Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие xN. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.

Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:

Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.

Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?

Решение

Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X

Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%

Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%

Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14

Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14

Значит первоначально в бидоне было 20 литров молока.

Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?

Решение

Попробуем сначала узнать сколько золота и серебра будет содержáться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.

Определим сколько золота будет содержáться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:

Определим сколько серебра будет содержáться в 15 кг сплава:

Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x

Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:

В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10 . Из них золота будет , а серебра .

Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x , поскольку так мы обозначили массу первого сплава:

Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет , а серебра .

Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x , поскольку так мы обозначили массу второго сплава:

Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет сплава, а серебра будет сплава. В последнюю графу записываем массу полученного сплава 15

Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.

Далее для удобства проценты будем выражать в десятичной дроби.

В первом сплаве золота было 0,10x , а во втором сплаве золота было 0,40(15 − x) . Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10x + 0.40(15 − x) = 3 . Решим это уравнение:

Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x , и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг .

Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.

Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90x + 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10

Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?

Решение

Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x . Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержáться 0,06x тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − x тоннах богатой руды будет содержáться 0,11(20 − x) тонн меди.

В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержáться 20 × 0,08 = 1,6 тонн.

Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение 0,06x + 0,11(20 − x) = 1,6

Решим данное уравнение:

Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.

Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?

Решение

Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:

Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t

Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t

Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.

Это позволяет нам приравнять выражение 250t к выражению 300t , поскольку оба выражения описывают длину одной и той же дистанции

Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250t = 300t в правой части время нужно уменьшить на единицу:

Получилось простейшее уравнение. Решим его:

При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:

S = 250 × 6 = 1500 м

А при скорости 300 метров в минуту спортсменка пробегает дистанцию за t − 1 , то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:

S = 300 × 5 = 1500 м

Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?

Решение

Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.

Скорость сближения определяется вычитанием меньшей скорости из большей:

10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)

С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6

2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.

Решим эту задачу с помощью уравнения.

Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км

После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.

Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:

Воспользуемся правой частью этого уравнения для составления своего уравнения.

Расстояние, пройденное всадником, будет описываться выражением 10t . Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15 .

На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:

Получилось простейшее уравнение. Решим его:

Задачи для самостоятельного решения

Решение

Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч

Обозначим время, за которое товарный поезд приезжает в город, через переменную t . Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75

Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t . Решим его:

Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам

Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше

48 × (3 − 0,75) = 144 − 36 = 108 км

Ответ: расстояние между городами равно 108 км.

Решение

Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65t + 60t = 150

Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.

Ответ: автомобили встретились через 1,2 часа.

Решение

Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x . В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15 .

В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685

Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.

Во втором цехе было 3x рабочих, то есть 3 × 100 = 300 . А в третьем цехе было 3x − 15 , то есть 3 × 100 − 15 = 285

Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.

Решение

Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов .

Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.

В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x + 1,25(18 − x) = 22

Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должна была отремонтировать 10 моторов.

А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.

Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.

Решение

Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение x + 0.30x = 91

Значит до повышения цены товар стоил 70 рублей.

Ответ: до повышения цены товар стоил 70 рублей.

Решение

Пусть x — исходное число. Увеличим его на 25%. Получим выражение x + 0,25x . Приведем подобные слагаемые, получим x + 0,25x = 1.25x .

Узнаем какую часть исходное число x составляет от нового числа 1,25x

Если новое число 1,25x считать за 100%, а исходное число x составляет от него 80%, то уменьшив новое число на 20% можно получить исходное число x

Ответ: чтобы получить исходное число, новое число нужно уменьшить на 20%.

Решение

Пусть x — первоначальное число. Увеличим его на 20%. Получим выражение x + 0,20x . Приравняем эту сумму к числу 144, получим уравнение x + 0,20x = 144

Ответ: первоначальное значение числа равно 120.

Решение

Пусть x — первоначальное число. Уменьшим его на 10%. Получим выражение x − 0,10x . Приравняем эту разность к числу 45, получим уравнение x − 0,10x = 45

Ответ: первоначальное значение числа равно 50.

Решение

Пусть x рублей — первоначальная цена альбома. Снизим эту цену на 15%, получим x − 0,15x . Снизим цену ещё на 15 руб., получим x − 0,15x − 15 . После этих снижений альбом стал стоить 19 руб. Приравняем выражение x − 0,15x − 15 к числу 19, получим уравнение x − 0,15x − 15 = 19

Ответ: первоначальная цена альбома составляет 40 руб.

Решение

Если 80% массы теряется, то на оставшиеся 20% будут приходиться 4 т сена. Пусть x тонн травы требуется для получения 4 т сена. Если 4 т будут составлять 20% травы, то можно составить уравнение:

Ответ: для получения 4 т сена, нужно накосить 20 т травы.

Решение

Пусть x кг 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора.

В 1 кг 10%-го раствора соли содержится 0,1 кг соли. А в x кг 20%-го раствора соли содержится 0,20 x кг соли.

После добавления x кг 20%-го раствора в новом растворе будет содержáться 0,12(1 + x) кг соли. Сложим выражения 0,1 и 0,20x , затем приравняем эту сумму к выражению 0,12(1 + x) . В результате получим уравнение 0,1 + 0,20x = 0,12(1 + x)

Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.

Решение

Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.

В первом растворе будет содержáться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение

Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.

Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

44 thoughts on “Решение задач с помощью уравнений”

Вау новый урок. Я рад что вернулись)) После работы обязательно буду учить этот урок.

не смог решить ни одной задачи из примеров решения…

[spoiler title=”источники:”]

http://pn.aiv.by/kovalevskaya-n-l-obrazcy-oformleniya-zadanij-na-urokah-matematiki/

[/spoiler]

Математика

6 класс

Урок № 51

Решение задач с помощью уравнений. Часть 1

Перечень рассматриваемых вопросов:

– запись условия задачи с помощью уравнения;

– решение задач с помощью уравнений.

Тезаурус

Уравнение – это равенство, содержащее букву, значение которой надо найти.

Решить уравнение – значит найти все его корни.

Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного получается верное числовое равенство.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Мы уже знаем, что уравнение – это равенство, содержащее букву, значение которой надо найти. Используя уравнения, решать многие задачи проще, чем какими-либо другими способами. Сегодня мы узнаем, как составить уравнение, чтобы решать те или иные задачи.

Для решения любой задачи важно хорошо изучить её условие, определить исходные данные и найти взаимосвязь известных величин с искомыми.

Алгоритм решения задач с помощью уравнений:

1. неизвестную величину нужно обозначить буквой;

2. используя условия задачи, составить уравнение;

3. решить это уравнение;

4. ответить на вопрос задачи.

При решении уравнений можно использовать следующие приёмы:

– переносить числа из одной части уравнения в другую, меняя их знак на противоположный;

– делить или умножать обе части уравнения на одно и то же число, отличное от нуля.

Решим задачу с помощью уравнения.

Ученик задумал число, увеличил его в 2 раза, прибавил 8 и получил 10. Какое число он задумал?

Решение

Составим уравнение:

Ответ: ученик задумал число 1.

Решим ещё одну задачу.

Найдите число, три пятых которого равно пятнадцати.

Решение

Составим уравнение:

Ответ: 25 – искомое число.

Задача из «Арифметики» Л. Ф. Магницкого

Спросил некто учителя:

– Сколько имеешь учеников у себя в учении, ибо хочу отдать тебе в учение своего сына?

Учитель же отвечает ему:

– Если придёт ко мне ещё столько, сколько имею, да ещё половина и ещё четверть и ещё твой сын, то будет у меня 100 учеников.

Сколько учеников было у учителя?

Решение.

Ответ: 36 учеников было у учителя.

Разбор заданий тренировочного модуля

Тип 1. Задумали число, прибавили к нему 10, в сумме получили 15. Какое число задумали?

Решение

Ответ: было задумано число 5.

Тип 2. Рубашка стоила 1200 рублей. В магазине, при покупке этой рубашки в выходные дни, даётся скидка 30 %. Чему равна цена рубашки со скидкой?

Решение

Ответ: цена рубашки со скидкой равна 840 руб.

Решение задачи обычно свóдится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.

Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.

Запись выражений, содержащих неизвестное

Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.

Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.

Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

возраст отца мамы и сына таблица 1


Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

возраст отца мамы сына и дочери таблица 2


Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?

Решение:

В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.

Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:

возраст отца мамы сына и дочери таблица 3

Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.

Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:

возраст отца мамы сына и дочери рисунок 1

Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:

возраст отца мамы сына и дочери уравнение 1

Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.

Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:

возраст отца мамы сына и дочери уравнение 2

Чтобы освободить уравнение от дробей, умножим обе части на 3

возраст отца мамы сына и дочери уравнение 3

Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:

возраст отца мамы сына и дочери уравнение 4

Мы нашли значение переменной x. Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.

Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.

В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36

x − 3 = 36 − 3 = 33 года маме.

Аналогично определяется возраст остальных членов семьи:

возраст отца мамы сына и дочери таблица 4

возраст отца мамы сына и дочери уравнение 5

Проверка:

возраст отца мамы сына и дочери проверка 1


Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.

Решение

Если килограмм яблок стоит x рублей, то на 300 рублей можно купить 300 na x килограмм яблок.

Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить 300 na 50, то есть 6 килограмм яблок.


Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.

Решение

Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит x na 5 рублей

Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит 300 na 5, то есть 60 рублей.


Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?

Решение

Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3), и полученный результат разделить на 3

стоимость бутерброжов и кофе простое решение

Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда

3x — стоимость трех бутербродов

А стоимость трех кружек кофе можно записать как 15 × 3. 15 это стоимость одной кружки кофе, а 3 множитель (Том,  Джон и Лео), увеличивающий эту стоимость в три раза.

По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:

стоимость бутербродов и кофе схема

Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3. Пользуясь схемой составим уравнение и решим его:

стоимость бутерброжов и кофе решение к задаче

Итак, стоимость одного бутерброда составляет 25 рублей.

Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.

Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.

Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.

весы

В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:

0 = 0

Положим на левую чашу весов арбуз:

весы арбуз на левой чаше

Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.

Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.

На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.

Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.

весы арбуз на левой чаше а на правой чаше гиря 7 кг

Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.

Попробуем на левую чашу положить гирю массой 4 кг

весы арбуз на левой чаше и гиря 4 кг а на правой чаше гиря 7 кг

Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.

Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.

весы арбуз на левой чаше и гиря 4 кг а на правой чаше гиря 7 кг

Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.

Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.

Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».

Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?

Возраст дочери можно обозначить через x. Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x. В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x

весы возраст отца и сына и дочери таблица

В выражении x plus 2x можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x

Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x. Воспользуемся весами. На левую чашу положим возраст отца (3x), а на правую чашу возраст сына (2x)

весы возраст отца и сына

Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ). Ведь логично, что возраст отца больше возраста сына.

Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x. Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.

Весы выровнятся, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца

весы возраст отца и сына плюс 20 лет на левой чаше

Теперь весы выровнялись. Получилось уравнение 3x ravno 2x plus 20, которое решается легко:

2x + 20 = 3x решение

В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.

Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2), то есть 40 лет.

Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.

2x + 20 = 3x решение таблица

Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую

весы возраст отца и сына

Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство 3x ravno 2x plus 20

Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае

весы возраст отца и сына минус 20 лет на другой чаше

В этот раз получается уравнение 3x minus 20 ravno 2x. Корень уравнения по прежнему равен 20

3x minus 20 ravno 2x решение

То есть уравнения 3x ravno 2x plus 20 и 3x minus 20 ravno 2x являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.

Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.

Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через x вторых (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение x plus x na 2. Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно  прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение x plus 20 ravno x plus x na 2. Решим это уравнение

x plus 20 ravno x plus x na 2 решение

Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему сорок вторых лет, а отцу 40 + 20 лет.

Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.


Примеры решения задач

Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?

Решение

Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x. То есть от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.

таблица количество тетрадей в первой и во второй пачке

Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради

количество тетрадей в первой и во второй пачке строим уравнение 2

и добавим эти две тетради во вторую пачку

количество тетрадей в первой и во второй пачке строим уравнение 3

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

таблица 2 количество тетрадей в первой и во второй пачке

Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей

весы количество тетрадей в первой и во второй пачке

Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.

Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2

весы количество тетрадей в первой и во второй пачке рис 2

Получается уравнение x minus 2 ravno 2 na 0 minus x plus 2. Решим данное уравнение:

x minus 2 ravno 2 na 0 minus x plus 2 решение

Первую пачку мы обозначали через переменную x. Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.

А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22, то есть 8 шт.


Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?

Решение

Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение x plus 25

Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.

Второй человек в минуту очищал три картофелины, и поскольку он работал x plus 25 минут, то всего он очистил 3 na x plus 25 картофелин.

Вместе они очистили 400 картофелин

таблица два человека очистили картофелины

Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:

2x plus 3x plus 75 ravno 400 решение

В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.

А второй человек работал x plus 25 минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25, то есть 90 мин.


Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?

Решение

Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x

таблица 1 масса чая первого и второго сорта

Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.

А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x, то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.

В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

таблица 2 стоимость чая первого и второго сорта

Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:

весы стоимость чая первого и второго сорта

Получили уравнение 8x plus 650 na 32 minus x ravno 710 na 32. Решим его:

8x plus 650 na 32 minus x ravno 710 na 32 решение

В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.

А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2. Значит для приготовления смеси было взято 19,2 кг чая второго сорта.


Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на семь целых одна вторая минут более. Как длинны были дороги?

Решение

Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.

В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.

Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:

расстояние скорость время в картинке

Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и обратить внимание на следующий момент:

задача на движение велосипедиста текст на картинке

Следует обратить внимание на момент, где велосипедист на обратном пути употребил времени на семь целых одна вторая минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением t ravno s na v , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S.

Итак, обозначим длину первой дороги через S. Этот путь велосипедист проехал со скоростью 8 км/ч. Время за которое он преодолел этот путь будет обозначаться выражением s na 8, поскольку время это отношение пройденного расстояния к скорости

s na 8 картинка

Обратная дорога для велосипедиста была длиннее на 3 км. Поэтому её расстояние будет обозначаться через выражение + 3. Эту дорогу велосипедист проехал со скоростью 9 км/ч. А значит время за которое он преодолел этот путь будет обозначаться выражением s plus 3 na 9.

s plus 3 na 9 картинка

Теперь составим уравнение из имеющихся выражений

весы два расстояния на чашах

Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на семь целых одна вторая больше.

Чтобы уравнять весы прибавим к левой части эти самые семь целых одна вторая минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.

Чтобы семь целых одна вторая минут перевести в часы, нужно разделить их на 6075 разделить на 60 решение в дробном виде

семь целых одна вторая минут составляют одна восьмая2 часа. Прибавляем эти одна восьмая2 часа к левой части уравнения:

весы два расстояния на чашах равенство

Получается уравнение s na 8 plus 1 na 8 ravno s plus 3 na 9 . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S

s na 8 plus 1 na 8 ravno s plus 3 na 9 решение

Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.

А расстояние второй дороги мы обозначили через выражение + 3, и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3, то есть 18 км.


Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?

Решение

Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой

v plus 10 v minus 10

Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».

Расстояние как мы помним, определяется по формуле формула расстояние для вставки в строку. Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v.

Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км, а вторая пройдет 3(v − 10) км. При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эти два выражения знаком равенства. Тогда получим уравнение 2v plus 20 ravno 3v minus 30. Решим его:

2v plus 20 ravno 3v minus 30 step 1

В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v. Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.


Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Решение

Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч, а против течения — (v − 2) км/ч.

В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть расстояния будут одинаковыми.

Расстояние определяется по формуле формула расстояние для вставки в строку. Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.

Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км, а за 11 часов против течения — 11(v − 2) км. Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение 9v plus 18 ravno 11v minus 22. Решим его:

9v plus 18 ravno 11v minus 22 решение

Значит собственная скорость теплохода составляет 20 км/ч.

При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.

Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t, далее составили уравнение, содержащее эту переменную и нашли её значение.

Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.

Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q

tQ

Ещё можно ввести ограничение для переменной t, указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением ∈ Q укажем, что её значение должно быть больше нуля:

∈ R, t > 0

Если решив уравнение, мы получим отрицательное значение для переменной t, то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию ∈ Q, > 0.

Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x. В такой задаче решение искалось бы на множестве натуральных чисел

x ∈ N

Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).

Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.


Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально

Решение

Обозначим через x плотников, прибывших на ремонт первоначально.

Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел

N

Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x.

количество плотников x и количество маляров больших в два с половиной раза

Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2

кол-во плотников уменьшено на 2

А количество маляров увеличим на 4

кол-во плотников увеличено на 4

Теперь количество плотников и маляров будут обозначаться через следующие выражения:

таблица новое количество плотников и маляров

Попробуем составить уравнение из имеющихся выражений:

весы количество плотников и маляров

Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:

весы количество плотников и маляров равные чаши

Получили уравнение 4x minus 8 ravno 25x plus 4. Решим его:

4x minus 8 ravno 25x plus 4 решение

Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной.  Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.

А количество маляров было обозначено через выражение 2,5x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8, то есть 20.

Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие ∈ N. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.

N

Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:

20  N


Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.

Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?

Решение

Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X

x литров в бидоне рисунок 1

Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%

x литров в бидоне рисунок 2

Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%

x литров в бидоне рисунок 3

Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14

x na 100 na 70 ravno 14

Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14

x na 100 na 70 ravno 14 в другом виде решение

Значит первоначально в бидоне было 20 литров молока.


Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?

Решение

Попробуем сначала узнать сколько золота и серебра будет содержáться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.

Определим сколько золота будет содержáться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:

3 кг × 1 = 3 кг

Определим сколько серебра будет содержáться в 15 кг сплава:

3 кг × 4 = 12 кг

Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x

табличка x и 15 minus x

Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:

таблица три сплава рисунок 1

В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10. Из них золота будет 1 на 10 в процентах, а серебра 9 на 10 в процентах.

Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x, поскольку так мы обозначили массу первого сплава:

таблица три сплава рисунок 2

Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет 2 на 5 в процентах, а серебра 3 на 5 в процентах.

Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x, поскольку так мы обозначили массу второго сплава:

таблица три сплава рисунок 3

Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет 3 на 15 в процентах сплава, а серебра будет 12 на 15 в процентах сплава. В последнюю графу записываем массу полученного сплава 15

таблица три сплава рисунок 4

Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.

Далее для удобства проценты будем выражать в десятичной дроби.

В первом сплаве золота было 0,10x, а во втором сплаве золота было 0,40(15 − x). Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от  нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10+ 0.40(15 − x) = 3. Решим это уравнение:

010x plus 040 na 15 - x ravno 3 решение

Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x, и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг.

Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.

Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90+ 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10

090x plus 060 na 15 minus x ravno 12 решение


Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?

Решение

Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x. Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержáться 0,06тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − тоннах богатой руды будет содержáться 0,11(20 − x) тонн меди.

В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержáться 20 × 0,08 = 1,6 тонн.

Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение  0,06x + 0,11(20 − x) = 1,6

006x plus 011 na 20 minus x ravno 16 рисунок

Решим данное уравнение:

006x plus 011 na 20 minus x ravno 16 решение

Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.


Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?

Решение

Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:

дистанция формула рисунок к задаче

Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t

Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t

Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.

Это позволяет нам приравнять выражение 250t к выражению 300t, поскольку оба выражения описывают длину одной и той же дистанции

250t = 300t

Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250= 300t в правой части время нужно уменьшить на единицу:

250t ravno 300 t - 1 решение

Получилось простейшее уравнение. Решим его:

250t ravno 300 t - 1 решение полное

При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:

S = 250 × 6 = 1500 м

А при скорости 300 метров в минуту спортсменка пробегает дистанцию за − 1, то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:

= 300 × 5 = 1500 м


Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?

Решение

Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.

Скорость сближения определяется вычитанием меньшей скорости из большей:

10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)

С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6

15 : 6 = 2,5 ч

2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.

всадник догоняет пешехода рисунок 1

Решим эту задачу с помощью уравнения.

Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км

всадник догоняет пешехода рисунок 2

После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.

Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:

дистанция формула рисунок к задаче

Воспользуемся правой частью этого уравнения для составления своего уравнения.

Расстояние, пройденное всадником, будет описываться выражением 10t. Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15.

На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:

10t ravno 4t plus 15

Получилось простейшее уравнение. Решим его:

10t ravno 4t plus 15 решение


Задачи для самостоятельного решения

Задача 1. Из одного города в другой пассажирский поезд приезжает на 45 мин быстрее товарного. Вычисли расстояние между городами, если скорость пассажирского поезда 48 км/ч, а товарного 36 км/ч.

Решение

Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч

Обозначим время, за которое товарный поезд приезжает в город, через переменную t. Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75

Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t. Решим его:

Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам

36 × 3 = 108 км

Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше

48 × (3 − 0,75) = 144 − 36 = 108 км

Ответ: расстояние между городами равно 108 км.

Задача 2. Из двух городов, расстояние между которыми 150 км, одновременно навстречу друг другу выехали два автомобиля. Скорость одного автомобиля 65 км/ч, а второго 60 км/ч. Через сколько часов они встретились?

Решение

Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65+ 60= 150

Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.

Ответ: автомобили встретились через 1,2 часа.

Задача 3. В трех цехах завода всего 685 рабочих. Во втором цехе рабочих в три раза больше, чем в первом, а в третьем — на 15 рабочих меньше, чем во втором цехе. Сколько рабочих в каждом цехе?

Решение

Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x. В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15.

В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685

Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.

Во втором цехе было 3x рабочих, то есть 3 × 100 = 300. А в третьем цехе было 3x − 15, то есть 3 × 100 − 15 = 285

Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.

Задача 4. Две ремонтные мастерские в течение недели должны отремонтировать по плану 18 моторов. Первая мастерская выполнила план на 120%, а вторая — на 125%, поэтому в течение недели отремонтировали 22 мотора. Какой план по ремонту моторов на неделю имела каждая мастерская?

Решение

Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов.

Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.

В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x +  1,25(18 − x22

Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должна была отремонтировать 10 моторов.

А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.

Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.

Задача 5. Цена товара повысилась на 30% и составляет теперь 91 руб. Сколько стоил товар до повышения цены?

Решение

Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение + 0.30= 91

Значит до повышения цены товар стоил 70 рублей.

Ответ: до повышения цены товар стоил 70 рублей.

Задача 6. Число увеличили на 25%. На сколько процентов надо уменьшить новое число, чтобы получилось исходное?

Решение

Пусть x — исходное число. Увеличим его на 25%. Получим выражение x + 0,25x. Приведем подобные слагаемые, получим x + 0,25x = 1.25x.

Узнаем какую часть исходное число x составляет от нового числа 1,25x

Если новое число 1,25x считать за 100%, а исходное число x составляет от него 80%, то уменьшив новое число на 20% можно получить исходное число x

Ответ: чтобы получить исходное число, новое число нужно уменьшить на 20%.

Задача 7. При увеличении числа на 20% получилось 144. Найти первоначальное значение числа.

Решение

Пусть x — первоначальное число. Увеличим его на 20%. Получим выражение x + 0,20x. Приравняем эту сумму к числу 144, получим уравнение x + 0,20= 144

Ответ: первоначальное значение числа равно 120.

Задача 8. При уменьшении числа на 10% получилось 45. Найти первоначальное значение числа.

Решение

Пусть x — первоначальное число. Уменьшим его на 10%. Получим выражение x − 0,10x. Приравняем эту разность к числу 45, получим уравнение x − 0,10x = 45

Ответ: первоначальное значение числа равно 50.

Задача 9. Цена альбома была снижена сначала на 15%, потом еще на 15 руб. Новая цена альбома после двух снижений 19 руб. Определить его первоначальную цену.

Решение

Пусть x рублей — первоначальная цена альбома. Снизим эту цену на 15%, получим x − 0,15x. Снизим цену ещё на 15 руб., получим x − 0,15x − 15. После этих снижений альбом стал стоить 19 руб. Приравняем выражение x − 0,15x − 15 к числу 19, получим уравнение x − 0,15x − 15 = 19

Ответ: первоначальная цена альбома составляет 40 руб.

Задача 10. Трава при сушке теряет 80% своей массы. Сколько тонн травы нужно накосить, чтобы получить 4 т сена?

Решение

Если 80% массы теряется, то на оставшиеся 20% будут приходиться 4 т сена. Пусть x тонн травы требуется для получения 4 т сена. Если 4 т будут составлять 20% травы, то можно составить уравнение:

Ответ: для получения 4 т сена, нужно накосить 20 т травы.

Задача 11. Сколько килограммов 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора, чтобы получить 12%-й раствор соли?

Решение

Пусть x кг 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора.

В 1 кг 10%-го раствора соли содержится 0,1 кг соли. А в x кг 20%-го раствора соли содержится 0,20кг соли.

После добавления x кг 20%-го раствора в новом растворе будет содержáться 0,12(1 + x) кг соли. Сложим выражения 0,1 и 0,20x, затем приравняем эту сумму к выражению 0,12(1 + x). В результате получим уравнение  0,1 + 0,20x = 0,12(1 + x)

Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.

Задача 12. Даны два раствора соли в воде, концентрации которых равны 20% и 30%. Сколько килограммов каждого раствора нужно смешать в одном сосуде, чтобы получить 25 кг 25,2%-го раствора?

Решение

Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.

В первом растворе будет содержáться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение

Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.

Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Алгоритм решения текстовой задачи с помощью уравнения

Алгоритм решения текстовой задачи с помощью уравнения:

  • Проанализировать условие задачи, обозначить неизвестное буквой и составить уравнение.
  • Решить полученное уравнение.
  • Истолковать результат в соответствии с условием задачи.

Задачи с решениями

Задача 1. Одна сторона треугольника в два раза больше другой и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 43 см.

Решение:

Пусть сторона AB=x.

Заполним таблицу:

Периметр треугольника: P = AB+AC+BC = x+2x+(2x+3) = 43

$$5x+3 = 43 iff 5x = 40 iff x = 40:5 = 8$$

Длины сторон:

AB = x = 8 см, AC = 2x = 16 см, BC = 2x+3 = 19 см

Ответ: 8 см, 16 см и 19 см

Задача 2. Расстояние между двумя станциями поезд может пройти со скоростью 70 км/ч на полчаса быстрее, чем со скоростью 60 км/ч. Найдите это расстояние.

Решение:

Пусть x – расстояние между станциями.

Заполним таблицу:

Скорость, км/ч

Время, ч

Расстояние, км

По условию разность затраченного времени:

$$ frac{x}{60} – frac{x}{70} = frac{1}{2} $$

Решаем: $ frac{x}{60} – frac{x}{70} = frac{1}{2} | times 420 iff 7x-6x = 210 iff x = 210 $

Расстояние между станциями 210 км

Ответ: 210 км

Задача 3. Бригада должна была изготовить детали за 5 дней, но выполнила работу за 4 дня, т.к. изготавливала каждый день на 12 деталей больше. Сколько деталей изготовила бригада?

Решение:

Пусть x – количество изготовленных деталей.

Заполним таблицу:

Количество деталей в день, шт./дни

Расстояние, км

Количество дней, дни

По плану

$frac{x}{5}$

5

x

По факту

$frac{x}{4}$

4

x

По условию разность между количествами деталей в день:

$$ frac{x}{4} – frac{x}{5} = 12 $$

Решаем: $ frac{x}{4} – frac{x}{5} = 12 | times 20 iff 5x-4x = 240 iff x = 240 $

Бригада изготовила 240 деталей.

Ответ: 240 деталей

Задача 4. Сумма двух чисел равна 90. Если большее из них разделить на меньшее, то частное равно 3 и в остатке 6. Найдите эти числа.

Решение:

Пусть x – меньшее число. Тогда большее равно 90-x. По условию: 90-x = 3x+6

Решаем:

$$ 90-6 = 3x+x iff 4x = 84 iff x = 21 $$

Меньшее число x = 21, большее число 90-x = 69.

Ответ: 21 и 69

Задача 5. Матери 37 лет, а дочери 13 лет. Когда дочь была или будет втрое младше матери? А вдвое?

Решение:

Пусть x – число прошедших лет. Возраст матери станет 37+x, дочери 13+x.

Соотношение возрастов:

$$ frac{37+x}{13+x} = 3 iff 37+x = 3(13+x) iff 37+x = 39+3x iff 37-39 = 3x-x iff $$

$$ iff 2x = -2 iff x = -1 $$

Дочь была втрое младше матери 1 год тому назад.

Второе соотношение:

$$ frac{37+x}{13+x} = 2 iff 37+x = 2(13+x) iff 37+x = 26+2x iff 37-26 = 2x-x iff $$

$$ iff x = 11 $$

Дочь будет вдвое младше матери через 11 лет.

Ответ: год назад; через 11 лет

Задача 6. Сколько лет отцу и сыну, еcли в позапрошлом году сын был младше в 5 раз, а в следующем будет младше в 4 раза?

Решение:

Пусть x – возраст сына в этом году.

Заполним таблицу:

Возраст сына, лет

Возраст отца, лет

Позапрошлый год

x-2

5(x-2)

И для отца, и для сына пройдёт три года:

(x+1)-(x-2) = 3 = 4(x+1)-5(x-2)

Решаем:

$$ 4(x+1)-5(x-2) = 3 iff 4x+4-5x+10 = 3 iff 4x-5x = 3-14 iff -x = -11 $$ $$ x = 11 $$

Сейчас сыну 11 лет.

В следующем году отцу будет 4(x+1)=4∙12=48 лет. Значит, сейчас отцу 47 лет.

Ответ: 11 лет и 47 лет.

Задача 7. Сумма цифр данного двузначного числа равна 7. Если эти цифры поменять местами, то получится двузначное число на 9 больше данного. Найдите данное число.

Решение:

Пусть x – первая цифра данного числа, число десятков.

Заполним таблицу:

Первая цифра

Вторая цифра

Значение числа

По условию разность чисел:

(10(7-x)+x)-(10x+(7-x)) = 9

Решаем:

$$ (70-10x+x)-(10x+7-x) = 9 iff 70-9x-9x-7 = 9 iff $$ $$ iff -18x = 9-63 iff -18x = -54 iff x = 3 $$

Первая цифра x = 3, вторая цифра 7-x = 4.

Данное число 34.

Ответ: 34

Задача 8. По расписанию автобус должен ехать от посёлка до станции со скоростью 32 км/ч и приезжать на станцию за полчаса до отхода поезда. Но из-за ненастной погоды автобус ехал со скоростью на 7 км/ч меньше и опоздал к поезду на 12 мин. Чему равно расстояние от посёлка до станции?

Решение:

Пусть x – расстояние от посёлка до станции.

Заполним таблицу:

Скорость, км/ч

Время, ч

Расстояние, км

Разность по времени между расписанием и фактическим прибытием:

30 мин+12 мин = 42 мин = $frac{42}{60}$ ч = 0,7 ч

$ frac{x}{25}- frac{x}{32} = 0,7 | times 32 cdot 25 $

$ 32x-25x = frac{7}{10} cdot 32 cdot 25 = 7 cdot 16 cdot 5 $

$ 7x = 7 cdot 16 cdot 5 iff x = 16 cdot 5 = 80 $

Расстояние 80 км.

Ответ: 80 км

Задача 9*. Если к двузначному числу приписать справа и слева цифру 4, то получится число в 54 раза больше исходного. Найдите исходное двузначное число.

Решение:

Пусть x – исходное число.

Если приписать по 4 слева и справа, в полученном четырёхзначном числе первая 4 указывает на количество тысяч, число x – на количество десятков, последняя 4 – на количество единиц. Соотношение чисел:

$$ frac{4000+10x+4}{x} = 54 $$

Решаем: $ 4004+10x = 54x iff 4004=44x iff x = frac{4004}{44} = frac{1001}{11} = 91 $

Исходное число x = 91.

Ответ: 91

Задача 10. Для проведения экзамена закуплены тетради. Если их сложить в пачки по 45 штук, останется одна лишняя тетрадь, а если сложить в пачки по 50 штук, то в одной пачке не будет хватать 4 тетради. Сколько тетрадей было куплено, если пачек по 45 тетрадей получается на одну больше, чем пачек по 50 тетрадей?

Решение:

Пусть n – количество пачек по 50 тетрадей.

Количество тетрадей в пачке

Количество пачек

Всего тетрадей

Всего тетрадей:

$$ 45(n+1)+1 = 50n-4 iff 45n+45+1 = 50n-4 iff 45n-50n = -4-46 iff $$

$$ iff-5n = -50 iff n = 10 $$

Получаем: 50 $cdot$ 10-4 = 496 тетрадей.

Ответ: 496 тетрадей.

Задача 11*. Компания приобрела две партии товара за 125 тыс.руб. Первая партия была продана с прибылью 25%, вторая – с прибылью 50%. Общая прибыль составила 40%. Сколько стоила компании каждая партия товара?

Решение:

Пусть x – стоимость первой партии.

Заполним таблицу:

Стоимость, тыс.руб.

Прибыль, %

Цена продажи, тыс.руб.

Первая партия

x

25%

1,25x

Вторая партия

125-x

50%

1,5(125-x)

Всего

125

40%

1,4 $cdot$ 125

В сумме получаем:

1,25x+1,5(125-x) = 1,4 $cdot$ 125 | $times$ 4

5x+6(125-x) = 1,4 $cdot$ 500

5x+750-6x = 700

x = 50

Стоимость первой партии x = 50 тыс.руб., второй партии 125-x = 75 тыс.руб.

Ответ: 50 тыс.руб. и 75 тыс.руб.

Задача 12*. В одном слитке 10% серебра, а во втором – 40%. Второй слиток на 3 кг тяжелее первого. Слитки сплавили и получили слиток, в котором 30% серебра. Найдите массу полученного слитка.

Решение:

Пусть x – масса первого слитка.

Заполним таблицу:

Масса, кг

Содержание серебра, %

Масса серебра, кг

Второй слиток

x+3

40%

0,4(x+3)

Полученный слиток

2x+3

30%

0,3(2x+3)

В сумме масса серебра:

0,1x+0,4(x+3) = 0,3(2x+3) |$times$ 10

x+4(x+3) = 3(2x+3) $iff$ x+4x+12 = 6x+9 $iff$ x = 3

Масса первого слитка x=3 кг. Масса полученного слитка 2x+3=9 кг.

Ответ: 9 кг

Добавить комментарий