Содержание
- Уравнение прямой на плоскости
- Уравнения прямой на плоскости в координатной форме
- Общее уравнение прямой
- Параметрическое уравнение прямой
- Параметрическое уравнение прямой в канонической форме
- Уравнение прямой, проходящей через две точки
- Уравнения прямой на плоскости в векторной форме
- Векторное уравнение прямой в параметрической форме
- Нормальное векторное уравнение прямой
- Векторное уравнение прямой, проходящей через две точки
- Уравнения прямой на плоскости в координатной форме
- Уравнение прямой в пространстве
- Уравнения прямой в пространстве в координатной форме
- Параметрические уравнения прямой
- Параметрические уравнения прямой в канонической форме
- Уравнение прямой, проходящей через две точки
- Прямая как пересечение двух плоскостей
- Уравнения прямой в пространстве в векторной форме
- Векторное уравнение прямой в параметрической форме
- Векторные уравнения прямой
- Векторное уравнение прямой, проходящей через две точки
- Уравнения прямой в пространстве в координатной форме
Уравнение прямой на плоскости
Уравнения прямой на плоскости в координатной форме
Любую прямую линию на плоскости можно задать общим уравнением прямой в декартовой системе координат:
то есть числа одновременно не равны нулю.
Прямая линия на плоскости может быть задана параметрическим уравнением прямой:
где числа не равны нулю одновременно. Числа являются компонентами направляющего вектора прямой — ненулевого вектора, лежащего на прямой.
Если то после исключения из уравнений прямой в параметрической форме параметра уравнение прямой приводятся к канонической форме:
Уравнение прямой, проходящей через две точки и :
При или это уравнение принимает соответственно вид или
Уравнения прямой на плоскости в векторной форме
Векторное уравнение прямой в параметрической форме:
где — направляющий вектор прямой, — радиус-вектор некоторой точки прямой.
Нормальное векторное уравнение прямой:
где — вектор нормали к прямой.
Это уравнение также можно записать в форме
причём если вектор — единичный, то величина есть расстояние от точки до прямой. Вообще говоря, это уравнение имеет следующий смысл: проекция радиус-вектора любой точки прямой на нормаль к этой прямой постоянна.
Векторное уравнение прямой, проходящей через две различные точки:
где и — радиус-векторы данных точек.
Это уравнение легко получается из векторного уравнения прямой в параметрической форме, если в качестве направляющего вектора прямой взять вектор
Уравнение прямой в пространстве
Уравнение прямой в пространстве в координатной форме
Прямая линия в пространстве может быть задана параметрическими уравнениями:
Числа являются компонентами направляющего вектора прямой.
Исключением параметра параметрические уравнения прямой приводятся к канонической форме:
Если, например, то канонические уравнения принимают вид
Аналогично для любой другой компоненты направляющего вектора.
Если два параметра равны нулю, например, то канонические уравнения имеют вид Аналогично для любых других пар компонент направляющего вектора.
Уравнение прямой в пространстве, проходящей через две точки и :
Если, например, то уравнения прямой принимают вид
Если к тому же то уравнения прямой записываются в виде Аналогично для любых двух пар совпадающих координат точек.
Прямая в пространстве может быть задана как пересечение двух непараллельных плоскостей:
Уравнение прямой в пространстве в векторной форме
Прямая линия в пространстве может быть задана уравнением в параметрической форме:
где — направляющий вектор прямой, — радиус-вектор некоторой точки прямой. Это уравнение совпадает с параметрическим векторным уравнением прямой на плоскости.
Прямую в пространстве можно задать векторными уравнениями:
или
Векторное уравнение прямой в пространстве, проходящей через две различные точки:
где и — радиус-векторы двух точек прямой.
Общее уравнение прямой: описание, примеры, решение задач
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x – x 0 ) + B ( y – y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) не являлись бы перпендикулярными, и равенство A ( x – x 0 ) + B ( y – y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x – x 0 ) + B ( y – y 0 ) = 0
Перепишем уравнение A x + B y – A x 0 – B y 0 = 0 , определим C : C = – A x 0 – B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y – 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y – 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение – C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу – C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , – 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = – 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x – 2 = 0
Ответ: 7 x – 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = – 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y – 3 = 0 .
Ответ: y – 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x – x 0 ) + B ( y – y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( – 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , – 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = – 2 , x 0 = – 3 , y 0 = 4 . Тогда:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 1 · ( x – ( – 3 ) ) – 2 · y ( y – 4 ) = 0 ⇔ ⇔ x – 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x – 2 · y + C = 0 ⇔ x – 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( – 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x – 2 · y + C = 0 , т.е. – 3 – 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x – 2 · y + 11 = 0 .
Ответ: x – 2 · y + 11 = 0 .
Задана прямая 2 3 x – y – 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна – 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = – 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 – y 0 – 1 2 = 0
Определяем y 0 : 2 3 · ( – 3 ) – y 0 – 1 2 = 0 ⇔ – 5 2 – y 0 = 0 ⇔ y 0 = – 5 2
Ответ: – 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x – x 1 a x = y – y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = – B y .
Это равенство возможно записать как пропорцию: x + C A – B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = – B y – C . Выносим – В за скобки, тогда: A x = – B y + C B .
Перепишем равенство в виде пропорции: x – B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y – 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y – 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим – 3 за скобки; получаем: 0 x = – 3 y – 4 3 .
Запишем полученное равенство как пропорцию: x – 3 = y – 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x – 3 = y – 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x – 5 y – 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x – 5 y – 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = – A x – C . Разделим обе части полученного равенство на B , отличное от нуля: y = – A B x – C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y – 2 x ⇔ y = – 2 7 x
Ответ: y = – 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = – C ⇔ ⇔ A – C x + B – C y = 1 ⇔ x – C A + y – C B = 1
Необходимо преобразовать общее уравнение прямой x – 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x – 7 y + 1 2 = 0 ⇔ x – 7 y = – 1 2 .
Разделим на -1/2 обе части равенства: x – 7 y = – 1 2 ⇔ 1 – 1 2 x – 7 – 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 – 1 2 x – 7 – 1 2 y = 1 ⇔ x – 1 2 + y 1 14 = 1 .
Ответ: x – 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y – 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y – k x – b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x ( y – y 1 ) ⇔ ⇔ a y x – a x y – a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = – 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = – 1 + 2 · λ y = 4 ⇔ x = – 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y – 4 0 ⇔ x + 1 2 = y – 4 0
Перейдем от канонического к общему:
x + 1 2 = y – 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y – 4 ) ⇔ y – 4 = 0
Ответ: y – 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y – 1 = 0
Ответ: 1 3 x + 2 y – 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x – x 0 ) + B ( y – y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x – 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , – 3 ) : 2 x – 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 2 ( x – 4 ) – 3 ( y – 1 ) = 0 ⇔ 2 x – 3 y – 5 = 0
Ответ: 2 x – 3 y – 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x – 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x – 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 3 ( x – 0 ) + 5 ( y – 0 ) = 0 ⇔ 3 x + 5 y = 0
Уравнения прямых и плоскостей
Поверхности и линии первого порядка.
Уравнение первой степени, или линейное уравнение, связывающее координаты точки в пространстве, имеет вид
$$
Ax+By+Cz+D = 0,label
$$
причем предполагается, что коэффициенты при переменных не равны нулю одновременно, то есть (A^<2>+B^<2>+C^ <2>neq 0). Аналогично, линейное уравнение, связывающее координаты точки на плоскости, — это уравнение
$$
Ax+By+C = 0,label
$$
при условии (A^<2>+B^ <2>neq 0).
В школьном курсе доказывается, что в декартовой прямоугольной системе координат уравнения eqref и eqref определяют соответственно плоскость и прямую линию на плоскости. Из теорем о порядке алгебраических линий и поверхностей следует, что то же самое верно и в общей декартовой системе координат. Точнее, имеют место следующие теоремы.
В общей декартовой системе координат в пространстве каждая плоскость может быть задана линейным уравнением
$$
Ax+By+Cz+D = 0.nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат определяет плоскость.
В общей декартовой системе координат на плоскости каждая прямая может быть задана линейным уравнением
$$
Ax+By+C = 0,nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат на плоскости определяет прямую.
Эти теоремы полностью решают вопрос об уравнениях плоскости и прямой линии на плоскости. Однако ввиду важности этих уравнений мы рассмотрим их в других формах. При этом будут получены независимые доказательства теорем этого пункта.
Параметрические уравнения прямой и плоскости.
Мы будем предполагать, что задана декартова система координат в пространстве (или на плоскости, если мы изучаем прямую в планиметрии). Это, в частности, означает, что каждой точке сопоставлен ее радиус-вектор относительно начала координат.
Рис. 6.1
Вектор (overrightarrowM> = boldsymbol-boldsymbol_<0>), начало которого лежит на прямой, параллелен прямой тогда и только тогда, когда (M) также лежит на прямой. В этом и только этом случае для точки (M) найдется такое число (t), что
$$
boldsymbol-boldsymbol_ <0>= tboldsymbol.label
$$
Наоборот, какое бы число мы ни подставили в формулу eqref в качестве (t), вектор (boldsymbol) в этой формуле определит некоторую точку на прямой.
Уравнение eqref называется векторным параметрическим уравнением прямой, а переменная величина (t), принимающая любые вещественные значения, называется параметром.
Векторное параметрическое уравнение выглядит одинаково и в планиметрии, и в стереометрии, но при разложении по базису оно сводится к двум или трем скалярным уравнениям, смотря по тому, сколько векторов составляют базис.
Получим теперь параметрические уравнения плоскости. Обозначим через (boldsymbol
) и (boldsymbol) ее направляющие векторы, а через (boldsymbol_<0>) — радиус-вектор ее начальной точки (M_<0>). Пусть точка (M) с радиус-вектором (boldsymbol) — произвольная точка пространства (рис. 6.2).
Рис. 6.2
Вектор (overrightarrowM> = boldsymbol-boldsymbol_<0>), начало которого лежит на плоскости, параллелен ей тогда и только тогда, когда его конец (M) также лежит на плоскости. Так как (boldsymbol
) и (boldsymbol) не коллинеарны, в этом и только этом случае (boldsymbol-boldsymbol_<0>) может быть по ним разложен. Поэтому, если точка (M) лежит в плоскости (и только в этом случае), найдутся такие числа (t_<1>) и (t_<2>), что
$$
boldsymbol-boldsymbol_ <0>= t_<1>boldsymbol
+t_<2>boldsymbol.label
$$
Это уравнение называется параметрическим уравнением плоскости. Каждой точке плоскости оно сопоставляет значения двух параметров (t_<1>) и (t_<2>). Наоборот, какие бы числа мы ни подставили как значения (t_<1>) и (t_<2>), уравнение eqref определит некоторую точку плоскости.
Пусть ((x, y, z)) и ((x_<0>, y_<0>, z_<0>)) — координаты точек (M) и (M_<0>) соответственно, а векторы (boldsymbol
) и (boldsymbol) имеют компоненты ((p_<1>, p_<2>, p_<3>)) и ((q_<1>, q_<2>, q_<3>)). Тогда, раскладывая по базису обе части уравнения eqref, мы получим параметрические уравнения плоскости
$$
x-x_ <0>= t_<1>p_<1>+t_<2>q_<1>, y-y_ <0>= t_<1>p_<2>+t_<2>q_<2>, z-z_ <0>= t_<1>p_<3>+t_<2>q_<3>.label
$$
Отметим, что начальная точка и направляющий вектор прямой образуют на ней ее внутреннюю декартову систему координат. Значение параметра (t), соответствующее какой-то точке, является координатой этой точки во внутренней системе координат. Точно так же на плоскости начальная точка и направляющие векторы составляют внутреннюю систему координат, а значения параметров, соответствующие точке, — это ее координаты в этой системе.
Прямая линия на плоскости.
Поэтому мы можем сформулировать следующее утверждение.
В любой декартовой системе координат на плоскости уравнение прямой с начальной точкой (M_<0>(x_<0>, y_<0>)) и направляющим вектором (boldsymbol(a_<1>, a_<2>)) может быть записано в виде eqref.
Уравнение eqref линейное. Действительно, после преобразования оно принимает вид (a_<2>x-a_<1>y+(a_<1>y_<0>-a_<2>x_<0>) = 0), то есть (Ax+By+C = 0), где (A = a_<2>), (B = -a_<1>) и (C = a_<1>y_<0>-a_<2>x_<0>).
Вектор с координатами ((-B, A)) можно принять за направляющий вектор прямой с уравнением eqref в общей декартовой системе координат, а точку eqref за начальную точку.
Если система координат декартова прямоугольная, то вектор (boldsymbol(A, B)) перпендикулярен прямой с уравнением eqref.
Действительно, в этом случае ((boldsymbol, boldsymbol) = -BA+AB = 0).
Пусть в уравнении прямой (Ax+By+C = 0) коэффициент (B) отличен от нуля. Это означает, что отлична от нуля первая компонента направляющего вектора, и прямая не параллельна оси ординат. В этом случае уравнение прямой можно представить в виде
$$
y = kx+b,label
$$
где (k = -A/B), а (b = -C/B). Мы видим, что к равно отношению компонент направляющего вектора: (k = a_<2>/a_<1>) (рис. 6.3).
Рис. 6.3. k=-1. Прямая y=-x+1/2
Отношение компонент направляющего вектора (a_<2>/a_<1>) называется угловым коэффициентом прямой.
Угловой коэффициент прямой в декартовой прямоугольной системе координат равен тангенсу угла, который прямая образует с осью абсцисс. Угол этот отсчитывается от оси абсцисс в направлении кратчайшего поворота от (boldsymbol_<1>) к (boldsymbol_<2>) (рис. 6.4).
Рис. 6.4. (k=operatornamevarphi = -1). Прямая (y=-x+1/2)
Положив (x = 0) в уравнении eqref, получаем (y = b). Это означает, что свободный член уравнения (b) является ординатой точки пересечения прямой с осью ординат.
Если же в уравнении прямой (B = 0) и ее уравнение нельзя представить в виде eqref, то обязательно (A neq 0). В этом случае прямая параллельна оси ординат и ее уравнению можно придать вид (x = x_<0>), где (x_ <0>= -C/A) — абсцисса точки пересечения прямой с осью абсцисс.
Векторные уравнения плоскости и прямой.
Параметрическое уравнение плоскости утверждает, что точка (M) лежит на плоскости тогда и только тогда, когда разность ее радиус-вектора и радиус-вектора начальной точки (M_<0>) компланарна направляющим векторам (boldsymbol
) и (boldsymbol). Эту компланарность можно выразить и равенством
$$
(boldsymbol-boldsymbol_<0>, boldsymbol
, boldsymbol) = 0.label
$$
Вектор (boldsymbol = [boldsymbol
, boldsymbol]) — ненулевой вектор, перпендикулярный плоскости. Используя его, мы можем записать уравнение eqref в виде
$$
(boldsymbol-boldsymbol_<0>, boldsymbol) = 0.label
$$
Уравнения eqref и eqref называют векторными уравнениями плоскости. Им можно придать форму, в которую не входит радиус-вектор начальной точки. Например, положив в eqref (D = -(boldsymbol_<0>, boldsymbol)), получим
$$
(boldsymbol, boldsymbol)+D = 0.label
$$
Для прямой на плоскости можно также написать векторные уравнения, аналогичные eqref и eqref,
$$
(boldsymbol-boldsymbol_<0>, boldsymbol) = 0 mbox<или> (boldsymbol, boldsymbol)+C = 0.nonumber
$$
Первое из них выражает тот факт, что вектор (boldsymbol-boldsymbol_<0>) перпендикулярен ненулевому вектору (boldsymbol), перпендикулярному направляющему вектору (boldsymbol), и потому коллинеарен (boldsymbol).
Пусть (x, y, z) — компоненты вектора (boldsymbol) в общей декартовой системе координат. Тогда скалярное произведение ((boldsymbol-boldsymbol_<0>, boldsymbol)) при (boldsymbol neq 0) записывается линейным многочленом (Ax+By+Cz+D), где ((A^<2>+B^<2>+C^ <2>neq 0)).
Обратно, для любого линейного многочлена найдутся такие векторы (boldsymbol_<0>) и (boldsymbol neq 0), что в заданной общей декартовой системе координат (Ax+By+Cz+D = (boldsymbol-boldsymbol_<0>, boldsymbol)).
Первая часть предложения очевидна: подставим разложение вектора (boldsymbol) по базису в данное скалярное произведение:
$$
(xboldsymbol_<1>+yboldsymbol_<2>+zboldsymbol_<3>-boldsymbol_<0>, boldsymbol),nonumber
$$
раскроем скобки и получим многочлен (Ax+By+Cz+D), в котором (D = -(boldsymbol_<0>, boldsymbol)) и
$$
A = (boldsymbol_<1>, boldsymbol), B = (boldsymbol_<2>, boldsymbol), C = (boldsymbol_<3>, boldsymbol)label
$$
(A), (B) и (C) одновременно не равны нулю, так как ненулевой вектор (boldsymbol) не может быть ортогонален всем векторам базиса.
Для доказательства обратного утверждения найдем сначала вектор (boldsymbol) из равенств eqref, считая (A), (B) и (C) заданными. Из ранее доказанного утверждения 10 следует, что
$$
boldsymbol = frac_<2>, boldsymbol_<3>]><(boldsymbol_<1>, boldsymbol_<2>, boldsymbol_<3>)>+frac_<3>, boldsymbol_<1>]><(boldsymbol_<1>, boldsymbol_<2>, boldsymbol_<3>)>+frac_<1>, boldsymbol_<2>]><(boldsymbol_<1>, boldsymbol_<2>, boldsymbol_<3>)>.label
$$
Вектор (boldsymbol_<0>) должен удовлетворять условию (D = -(boldsymbol_<0>, boldsymbol)). Один из таких векторов можно найти в виде (boldsymbol_ <0>= lambda boldsymbol). Подставляя, видим, что (-lambda(boldsymbol, boldsymbol) = D), откуда (boldsymbol_ <0>= -Dboldsymbol/|boldsymbol|^<2>).
Итак, мы нашли векторы (boldsymbol) и (boldsymbol_<0>) такие, что линейный многочлен записывается в виде
$$
x(boldsymbol_<1>, boldsymbol)+y(boldsymbol_<2>, boldsymbol)+z(boldsymbol_<3>, boldsymbol)-(boldsymbol_<0>, boldsymbol),nonumber
$$
который совпадает с требуемым ((boldsymbol-boldsymbol_<0>, boldsymbol)).
Если система координат декартова прямоугольная, то вектор с компонентами (A), (B), (C) является нормальным вектором для плоскости с уравнением (Ax+By+Cz+D = 0).
Это сразу вытекает из формул eqref и доказанного ранее утверждения о нахождении компонент в ортогональном базисе.
Любые два неколлинеарных вектора, удовлетворяющие уравнению eqref, можно принять за направляющие векторы плоскости.
Утверждение 5 нетрудно доказать и непосредственно, рассматривая координаты вектора, параллельного плоскости, как разности соответствующих координат двух точек, лежащих в плоскости.
Все, сказанное о плоскостях, почти без изменений может быть сказано и о прямых на плоскости. В частности, верно следующее утверждение.
Действительно, (alpha_<1>, alpha_<2>), должны быть пропорциональны компонентам — (B), (A) направляющего вектора прямой.
Параллельность плоскостей и прямых на плоскости.
Ниже, говоря о параллельных прямых или плоскостях, мы будем считать, что параллельные плоскости (или прямые) не обязательно различны, то есть что плоскость (прямая) параллельна самой себе.
Прямые линии, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+C = 0, A_<1>x+B_<1>y+C_ <1>= 0,nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ <1>= lambda A, B_ <1>= lambda B.label
$$
Прямые совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнения eqref выполнено (с тем же (lambda)) равенство
$$
C_ <1>= lambda C.label
$$
Первая часть предложения прямо следует из того, что векторы с компонентами ((-B, A)) и ((-B_<1>, A_<1>)) — направляющие векторы прямых.
Докажем вторую часть. В равенствах eqref и eqref (lambda neq 0), так как коэффициенты в уравнении прямой одновременно нулю не равны. Поэтому, если эти равенства выполнены, уравнения эквивалентны и определяют одну и ту же прямую.
Обратно, пусть прямые параллельны. В силу первой части предложения их уравнения должны иметь вид (Ax+By+C = 0) и (lambda(Ax+By)+C_ <1>= 0) при некотором (lambda). Если, кроме того, существует общая точка (M_<0>(x_<0>, y_<0>)) обеих прямых, то (Ax_<0>+By_<0>+C = 0) и (lambda(Ax_<0>+By_<0>)+C_ <1>= 0). Вычитая одно равенство из другого, получаем (C_ <1>= lambda C), как и требовалось.
Плоскости, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+Cz+D = 0, A_<1>x+B_<1>y+C_<1>z+D_ <1>= 0nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ <1>= lambda A, B_ <1>= lambda B, C_ <1>= lambda C.label
$$
Плоскости совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнений eqref выполнено (с тем же (lambda)) равенство
$$
D_ <1>= lambda D.label
$$
Если плоскости параллельны, то их нормальные векторы (boldsymbol) и (boldsymbol_<1>) коллинеарны, и существует такое число (lambda), что (boldsymbol_ <1>= lambdaboldsymbol). В силу уравнений eqref (A_ <1>= (boldsymbol_<1>, boldsymbol_<1>) = lambda(boldsymbol_<1>, boldsymbol) = lambda A). Аналогично доказываются и остальные равенства eqref. Обратно, если равенства eqref выполнены, то из формулы eqref следует, что (boldsymbol_ <1>= lambdaboldsymbol). Это доказывает первую часть предложения. Вторая его часть доказывается так же, как вторая часть предложения 7.
Условия eqref выражают не что иное, как коллинеарность векторов с компонентами ((A, B)) и ((A_<1>, B_<1>)). Точно так же условия eqref означают коллинеарность векторов с компонентами ((A, B, C)) и ((A_<1>, B_<1>, C_<1>)). Поэтому согласно ранее доказанным этому и этому утверждениям условие параллельности прямых на плоскости можно записать в виде
$$
begin
A& B\
A_<1>& B_<1>
end
= 0,label
$$
а условие параллельности плоскостей — в виде
$$
begin
B& C\
B_<1>& C_<1>
end =
begin
C& A\
C_<1>& A_<1>
end =
begin
A& B\
A_<1>& B_<1>
end
= 0.label
$$
Утверждению 7 можно придать чисто алгебраическую формулировку, если учесть, что координаты точки пересечения прямых — это решение системы, составленной из их уравнений.
При условии eqref система линейных уравнений
$$
Ax+By+C = 0, A_<1>x+B_<1>y+C_ <1>= 0,nonumber
$$
не имеет решений или имеет бесконечно много решений (в зависимости от (C) и (C_<1>). В последнем случае система равносильна одному из составляющих ее уравнений. Если же
$$
begin
A& B\
A_<1>& B_<1>
end
neq 0.nonumber
$$
то при любых (C) и (C_<1>) система имеет единственное решение ((x, y)).
Уравнения прямой в пространстве.
Прямая линия в пространстве может быть задана как пересечение двух плоскостей и, следовательно, в общей декартовой системе координат определяется системой уравнений вида
$$
left<begin
Ax+By+Cz+D = 0,\
A_<1>x+B_<1>y+C_<1>z+D_ <1>= 0.
endright.label
$$
Пересечение плоскостей — прямая линия тогда и только тогда, когда они не параллельны, что согласно eqref означает, что хоть один из детерминантов отличен от нуля:
$$
begin
B& C\
B_<1>& C_<1>
end^ <2>+
begin
C& A\
C_<1>& A_<1>
end^ <2>+
begin
A& B\
A_<1>& B_<1>
end^<2>
neq 0.label
$$
Разумеется, систему eqref можно заменить на любую, ей эквивалентную. При этом прямая будет представлена как пересечение двух других проходящих через нее плоскостей.
Вспомним параметрические уравнения прямой eqref. Допустим, что в них ни одна из компонент направляющего вектора не равна нулю. Тогда
$$
t = frac><alpha_<1>>, t = frac><alpha_<2>>, t = frac><alpha_<3>>,nonumber
$$
и мы получаем два равенства
$$
frac><alpha_<2>> = frac><alpha_<3>>, frac><alpha_<1>> = frac><alpha_<3>>,label
$$
или, в более симметричном виде,
$$
frac><alpha_<1>> = frac><alpha_<2>> = frac><alpha_<3>>,label
$$
Уравнения eqref представляют прямую как линию пересечения двух плоскостей, первая из которых параллельна оси абсцисс (в ее уравнение не входит переменная (x)), а вторая параллельна оси ординат.
Если обращается в нуль одна из компонент направляющего вектора, например, (alpha_<1>), то уравнения прямой принимают вид
$$
x = x_<0>, frac><alpha_<2>> = frac><alpha_<3>>,label
$$
Эта прямая лежит в плоскости (x = x_<0>) и, следовательно, параллельна плоскости (x = 0). Аналогично пишутся уравнения прямой, если в нуль обращается не (alpha_<1>), а другая компонента.
Когда равны нулю две компоненты направляющего вектора, например, (alpha_<1>) и (alpha_<2>), то прямая имеет уравнения
$$
x = x_<0>, y = y_<0>.label
$$
Такая прямая параллельна одной из осей координат, в нашем случае — оси аппликат.
Важно уметь находить начальную точку и направляющий вектор прямой, заданной системой линейных уравнений eqref. По условию eqref один из детерминантов отличен от нуля. Допустим для определенности, что (AB_<1>-A_<1>B neq 0). В силу утверждения 9 при любом фиксированном (z) система уравнений будет иметь единственное решение ((x, y)), в котором (x) и (y), разумеется, зависят от (z). Они — линейные многочлены от (z): (x = alpha_<1>z+beta_<1>), (y = alpha_<2>z+beta_<2>).
Не будем доказывать этого, хотя это и не трудно сделать. Для ясности, заменяя (z) на (t), получаем параметрические уравнения прямой
$$
x = alpha_<1>t+beta_<1>, y = alpha_<2>t+beta_<2>, z = t.nonumber
$$
Первые две координаты начальной точки прямой (M_<0>(beta_<1>, beta_<2>, 0)) можно получить, решая систему eqref при значении (z = 0).
Из параметрических уравнений видно, что в этом случае направляющий вектор имеет координаты ((alpha_<1>, alpha_<2>, 1)). Найдем его компоненты в общем виде. Если система координат декартова прямоугольная, векторы с компонентами ((A, B, C)) и (A_<1>, B_<1>, C_<1>) перпендикулярны соответствующим плоскостям, а потому их векторное произведение параллельно прямой eqref, по которой плоскости пересекаются. Вычисляя векторное произведение в ортонормированном базисе, мы получаем компоненты направляющего вектора
$$
begin
B& C\
B_<1>& C_<1>
end,
begin
C& A\
C_<1>& A_<1>
end,
begin
A& B\
A_<1>& B_<1>
end.label
$$
Вектор с компонентами eqref есть направляющий вектор прямой с уравнениями eqref, какова бы ни была декартова система координат.
Согласно утверждению 5 каждый ненулевой вектор, компоненты которого ((alpha_<1>, alpha_<2>, alpha_<3>)) удовлетворяют уравнению (Aalpha_<1>+Balpha_<2>+Calpha_ <3>= 0), параллелен плоскости с уравнением (Ax+By+Cz+D = 0). Если, кроме того, он удовлетворяет уравнению (A_<1>alpha_<1>+B_<1>alpha_<2>+C_<1>alpha_ <3>= 0), то он параллелен и второй плоскости, то есть может быть принят за направляющий вектор прямой. Вектор с компонентами eqref ненулевой в силу неравенства eqref. Непосредственно легко проверить, что его компоненты удовлетворяют обоим написанным выше условиям. На этом доказательство заканчивается.
Уравнения прямой в пространстве векторное, общее, канонические, параметрические (Таблица)
Способ задания прямой в пространстве
Вид уравнения прямой
Векторное уравнение прямой, проходящей через точку М параллельно заданному вектору s .
s – направляющий вектор прямой
где t – скалярный множитель (параметр)
Канонические уравнения прямой, проходящей через точку M0(x0,y0,z0) и параллельно вектору s =
Параметрические уравнения прямой, проходящей через точку (x0,y0,z0) параллельно вектору s =
Прямая как линия пересечения двух непараллельных плоскостей (общие уравнения прямой)
[spoiler title=”источники:”]
http://univerlib.com/analytic_geometry/vector_algebra/lines_and_planes_equations/
http://infotables.ru/matematika/57-analiticheskaya-geometriya-v-prostranstve/573-uravneniya-pryamoj-v-prostranstve
[/spoiler]
Векторное уравнение прямой в пространстве
Пусть
для прямой известны
ее направляющий вектори
точка,
лежащая на этой прямой. Пусть—
произвольная (текущая) точка прямой.
Обозначим черезиr радиус-векторы
точек исоответственно
(рис. 11.11).
Рис.11.11.Векторное
уравнение прямой
Тогда
вектор коллинеарен
векторуp и,
следовательно, ,
где—
некоторое число. Из рис. 11.11 видно, что
(11.12) |
Это
уравнение называется векторным
уравнением прямой
или уравнением
в векторной форме.
При каждом значении параметра мы
будем получать новую точкуна
прямой.
Общие уравнения прямой в пространстве
Линия
в трехмерном пространстве определяется,
вообще говоря, пересечением двух
поверхностей, т.е. описывается системой
двух уравнений.
Прямую
в пространстве можно рассматривать как
линию пересечения двух плоскостей и,
следовательно, описывать системой двух
линейных уравнений
м |
|
|||||
при
условии, что эти плоскости непараллельны,
т.е. их нормальные векторы неколлинеарны.
Расстояние
между скрещивающимися прямыми в
пространстве
-
В
трехмерном пространстве в прямоугольной
системе координат Oxyz заданы две
скрещивающиеся прямые a и b.
Прямую a определяют параметрические
уравнения прямой в пространствевида
X=-2
Y=2t+1
Z=-3t+4
,
а прямую b – канонические
уравнения прямой в пространстве.
Найдите расстояние между заданными
скрещивающимися прямыми.
Очевидно,
прямая a проходит через точку и
имеет направляющий вектор.
Прямая b проходит через точку,
а ее направляющим вектором является
вектор.
Вычислим
векторное произведение векторов и:
Таким
образом, нормальный вектор плоскости,
проходящей через прямую b параллельно
прямой a, имеет координаты.
Тогда
уравнение плоскости есть
уравнение плоскости, проходящей через
точкуи
имеющей нормальный вектор:
Нормирующий
множитель для общего уравнения
плоскости равен.
Следовательно, нормальное уравнение
этой плоскости имеет вид.
Осталось
воспользоваться формулой для вычисления
расстояния от точки до
плоскости:
Это
и есть искомое расстояние между заданными
скрещивающимися прямыми.
УГОЛ
МЕЖДУ ПРЯМЫМИ
Углом между
прямыми в пространстве будем называть
любой из смежных углов, образованных
двумя прямыми, проведёнными через
произвольную точку параллельно данным.
Пусть
в пространстве заданы две прямые:
Очевидно,
что за угол φ между прямыми можно принять
угол между их направляющими векторами и.
Так как,
то по формуле для косинуса угла между
векторами получим
.
Условия
параллельности и перпендикулярности
двух прямых равносильны условиям
параллельности и перпендикулярности
их направляющих векторов и:
Две
прямые параллельны тогда
и только тогда, когда их соответствующие
коэффициенты пропорциональны,
т.е. l1 параллельна l2 тогда
и только тогда, когда параллелен.
Две
прямые перпендикулярны тогда
и только тогда, когда сумма произведений
соответствующих коэффициентов равна
нулю: .
Примеры.
-
Найти
угол между прямыми и.
-
Найти
уравнения прямой проходящей через
точку М1(1;2;3)
параллельно прямой l1:
Поскольку
искомая прямая l параллельна l1,
то в качестве направляющего вектора
искомой прямой l можно
взять направляющий вектор прямой l1.
-
Составить
уравнения прямой, проходящей через
точку М1(-4;0;2)
и перпендикулярной прямым: и.
Направляющий
вектор прямой l можно
найти как векторное произведение
векторов и:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Макеты страниц
Положение прямой в пространстве вполне определяется заданием какой-либо ее фиксированной точки и вектора s, параллельного этой прямой. Вектор s, параллельный прямой, называется направляющим вектором этой прямой, а его проекции на координатные оси — направляющими коэффициентами прямой.
Рис. 86
Пусть прямая L задана ее точкой и направляющим вектором имеющим направляющие коэффициенты .
Рассмотрим произвольную точку на прямой. Из рис. 86 непосредственно получаем
Вектор , лежащий на прямой L, параллелен направляющему вектору s, поэтому (см. гл. III, § 3, п. 2)
где скалярный множитель называемый параметром, может принимать любое значение в зависимости от положения точки М на прямой. Обозначая радиусы-векторы точек и М соответственно через и принимая во внимание формулу (14), запишем уравнение (13) в виде
Уравнение (15) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.
Представим уравнение (15) в координатной форме. Замечая, что
получим
Уравнения (16) называются параметрическими уравнениями прямой. При изменении параметра t изменяются координаты и точка перемещается по прямой.