Как составить выражение скорости химической реакции по закону действующих масс

Говорить об осуществимости процесса можно по изменению энергии Гибсса системы. Но данная величина не отражает настоящую возможность протекания, механизм и скорость химической реакции.

Понятие скорости химической реакции

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм.

Определение скорости химической реакции:

Скорость химической реакции — это изменение концентрации реагирующих веществ в единицу времени

Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные.

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. 

Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени.

Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn/dt·V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ= ± dC/dt,

где C – концентрация, моль/л

Единица измерения скорости реакции — моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой, которая имеет вид:

кинетическая кривая

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

υ = — ΔC/Δt [моль/л·с] средняя скорость реакции

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом:

Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Т.е. скорость прямой химической реакции зависит от концентраций исходных веществ.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением:

υ = k·[A]a·[B]b или

υ = k·CaA·CbB

Здесь [A] и [B] (CA и CB )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

kконстанта скорости реакции.

Химический смысл величины константы скорости реакции k — это скорость реакции при единичных концентрациях.

То есть, если концентрации веществ А и В равны 1, то υ = k.

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения молекул.
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k.

К сложным процессам закон действия масс применить нельзя!

Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которая называется лимитирующей.

Каждая реакция имеет свой порядок. Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок.

Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k·[A]a·[B]b

a – порядок по реагенту А

bпорядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения.

Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Факторы, влияющие на скорость химической реакции

Определим факторы, влияющие на скорость химической реакции υ:

1. Зависимость скорости реакции от концентрации реагирующих веществ

определяется законом действующих масс:

υ = k[A]a·[B]b

Очевидно, что с увеличением концентраций реагирующих веществ, скорость реакции υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами.

Причем, важно учитывать порядок реакции:

если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества.

Если по какому-либо реагенту n = 2, то удвоение его концентрации приведет к росту скорости реакции в 22 = 4 раза.

А увеличение концентрации в 3 раза ускорит реакцию в 32 = 9 раз.

2. Зависимость скорости реакции от давления

Справедлива для веществ в газообразном состоянии и определяется уравнением Клапейрона – Менделеева, которое связывает концентрацию и давление:

pV = nRT, откуда

С = p/RT

Таким образом, изменение концентрации в системе, а следовательно и скорости реакции имеет прямую зависимость от изменения давления.

Например, для реакции первого порядка, увеличение давления в 2 раза вызовет рост концентрации вещества в 2 раза, что непременно изменит скорость реакции υ – она станет в 2 раза больше.

3. Зависимость скорости реакции от площади поверхности

Для гетерогенных реакций скорость реакции зависит от площади соприкосновения частиц:

Vгетер.=Δn/(S⋅Δt),

где S — площадь соприкосновения частиц, мм2,

Δn — изменение количества веществ, принимающих участие в реакции (исходных веществ или продуктов реакции), моль;

Δt — промежуток времени, с;

Единица измерения скорости гетерогенной реакции, моль/м2⋅с.

Таким образом, вещества реагируют быстрее, если площадь поверхности, на которой может происходить взаимодействие веществ больше.

Растворяя вещество, мы уменьшаем его размеры до размеров молекулы, увеличивая тем самым площадь поверхности.

Поэтому химические процессы между веществами, находящимися в растворенном, жидком или газообразном состоянии имеют большую скорость, чем взаимодействия между твердыми веществами.

4. Зависимость скорости реакции от природы вещества.

В этом случае, большое значение имеет строение электронной оболочки атома, тип химической связи и ее прочность в молекулах, структура вещества, прочность его кристаллической решетки.

Например, натрий будет активнее взаимодействовать с водой, чем олово. Поэтому и скорость взаимодействия натрия с водой выше скорости взаимодействия олова с водой.

5. Зависимость скорости реакции от температуры

определяется правилом Вант-Гоффа и уравнением Аррениуса

Повышая температуру, мы сообщаем молекулам дополнительную энергию (увеличивая, тем самым, энергию активации), которая способствует протеканию реакции.

Поэтому, при повышении температуры скорость химической реакции увеличивается.

Сванте Аррениус в 1889 году, изучая зависимость скорости реакции υ от температуры, установил, что большинство химических процессов подчиняются уравнению: 

уравнение Аррениуса

где k  — константа скорости реакции

Еа -энергия активации – минимальная (критическая) энергия, необходимая для осуществления реакции, единица измерения Дж/моль

Т — абсолютная температура

R – газовая постоянная, R = 8,314 Дж/моль·град

A — предэкспоненциальный множитель (частотный фактор), единица измерения совпадает с k. Эта константа выражает вероятность того, что при столкновении молекулы будут ориентированы так, чтобы взаимодействие было возможно.

Если известна константа скорости k при одной температуре Т1, а требуется найти константу скорости k при некой другой температуре Т2, то это легко сделать, если взять логарифм уравнения Аррениуса при Т1 и Т2:

ln k1 = lg A – Ea/2,3RT1 и

ln k2 = lg A – Ea/2,3RT2

Вычитая второе равенство из первого, получаем: 

уравнение Аррениуса при двух Т

Уравнение Аррениуса при определении скорости химической реакции (в случае, если υ описывается степенным уравнением) , принимает вид:

υ = k·[A]a·[B]b

влияние Т на скорость реакции

Если принять, что концентрации веществ А и В постоянны и прологарифмировать данное выражение, то получим следующее выражение:

ln υ = const – Ea/2,3RT

Правило Вант-Гоффа

Также удобно пользоваться эмпирическим правилом, которое сформулировал Якоб Вант-Гофф:

увеличение температуры на каждые 10 градусов, приводит к росту скорости реакции в 2 – 4 раза

Правило Вант-Гоффа имеет математическое выражение:

правило Вант-Гоффа

где υT1 и υT2  скорости реакции при температурах Т1 и Т2

γ — температурный коэффициент реакции, значения которого лежат в интервале от 2 до 4.

Приведем пример применения правила Вант-Гоффа.

Допустим, что γ = 3, а Т2  Т1 = 20о, тогда

υT1T2 = 32 = 9. Это означает, что υ возросла в 9 раз.

6. Зависимость скорости реакции от присутствия катализатора

Катализ – это любое изменение скорости реакции под действием катализатора. Он может быть положительным и отрицательным. Суть катализа – генерирование активного субстрата или реагента с участием катализаторов.

Катализатор представляет собой вещество, которое селективно ускоряет химическую реакцию, вступая при этом в промежуточную стадию, но регенирируясь к ее концу (к моменту образования конечных продуктов). Например, в биохимической среде в качестве катализаторов выступают ферменты.

Если  такое вещество замедляет химическую реакцию, то оно называется ингибитором.

Влияние катализатора на скорость реакции основывается на том, что он изменяет энергию активации Еа. Понижение энергии активации под действием катализатора схематично представлено на рисунке ниже:

влияние катализатора на энергию активации
влияние катализатора на энергию активации

Видно, что веществам А и В требуется большое количество энергии, чтобы образовать конечные продукты. Но в присутствии катализатора для получения конечных продуктов требуется гораздо меньше энергии, т.к. идет понижение полной энергии активации, и тем самым, увеличение скорости реакции.

Обращаю ваше внимание на то, что энергии как начальных, так и конечных веществ остаются одинаковыми в обеих реакциях.

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру. Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается.

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10оС.

 Правило Вант-Гоффа звучит так: повышение температуры на 10оС приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

формулы Вантгоффа

 здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ. Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских  ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

Закон действующих масс

здесь v —  скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например, для реакции образования аммиака:

N2  +  3H2  ↔  2NH3

 закон действующих масс выглядит так:

Закон действующих масс для реакции получения аммиака

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления. При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть  газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается.

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

CaCO +  SiO2  ↔  CaSiO3  +  CO2

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов,  а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором.

Катализатор, энергия активации

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу).  Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Катализатор

Пример гетерогенного катализа – синтез аммиака:

N2  +  3H2  ↔ 2NH3

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например, для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции.  При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

 Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности. Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например, при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например, хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более  активные вещества мы можем встретить в быту и природе сравнительно редко.

Например, оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

524

Создан на
11 января, 2022 От Admin

Скорость химических реакций

Тренажер задания 18 ЕГЭ по химии

1 / 10

Из предложенного перечня выберите все внешние воздействия, которые оказывают влияние на скорость химической реакции между железом и серой.

1) понижение давления

2) измельчение серы

3) охлаждение системы

4) повышение температуры

5) измельчение железа

Запишите номера выбранных ответов.

2 / 10

Из предложенного перечня выберите два фактора, которые приводят к увеличению скорости химической реакции сероводорода с кислородом.

1) увеличение концентрации сернистого газа

2) увеличение концентрации кислорода

3) повышение давления в системе

4) уменьшение концентрации сероводорода

5) понижение температуры

Запишите в поле ответа номера выбранных факторов.

3 / 10

Из предложенного перечня выберите все внешние воздействия, которые приведут к увеличению скорости химической реакции железа с жидким бромом.

1) понижение давления

2) добавление железа

3) увеличение степени измельчения железа

4) повышение температуры

5) добавление брома

4 / 10

Из предложенного перечня выберите вое внешние воздействия, которые способствуют уменьшению скорости следующей химической реакции:

2NH3(г) = N2(г) + 3H2(г)

1) уменьшение концентрации аммиака

2) увеличение давления

3) увеличение температуры

4) добавление катализатора

5) уменьшение температуры

Запишите номера выбранных ответов.

5 / 10

Из предложенного перечня выберите два внешних воздействия, которые приводят к увеличению скорости реакции азота с водородом.

1) понижение температуры

2) повышение давления в системе

3) уменьшение концентрации водорода

4) увеличение концентрации азота

5) использование ингибитора

Запишите в поле ответа номера выбранных внешних воздействий.

6 / 10

Из предложенного перечня выберите все внешние воздействия, которые оказывают влияние на скорость реакции:

Fe(тв.) + 2H+(p-p) = Fe2+(p-p) + H2(г)

1) повышение температуры

2) разбавление раствора кислоты

3) использование порошка железа вместо гранул железа

4) увеличение концентрации кислоты в растворе

5) повышение давления

7 / 10

Из предложенного перечня выберите все реакции, для которых увеличение давления не приводит к увеличению скорости реакции.

1) 2P + 5Cl2(г) = 2PCl5

2) Zn + CuSO4 = ZnSO4 + Cu

3) Ba + 2H2O(ж) = Ba(OH)2 + H2

4) Fe2O3 + H2 = 2FeO + H2O

5) 2NaOH + H2SO4 = Na2SO4 + 2H2O

8 / 10

Из предложенного перечня выберите два фактора, которые приводят к увеличению скорости химической реакции между цинком и раствором хлорида меди(II).

1) повышение давления в системе

2) понижение давления в системе

3) увеличение концентрации хлорида меди(II)

4) добавление воды

5) измельчение цинка

Запишите в поле ответа номера выбранных факторов

9 / 10

Из предложенного перечня выберите два внешних воздействия, которые приводят к увеличению скорости реакции между растворами медного купороса и сульфида натрия.

1) использование ингибитора

2) повышение давления в системе

3) увеличение концентрации сульфида натрия

4) увеличение концентрации сульфата меди(II)

5) понижение температуры

Запишите в поле ответа номера выбранных внешних воздействий.

10 / 10

Из предложенного перечня выберите два внешних воздействия, которые практически не оказывают влияния на скорость химической реакции между раствором уксусной кислоты и мрамором.

1) добавление уксусной кислоты

2) повышение давления

3) повышение температуры

4) измельчение мрамора

5) понижение давления

Запишите в поле ответа номера выбранных внешних воздействий.

Ваша оценка

The average score is 39%

Зависимость скорости химической реакции от концентрации реагирующих веществ выражает закон действующих масс:

при постоянной температуре скорость гомогенной химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Для химической реакции A + Б = В, протекающей между двумя веществами в жидкости или газе в одну стадию, этот закон можно выразить в математической форме:

ʋ = kc(A) ∙ c(Б).

В этом выражении ʋ — скорость реакции, которая измеряется в моль/(дм3 · с); c(A) и c(Б) — концентрация вещества, соответственно А и Б; k — коэффициент пропорциональности, который называют константой скорости реакции. Значение этой константы зависит от природы реагирующих веществ, температуры, присутствия катализатора, но не зависит от концентрации реагирующих веществ.

В уравнение закона действующих масс включаются концентрации веществ, которые находятся только в гомогенной (однородной) среде (в смеси газов, в растворе).

Физический смысл закона действующих масс следует из очевидных рассуждений.

Для того чтобы между молекулами А и Б произошла химическая реакция, они должны столкнуться. Следовательно, скорость реакции пропорциональна вероятности столкновений молекул. В свою очередь, вероятность столкновения зависит от концентрации молекул, и она выше в том случае, если концентрация молекул больше. Поэтому скорость реакции зависит от концентрации веществ. Это подтверждается экспериментально.

В обобщённом виде математическое выражение закона действующих масс принимает следующую форму:

                                                ʋ = k · ca(A) · cb(Б).                                        (1)

В этом выражении показатели степеней a и b называют порядком химической реакции соответственно по веществу А и веществу Б. Сумма a + b представляет собой общий порядок реакции.

Порядок любой реакции устанавливается из экспериментальных данных зависимости скорости химической реакции от концентрации реагирующих веществ. Это связано с тем, что в большинстве химических реакций для получения продукта недостаточно столкновения двух частиц или распада одной частицы. Вероятность одновременного столкновения трёх молекул (ионов или атомов) ничтожно мала. Тем более невероятно столкновение большего числа частиц. Поэтому реакции имеют сложный механизм и протекают в несколько стадий. Каждая стадия — это простая, элементарная, реакция, осуществляемая столкновением двух частиц либо распадом одной частицы.

Так, реакция взаимодействия метана с хлором

CH subscript 4 space plus space Cl subscript 2 stack space rightwards arrow space with h v on top CH subscript 3 Cl space plus space HCl

включает ряд элементарных стадий. Сначала под действием света молекула хлора распадается на два атома хлора, каждый из которых имеет неспаренный электрон, то есть образуются два радикала:

Cl subscript 2 stack space rightwards arrow space with h v on top 2 Cl times.

Далее радикал Cl∙ взаимодействует с молекулой метана c образованием молекулы хлороводорода и метил-радикала CH3∙:

Cl∙ + CH4 → CH3∙ + HCl,

который реагирует со следующей молекулой хлора, образуя хлорметан и новый хлор-радикал:

CH3∙ + Cl2 → CH3Cl + Cl∙.

Такая цепочка превращений может многократно повторяться, пока она не оборвётся взаимодействием двух радикалов друг с другом.

Каждая из стадий реакции протекает со своей скоростью, а общая скорость определяется скоростью самой медленной реакции. Эту реакцию называют лимитирующей. Только для одностадийных (элементарных) реакций порядок реакции совпадает с коэффициентами в уравнении реакции. Например, для одностадийной реакции

NO subscript 2 space plus space NO subscript 2 space rightwards arrow over leftwards arrow space straight N subscript 2 straight O subscript 4,

или 2 NO subscript 2 space rightwards arrow over leftwards arrow space straight N subscript 2 straight O subscript 4,

её скорость можно выразить уравнением:

ʋ = c(NO2) · c(NO2).

Порядок этой реакции равен 2.

Если реагирующие вещества находятся в разных фазах, то реакция протекает только на поверхности раздела фаз. Поэтому концентрацию твёрдого вещества или нерастворимой в реакционной среде жидкости (например, жира, нерастворимого в водном растворе щёлочи при получении мыла) не включают в уравнение закона действующих масс. Например, для реакции

A(г) + Б(тв) → АБ

концентрация твёрдого вещества Б не входит в уравнение закона действующих масс, а площадь соприкосновения реагентов уже включена в значение k:

ʋ = k · с(А).

Рассмотрим на примере, как, используя закон действующих масс, можно предсказывать изменение скорости химической реакции при изменении концентрации реагирующих веществ.

Пример 1

В химический реактор объёмом 100 дм3 ввели газообразное вещество А количеством 4 моль и газообразное вещество Б количеством 5 моль, между которыми произошла химическая реакция: А + Б = В. Определите соотношение скоростей этой реакции в начальный момент и момент, к которому прореагировала половина вещества А, если уравнение закона действующих масс для этой реакции имеет вид:

ʋ = kc(A) ∙ c(Б).

Решение

Из условия задачи и уравнения закона действующих масс следует, что протекающая реакция гомогенная.

Определим концентрацию реагирующих веществ в начальный момент реакции:

с subscript 0 left parenthesis straight A right parenthesis equals fraction numerator n left parenthesis straight A right parenthesis over denominator V end fraction equals fraction numerator 4 space моль over denominator 100 space дм cubed end fraction equals 0 comma 04 space моль divided by дм cubed;

с subscript 0 left parenthesis straight Б right parenthesis equals fraction numerator n left parenthesis straight Б right parenthesis over denominator V end fraction equals fraction numerator 5 space моль over denominator 100 space дм cubed end fraction equals 0 comma 05 space моль divided by дм cubed.

Согласно приведённому уравнению скорость этой реакции в начальный момент равна:

ʋ0 = k · c0(A) · c0(Б) = k · 0,04 · 0,05 = k · 0,002 (моль/(дм3 · с)).

К моменту, когда прореагировала половина вещества А (2 моль), его концентрация стала равной:

с subscript t left parenthesis straight A right parenthesis equals fraction numerator 4 space моль space minus space 2 space моль over denominator 100 space дм cubed end fraction equals 0 comma 02 space моль divided by дм cubed.

Согласно уравнению реакции вещества А и Б реагируют в мольном отношении 1 : 1. Это означает, что если за время t прореагировало 0,02 моль вещества А, то столько же прореагировало и вещества Б. Это позволяет определить концентрацию вещества Б в момент времени t:

с subscript t left parenthesis straight Б right parenthesis equals fraction numerator n subscript t left parenthesis straight Б right parenthesis over denominator V end fraction equals fraction numerator 5 space моль space minus space 2 space моль over denominator 100 space дм cubed end fraction equals 0 comma 03 space моль divided by дм cubed.

Поскольку константа скорости химической реакции не зависит от концентрации реагирующих веществ, то в момент времени t выражение для скорости реакции примет вид:

ʋt = k · ct(A) · ct(Б) = k · 0,02 · 0,03 = k · 0,0006 (моль/дм3 · с)

Сравним скорости в начальный момент времени и в момент времени t:

v subscript 0 over v subscript t equals fraction numerator k italic space times space 0 comma 002 space моль divided by left parenthesis дм cubed times space straight с right parenthesis over denominator k italic space times space 0 comma 0006 space моль divided by left parenthesis дм cubed times space straight с right parenthesis end fraction equals 3 comma 3.

Таким образом, к моменту, когда прореагировала половина вещества А, скорость реакции уменьшилась в 3,3 раза.

При постоянной температуре скорость гомогенной химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Константа скорости химической реакции не зависит от концентрации реагентов, но зависит от их природы и температуры, при которой протекает реакция.

Вопросы, задания, задачи

1. Назовите факторы, влияющие на скорость химических реакций. Почему скорость химических реакций изменяется в процессе их протекания?

2. От каких факторов зависит константа скорости химической реакции? Изменяется ли значение константы скорости в процессе реакции?

3. Почему в процессе протекания химической реакции её скорость изменяется?

4. Объясните, почему большинство химических реакций протекает постадийно. Каков смысл понятия «элементарная химическая реакция»?

5. Запишите выражение закона действующих масс для реакций:

  • a) FeO space plus space CO stack space equals with t on top space space Fe space plus space CO subscript 2 upwards arrow;
  • б) straight O space plus space straight O space equals space straight O subscript 2;
  • в) 2 SO subscript 3 stack space equals with t on top space 2 SO subscript 2 space plus space straight O subscript 2.

6. Во сколько раз изменится скорость гомогенной реакции:

  • а) A → …;
  • б) 2A → …;
  • в) A + Б → …

при увеличении молярной концентрации реагента А в 6 раз?

7. Скорость элементарной химической реакции

А(г) + 2Б(г) = В(г)

при концентрации вещества А, равной 0,2 моль/дм3, и концентрации вещества Б, равной 0,3 моль/дм3, составляет 3,6 ∙ 10–5 моль/(дм3 ∙ с). Определите константу скорости этой реакции. В каких единицах она выражается?

8. В химическом реакторе объёмом 100 дм3 между газообразными веществами А и Б происходит химическая реакция

А + Б = АБ,

для которой уравнение закона действующих масс имеет вид:

ʋ = kc(A) ∙ c(Б).

В каком случае реакция протекает быстрее:

  • а) количество вещества А равно 1 моль, а вещества Б — 2 моль;
  • б) количество вещества А равно 2 моль, а вещества Б — 4 моль.

Как соотносятся скорости реакции в случаях а) и б)?

9. Как должна измениться (увеличиться или уменьшиться) скорость химической реакции, протекающей по уравнению

NaHCO3 + HCl = NaCl + H2O + CO2↑,

если разбавить растворы исходных веществ? Обоснуйте свой ответ.

10. В химический реактор объёмом 50 дм3 ввели газообразное вещество А количеством 20 моль и газообразное вещество Б количеством 40 моль, между которыми произошла элементарная химическая реакция

А + 2Б = В.

Определите соотношение скоростей этой реакции в начальный момент и момент, к которому прореагировала половина вещества А.

Самоконтроль

1. Согласно закону действующих масс, скорость гомогенной химической реакции прямо пропорциональна:

  • а) массам реагирующих веществ;
  • б) массам образующихся веществ;
  • в) массе катализатора;
  • г) концентрациям реагирующих веществ.

2. Константа скорости реакции зависит от:

  • а) природы реагирующих веществ;
  • б) температуры;
  • в) присутствия катализатора;
  • г) концентрации реагирующих веществ.

3. При уменьшении массы порошка железа вдвое константа скорости реакции 2 Fe space plus space straight O subscript 2 stack space equals space with italic space t on top 2 FeO:

  • а) не изменится;
  • б) уменьшится вдвое;
  • в) увеличится вдвое;
  • г) уменьшится пропорционально изменению площади поверхности порошка.

4. Формула ʋ = k · с(А) может описывать зависимость скорости от концентрации реагирующего вещества для реакции:

  • a) C(тв) + O2(г) = CO2(г);
  • б) BaO(тв) + SO2(г) = BaSO3(тв);
  • в) Zn(тв) + H2SO4(р-р) = ZnSO4(р-р) + H2(г);
  • г) N2O4(г) rightwards arrow over leftwards arrow NO2(г) + NO2(г).

5. Увеличение в 3 раза концентрации вещества NO2 в реакции NO2 + NO2 rightwards arrow over leftwards arrow N2O4 приведёт к увеличению скорости в:

  • а) 3 раза;
  • б) 6 раз;
  • в) 9 раз;
  • г) 12 раз.

Понятие о скорости химической реакции. Закон действующих масс

В ходе протекания
необратимых химических реакций исходные
вещества расходуются, их содержание
(или концентрация) в системе уменьшается
от начальной величины до нуля. Конечные
продукты, наоборот, накапливаются, и с
течением времени их концентрация
возрастает от нуля до своей максимальной
величины (рис.36). Чем за меньший промежуток
времени осуществляется этот процесс,
тем с большей скоростью протекает
химическая реакция.

1
2

Рис. 36. Изменение концентрации
исходного (1) и конечного (2) вещества в
зависимости от времени протекания
реакции

Скорости химических
реакций могут лежать в самом широком
диапазоне значений. Некоторые реакции
заканчиваются за тысячные доли секунды
(горение и разложение взрывчатых веществ,
пороха), продолжительность других
измеряется минутами, часами, сутками.
Геохимические реакции, протекающие
между веществами в земной коре, совершаются
в течение многих тысячелетий.

Рассматриваемые
в химической кинетике процессы
целесообразно разделить на 2 группы:
гомогенные и гетерогенные. Это
связано с тем, что характер и способ их
протекания в существенной мере зависят
от данного признака. Причём, отнесение
той или иной реакции к гомогенной или
гетергенной определяется лишь агрегатным
состоянием исходных веществ, а не её
конечных продуктов.

Гомогенными
называются химические реакции, у которых
исходные вещества находятся в одинаковом
агрегатном состоянии или в одной и той
же (жидкой либо газообразной) фазе. При
этом между веществами отсутствует
поверхность раздела.

Например:

1) 2Н2(газ)+ О2(газ)
= 2 Н2О(ж.)

гомогенная реакция,
протекающая в газовой фазе;

2) KCl
(p.-p.)
+ AgNO3
(p.-p.)
=
AgСl↓
(тв.)
+ KNO3
(p.-p.)

гомогенная реакция,
протекающая в жидкой фазе.

Характерной
особенностью гомогенных реакций является
то, что они осуществляются во всём объёме
системы, т.е. столкновение молекул либо
ионов исходных веществ может произойти
в любой её точке.

Гетерогенными
называются химические реакции, в которых
исходные вещества находятся в разных
фазах и, как правило, отличаются друг
от друга агрегатным состоянием. Но могут
быть гетерогенные реакции, в которых
различные фазы находятся в одном и том
же агрегатном состоянии. Например, две
несмешивающиеся между собой жидкости:
углеводород и вода. В таких системах
между исходными веществами всегда
присутствует поверхность раздела, на
которой и протекает гетерогенная
реакция.

Например:

1) С(тв.)+ О2(г.)= СО2

2) 2Н2О(ж.)+ Са(тв.)= Са(ОН)2(р.-р.)+ Н2 (г.)

Гетерогенные
реакции, протекающие на поверхности
твёрдого вещества;

3) Н2О
(ж.)
+ 2NO2(г.)=HNO3(p.-p.)+HNO2(p.-p.)

Гетерогенная
реакция, протекающая на поверхности
жидкости.

При рассмотрении
биохимических процессов, протекающих
в живом организме, часто бывает трудно
отнести их к соответствующему типу,
т.к. в некоторых случаях невозможно
однозначно определить агрегатное
состояние всех исходных веществ. Особенно
это касается реакций, протекающих внутри
или на поверхности биологических
мембран, а также с участием биополимеров
(белков, полисахаридов). В то же время,
принадлежность реакции к гомогенному
или гетерогенному типу оказывает
значительное влияние не только на
величину скорости, но и на способ её
определения.

При этом под
скоростью (υ) гомогенной реакции
подразумевают изменение числа молей
одного из веществ (конечного или
начального) за единицу времени в единице
объема системы:

,

где n1
и
n2
химическое количество вещества,
соответственно, в начальный (
t1)
и конечный (
t2)
момент времени;
V
– объём системы, в которой протекает
реакция; ∆
t
время протекания реакции.

Если скорость
реакции определяют по возрастанию числа
молей одного из конечных веществ, то
перед уравнением ставят знак «+», так
как в этом случае ∆n> 0 (n2>n1).

Если же скорость
реакции определяют по уменьшению числа
молей одного из исходных веществ, перед
уравнением ставят знак «–», так как в
этом случае ∆n< 0
(n2<n1),
а скорость химической реакции всегда
должна быть положительной величиной.

Уравнение для
расчета скорости гомогенной химической
реакции можно математически преобразовать
с учётом того, что

,

где С1
и С
2 – молярная концентрация
вещества в начальный (
t1)
и конечный (
t2)
моменты времени.

В соответствии
с получившейся новой формулой под
скоростью гомогенной реакции подразумевают
изменение молярной концентрации одного
из веществ (исходного или конечного) за
единицу времени.

При этом, если
скорость гомогенной реакции определяют
на основании уменьшения молярной
концентрации одного из исходных веществ,
перед формулой ставят знак «–».

Скорость
гомогенной реакции имеет размерность
моль/дм
3∙ с или
моль/м
3 ∙ с (в
системе СИ).

В практике
биохимических исследований наряду с
молярной концентрацией (моль/л) применяют
и другие концентрации растворённых
веществ: по массе – мг/100 мл; массовой
доле – % /100 мл и др. Единицами измерения
скорости в таком случае будут,
соответственно, мг/100 мл · с, %/100 мл · с.
При необходимости их можно перевести
в единицы СИ.

Под скоростью
гетерогенной реакции подразумевают
изменение числа молей одного из веществ
(исходного или конечного) за единицу
времени на единице площади поверхности
раздела агрегатных состояний или фаз

(так как гетерогенная реакция протекает
не во всём объёме системы, а на границе
раздела агрегатных состояний)

,

где S
– площадь поверхности раздела фаз.

Скорость
гетерогенной реакции имеет размерность
моль/м
2 ∙ с.

Часто поверхность
твёрдого вещества является особо
пористой, развитой. Точное значение её
площади в связи с этим определить
практически невозможно. В таких случаях
среднюю скорость гетерогенной реакции
рассчитывают формуле

,

где
m – масса твёрдой
фазы

При этом скорость
имеет размерность моль/кг · с.

По вышеприведенным
формулам мы всегда определяем, с какой
скоростью расходуется или накапливается
только одно из веществ, участвующих в
реакции. Но так как все вещества связаны
в уравнении химической реакции
стехиометрическими коэффициентами,
изменение количества или концентрации
одного из них приводит к эквивалентному
изменению количества и концентрации
всех остальных. Например, пусть скорость
расходования N2в
химической реакции синтезаNH3

N2+ 3H2= 2NH3

равна 2 моль/дм∙ с.
С учётом стехиометрических коэффициентов
скорость расходования Н2будет
составлять 2 ∙ 3 = 6 моль/дм3∙ с,
аNH3 будет накапливаться
в системе со скоростью 2 ∙ 2 =
4 моль/дм3∙ с.

С помощью приведенных
выше уравнений можно рассчитать так
называемую среднюю скорость реакции,
то есть скорость за какой-то отрезок
времени ∆t. Считается,
что на протяжении этого интервала
скорость остаётся неизменной, но это
не так. Ведь исходные вещества непрерывно
расходуются, а, значит, должна постоянно
уменьшаться и скорость реакции. Поэтому
вводят понятие обистиннойилимгновеннойскорости, то есть
скорости в данный момент времени.

Математически
истинную или мгновенную скорость (
ист.)
реакции принято выражать отношением
бесконечно малого изменения количества
вещества Δ
n
(или его концентрации ΔС) к бесконечно
малому отрезку времени Δ
t,
в течение которого произошло это
изменение, или производной по времени
от химического количества вещества
либо его концентрации:

Для гомогенных
химических реакций справедливо выражение

Согласно закону
действующих масс, истинная скорость
пропорциональна произведению молярных
концентраций реагирующих веществ,
взятых в степенях, равных их стехиометрическим
коэффициентам в уравнении реакции.

Так, для реакции
вида

,

где k
– коэффициент пропорциональности,
называемый константой скорости данной
химической реакции.
Он равен скорости
реакции в тот момент, когда молярные
концентрации исходных веществ равны 1
моль/дм3. Константа скорости не
зависит от концентраций исходных веществ
и при неизменной температуре и отсутствии
катализаторов есть величина постоянная
для данной реакции. Определяют значениеkдля каждой реакции
опытным путем.

Закон действующих
масс на основе большого экспериментального
материала был сформулирован в 1867 г.
норвежскими учёными К. Гульбергом и
П. Ваге, и независимо от них в 1865 г.
русским учёным Н.И. Бекетовым. В конце
XIX века термин
«концентрация» ещё не был введён и
химики пользовались вместо него термином
«действующие массы».

Для реакции синтеза
HI

H2(г)+I2(г)= 2HI

истинную скорость
реакции можно рассчитать по формуле:

При расчете скорости
гетерогенной реакции в формулу подставляют
только концентрации тех веществ, которые
находятся в растворённом или газообразном
состоянии, так как концентрация твёрдого
вещества на протяжении всей реакции
считается величиной постоянной и
учитывается в значении константы
скорости. Например:

С(тв.)
+ О
2(газ) = СО2

Выведенное на
основе закона действующих масс
математическое уравнение, с помощью
которого можно рассчитать скорость
данной химической реакции, называется
ее
главным (основным) кинетическим
уравнением.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Скорость химической реакции – основное понятие химической кинетики, выражающее отношения количества
прореагировавшего вещества (в молях) к отрезку времени, за которое произошло взаимодействие.

Скорость реакции отражает изменение концентраций реагирующих веществ за единицу времени. Единицы измерения для гомогенной реакции:
моль/л * сек. Физический смысл в том, что каждую секунду какое-то количество одного вещества превращается в
другое в единице объема.

Скорость химической реакции

Мне встречались задачи, где была дана молярная концентрация вещества до реакции и после, время и объем. Требовалось посчитать скорость
реакции. Давайте решим подобное несложное задание для примера:

Молярная концентрация вещества до реакции составляла 1.5 моль/л по итогу реакции – 3 моль/л. Объем смеси 10 литров, реакция заняла 20 секунд.
Рассчитайте скорость реакции.

Расчет скорости химической реакции

Влияние природы реагирующих веществ

При изучении агрегатных состояний веществ возникает вопрос: где же быстрее всего идут реакции: между газами, растворами или твердыми веществами?

Запомните, что самая высокая скорость реакции между растворами, в жидкостях. В газах она несколько ниже.

Скорость реакции в растворах

Если реакция гетерогенная: жидкость + твердое вещество, газ + твердое вещество, жидкость + газ, то большую роль играет площадь соприкосновения
реагирующих веществ.

Очевидно, что большой кусок железа, положенный в соляную кислоту, будет гораздо дольше реагировать с ней, нежели чем измельченное
железо – железная стружка.

Скорость реакции и измельчение

Химическая активность также играет важную роль. Например, отвечая на вопрос “какой из металлов Fe или Ca быстрее прореагирует с серой?” мы отдадим
предпочтение кальцию, так как в ряду активности металлов он стоит левее железа, а значит кальций активнее железа.

Скорость реакции и ряд активности металлов

Иного подхода требуют реакции металлов с водой, где нужно учитывать радиус атома. Например, отвечая на вопрос “какой из металлов Li или K быстрее прореагирует с водой?” мы отдадим предпочтение калию, так как калий имеет больший радиус атома. Калий будет быстрее взаимодействовать с водой, чем литий.

Иногда для верного ответа на вопрос о скорости реакции требуется знание активности кислот. Мы подробнее обсудим эту тему в гидролизе, однако сейчас
я замечу: чем сильнее (активнее) кислота, тем быстрее идет реакция.

Например, реакцию магния с серной кислотой протекает гораздо быстрее реакции магния с уксусной кислотой. Причиной этому служит то, что серная кислота
относится к сильным (активным) кислотам, а активность уксусной кислоты меньше, она является слабой кислотой.

Как я уже упомянул, слабые и сильные кислоты и основания изучаются в теме гидролиз.

Влияние изменения концентрации

Влияние концентрации “прямо пропорционально” скорости реакции: при увлечении концентрации реагирующего вещества скорость реакции повышается, при
уменьшении – понижается.

Замечу деталь, которая может оказаться важной, если в реакции участвуют газы: при увеличении давления концентрация вещества на единицу объема
возрастает (представьте, как газ сжимается). Поэтому увеличение давление, если среди исходных веществ есть газ, увеличивает скорость реакции.

Скорость реакции и концентрация

Закон действующих масс устанавливает соотношение между концентрациями реагирующих веществ и их продуктами. Скорость простой реакции
aA + bB → cC определяют по уравнению:

υ = k × СaA × СbB

Физический смысл константы скорости – k – в том, что она численно равна скорости реакции при том условии, что концентрации реагирующих
веществ равны 1. Обратите внимание, что стехиометрические коэффициенты уравнения переносятся в степени – a и b.

Записанное выше следствие закона действующих масс нужно не только “зазубрить”, но и понять. Поэтому мы решим пару задач, где потребуется
написать подобную формулу.

Окисление диоксида серы протекает по уравнению: 2SO2(г) + O2 = 2SO3(г). Как изменится скорость этой реакции,
если объемы системы уменьшить в три раза?

Скорость химической реакции

По итогу решения становится ясно, что скорость реакции в таком случае возрастет в 27 раз.

Решим еще одну задачу. Дана реакция синтеза аммиака: N2 + ЗН2 = 2NH3. Как изменится скорость прямой реакции
образования аммиака, если уменьшить концентрацию водорода в два раза?

Скорость химической реакции

В результате решения мы видим, что при уменьшении концентрации водорода в два раза скорость реакции замедлится в 8 раз.

Влияние изменения температуры на скорость реакции

Постулат, который рекомендую временно взять на вооружение: “Увеличение температуры увеличивает скорость абсолютно любой химической реакции: как
экзотермической, так и эндотермической. Исключений нет!”

Очень часто в заданиях следующей темы – химическом равновесии, вас будут пытаться запутать и ввести в заблуждение, но вы не поддавайтесь
и помните про постулат!

Влияние температуры на скорость химической реакции

Итак, влияние температуры на скорость реакции “прямо пропорционально”: чем выше температура, тем выше скорость реакции – чем ниже
температура, тем меньше и скорость реакции. Однако, как и в случае с концентрацией, это больше чем простая “пропорция”.

Правило Вант-Гоффа, голландского химика, позволяет точно оценить влияние температуры на скорость химической реакции. Оно звучит так:
“При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза”

Правило Вант-Гоффа

В формуле, написанной выше, используются следующие обозначение:

  • υ1 – скорость реакции при температуре t1
  • υ2 – скорость реакции при температуре t2
  • γ – температурный коэффициент, который может быть равен 2-4

Если по итогам решения задач у вас получится температурный коэффициент меньше 2 или больше 4, то, скорее всего, где-то вы допустили ошибку.
Используйте этот факт для самопроверки.

Для тренировки решим пару задач, в которых потребуется использование правило Вант-Гоффа.

Как изменится скорость гомогенной реакции при повышении температуры от 27°C до 57°C при температурном коэффициенте, равном трем?

Задача на правило Вант-Гоффа

Иногда в задачах требуется рассчитать температурный коэффициент, как, например, здесь: “Рассчитайте, чему равен температурный коэффициент
скорости, если известно, что при понижении температуры от 250°C до 220°C скорость реакции уменьшилась в 8 раз”.

Задача на правило Вант-Гоффа

Катализаторы и ингибиторы

Катализатор (греч. katalysis — разрушение) – вещество, ускоряющее химическую реакцию, но не участвующее в ней. Катализатор не расходуется в химической реакции.

Многие химические реакции в нашем организме протекают с участием катализаторов – белковых молекул, ферментов. Без катализаторов
подобные реакции шли бы сотни лет, а с катализаторами идут одну долю секунды.

Катализом называют явление ускорения химической реакции под действием катализатора, а химические реакции, идущие с участием катализатора
– каталитическими.

Катализатор ускоряет химическую реакцию

Ингибитор (лат. inhibere – задерживать) – вещество, замедляющее или предотвращающее протекание какой-либо химической реакции.

Ингибиторы применяют для замедления коррозии металла, окисления топлива, старения полимеров. Многие лекарственные вещества
являются ингибиторами.

Так при лечении гастрита – воспаления желудка (греч. gaster – желудок) или язв часто назначаются ингибиторы протонной помпы – химические вещества,
которые блокирует выработку HCl слизистой желудке. В результате этого соляная кислота прекращает воздействие на поврежденную стенку желудка,
воспаление стихает.

Ингибиторы в химии

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Добавить комментарий