Как составить задачи на движение по физике

Задачи на движение с решениями

Используемые формулы в 7 классе по теме «Задачи на движение (прямолинейное равномерное)»

Название величины

Обозначение

Единицы измерения

Формула

Путь

s

м, км

s = v * t

Время

t

с, ч

 t = s / v

Скорость

v

м/с, км/ч

 v = s / t

1 мин = 60 с;   1 ч = 3600 с;   1 км = 1000 м;   1 м/с = 3,6 км/ч.




ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Задача № 1.
Ласточка летит со скоростью 36 км/ч. Какой путь она преодолеет за 0,5 ч?
задача 1


Задача № 1.
Конькобежец может развивать скорость до 13 м/с. За какое время он пробежит дистанцию длиной 2,6 км?

Задача 3


Задача № 3.
Автомобиль «Чайка» развивает скорость до 160 км/ч, а почтовый голубь — до 16 м/с. Сможет ли голубь обогнать автомобиль?

Решение. Чтобы сравнить скорости движения тел, надо перевести их в одинаковые единицы измерения. Перевод скорости из одних единиц в другие выполняют следующим образом. 160 км = 160000 м, 1 ч = 3600 с. Следовательно, за 1 с автомобиль пройдет путь 160000 : 3600 = 44 (м), значит:

Ответ: Голубь не обгонит автомобиль, так как 16 м/с < 44 м/с.


Задача № 4.
Вдоль дороги навстречу друг другу летят скворец и комнатная муха. На рисунке представлены графики движения скворца (I) и мухи (II). Пользуясь графиком, определите:

1) Каковы скорости движения скворца и мухи?
2) Через сколько секунд после начала движения они встретятся?
3) Какое расстояние они пролетят до места встречи?

Решение. 
1. Скорость движения скворца определим по формуле v=S/t. Выберем на графике произвольное время и определим, какое расстояние за это время пролетел скворец. Видно, что за 5 с скворец пролетел 100 м. Тогда

Аналогично найдем скорость движения мухи:


2. Точка А (точка пересечения графиков движения) соответствует моменту встречи. Скворец и муха встретятся через 4 секунды.

3. Скворец до места встречи пролетит расстояние SI = 80 м. Муха пролетит расстояние SII = 100 м — 80 м = 20 м.

Ответ: 1) скворец 20 м/с,  муха 5 м/с,   2) через 4 с,   3) скворец 80 м, муха 20 м


Задача № 5.
 Определите среднюю скорость движения плота, если за 20 минут он переместился на 900 м. Скорость выразить в км/ч.

Ответ: Средняя скорость плота 2,7 км/ч.


Задача № 6.
 Стоящий на эскалаторе человек поднимается за 2 мин, а бегущий по эскалатору — за 40 с. За какое время этот человек поднимется по неподвижному эскалатору?

ОТВЕТ: 1 мин.

Решение. Стоящий на эскалаторе человек за 1 мин перемещается на половину длины эскалатора, а бегущий — перемещается на полторы длины эскалатора. Следовательно, идущий по неподвижному эскалатору человек за 1 мин перемещается как раз на длину эскалатора.


Задача № 7.
 Моторная лодка за 3 ч проходит расстояние от города до поселка, расположенного ниже по течению реки. Сколько времени займет обратный путь, если скорость движения лодки относительно воды в 4 раза больше скорости течения?

ОТВЕТ: 5 ч.

Решение. Обозначим скорость течения v. При движении по течению скорость лодки относительно берега равна 5v, а при движении против течения ее скорость равна 3v. Следовательно, время движения против течения в 5/3 раза больше, чем время движения по течению.


Задача № 8 (повышенной сложности).
  Рыбак плыл по реке на лодке, зацепил шляпой за мост, и она свалилась в воду. Через час рыбак спохватился, повернул обратно и подобрал шляпу на 4 км ниже моста. Какова скорость течения? Скорость лодки относительно воды оставалась неизменной по модулю.

ОТВЕТ: 2 км/ч.

Решение. Удобно рассматривать движение шляпы и лодки относительно воды, потому что относительно воды шляпа неподвижна, а скорость лодки, когда она плывет от шляпы и к шляпе, по модулю одна и та же — так, как это было бы в озере. Следовательно, после поворота рыбак плыл к шляпе тоже 1 ч, т. е. он подобрал шляпу через 2 ч после того, как уронил ее. По условию за это время шляпа проплыла по течению 4 км, откуда следует, что скорость течения 2 км/ч.


Задача № 9 (олимпиадного уровня).
  Из городов А и Б навстречу друг другу по прямому шоссе одновременно выехали два велосипедиста. Скорость первого 10 км/ч, скорость второго 15 км/ч. Одновременно с велосипедистами из города А вылетела ласточка. Она долетает до второго велосипедиста, разворачивается, Долетает до первого велосипедиста и летает так между ними до тех пор, пока велосипедисты не встретятся. Какой путь пролетела ласточка, если скорость ее движения 50 км/ч, а расстояние между городами 100 км? Временем разворота ласточки можно пренебречь.

ОТВЕТ: 200 км.

Решение. Расстояние между велосипедистами каждый час уменьшается на 25 км. Поскольку начальное расстояние между ними 100 км, они встретятся через 4 ч. Все это время ласточка будет летать со скоростью 50 км/ч, следовательно, ее путь составит 200 км.


Алгоритм решения задач на движение

При решении других задач прямолинейного равномерного движения в общем виде нужно придерживаться следующего алгоритма: 1) выбрать систему отсчёта; 2-3) определить начальные координаты и значения скоростей движения тел в этой системе отсчёта; 4) записать зависимости координат тел от времени; 5) записать в виде уравнения условие задачи; 6) объединить уравнения; 7) решить эти уравнения; 8) провести анализ полученного результата (после чего выяснить, имеет ли полученный результат физический смысл); 9) если в условии задачи даны числовые значения, необходимо подставить их в полученное выражение и получить числовой ответ.

Анализ полученного результата заключается в исследовании зависимости искомой величины от входящих в ответ величин.

Не стоит забывать и про направление движения в зависимости от типа задачи (встреча, погоня, обгон, отставание)

Задачи на движение направление


Конспект урока «Задачи на движение с решением».

Следующая тема: «Задачи на плотность, массу и объем«.

Скорость, путь и время являются важными характеристиками любого механического движения. Они связаны между собой формулами:

  • $upsilon = frac{S}{t}$
  • $S = upsilon t$
  • $t = frac{S}{upsilon}$

Данные формулы описывают равномерное движение. При неравномерном движении мы говорим о средней скорости: $upsilon_{ср} = frac{S}{t}$.

Чтобы полноценно научиться использовать вышеупомянутые определения и величины, в данном уроке мы рассмотрим решение разнообразных задач. Вы научитесь вычислять скорость, среднюю скорость, время и путь, переводить единицы измерения скорости из одних в другие, узнаете, как использовать графики этих величин.

Задача №1

Выразите в метрах в секунду ($frac{м}{с}$) скорости: $60 frac{км}{ч}$; $90 frac{км}{ч}$; $300 frac{км}{ч}$; $120 frac{м}{мин}$.

Дано:
$upsilon_1 = 60 frac{км}{ч}$
$upsilon_2 = 90 frac{км}{ч}$
$upsilon_3 = 300 frac{км}{ч}$
$upsilon_4 = 120 frac{м}{мин}$

Показать решение и ответ

Скрыть

Решение:

Для перевода скорости в метры в секунду нам нужно:

  • перевести километры в метры ($1 space км = 1000 space м$)
  • выразить часы или минуты в секундах ($1 space мин = 60 space с$; $1 space ч = 60 space мин = 3600 space с$)

Тогда,
$upsilon_1 = 60 frac{км}{ч} = 60 frac{1000 space м}{3600 space c} = frac{1000 space м}{60 space c} approx 16.7 frac{м}{с}$.

При вычислениях старайтесь увидеть величины, которые можно сократить (как 60 и 3600).

Если мы вычислим множитель $frac{1000 space м}{3600 space c}$, то получим, что $1 frac{км}{ч} = frac{}{3.6} frac{м}{с}$.

Вы можете каждый раз последовательно переводить величины (километры в метры и часы в секунды) или просто разделить скорость, выраженную в километрах в час на $3.6$ и получить скорость в метрах в секунду. Рекомендуется идти первым путем, потому что второй способствует потере точности.

Переведем следующие две скорости в единицы СИ:
$upsilon_2 = 90 frac{км}{ч} = 90 frac{1000 space м}{3600 space c} = 1000 cdot 0.025 frac{м}{с} = 25 frac{м}{с}$,
$upsilon_3 = 300 frac{км}{ч} = 300 frac{1000 space м}{3600 space c} = frac{1000 space м}{12 space c} approx 83.3 frac{м}{с}$.

Теперь переведем скорость, выраженную в метрах в минуту в метры в секунду:
$upsilon_4 = 120 frac{м}{мин} = 120 frac{м}{60 space c} = 2 frac{м}{с}$.

Ответ: $upsilon_1 approx 16.7 frac{м}{с}$; $upsilon_2 = 25 frac{м}{с}$; $upsilon_1 approx 83.3 frac{м}{с}$; $upsilon_4 = 2 frac{м}{с}$.

Задача №2

Пуля, выпущенная из винтовки, долетела до цели, находящейся на расстоянии $1 space км$, за $2.5 space с$. Найдите скорость пули.

Дано:
$S = 1 space км$
$t = 2.5 space с$

СИ:
$S = 1000 space м$

$upsilon — ?$

Показать решение и ответ

Скрыть

Решение:

Формула для расчета скорости:
$upsilon = frac{S}{t}$.

Перед вычислениями не забывайте переводить единицы измерения величин в СИ!

Рассчитаем скорость:
$upsilon = frac{1000 space м}{2.5 space с} = 400 frac{м}{с}$.

Ответ: $upsilon = 400 frac{м}{с}$.

Задача №3

Пароход, двигаясь против течения со скоростью $14 frac{км}{ч}$, проходит расстояние между двумя пристанями за $4 space ч$. За какое время он пройдет то же расстояние по течению, если его скорость в этом случае равна $5.6 frac{м}{с}$?

Дано:
$upsilon_1 = 14 frac{км}{ч}$
$t_1 = 4 space ч$
$upsilon_2 = 5.6 frac{м}{с}$

$t_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Найдем расстояние между двумя пристанями:
$S = upsilon_1 t_1$,
$S = 14 frac{км}{ч} cdot 4 space ч = 56 space км = 56 space 000 space м$.

Обратите внимание, что мы изначально не перевели единицы измерения в СИ (километры в час в метры в секунду и часы в секунды), потому что удобнее это сделать после расчета расстояния $S$. Таким образом мы сохраняем более высокую точность вычислений.

Итак, мы знаем расстояние и скорость движения парохода по течению. Теперь мы можем рассчитать время движения парохода по течению:
$t_2 = frac{S}{upsilon_2}$,
$t_2 = frac{56 space 000 space м}{5.6 frac{м}{с}} = 10 space 000 space с$.

Ответ: $t_2 = 10 space 000 space с$.

Задача №4

Автомобиль проехал равномерно участок дороги длиной $3.5 space км$ за $3 space мин$. Нарушил ли правила дорожного движения водитель, если на обочине расположен дорожный знак “скорость не более $50 frac{км}{ч}$”?

Дано:
$S = 3.5 space км$
$t = 3 space мин$

$upsilon — ?$

Показать решение и ответ

Скрыть

Решение:

После того, как мы рассчитаем скорость движения автомобиля, нам нужно будет сравнить ее со скоростным ограничением в $50 frac{км}{ч}$. Для того чтобы это сделать, нужно, чтобы скорость тоже была выражена в километрах в час.

Так как водитель двигался равномерно, рассчитывать скорость его движения мы будем по формуле:
$upsilon = frac{S}{t}$.

Путь $S$ у нас и так выражен в километрах, а время — в минутах. Поэтому, перед рассветом скорости переведем время из минут в часы:
$t = 3 space мин = frac{3}{60} cdot ч = 0.05 space ч$.

Теперь мы можем рассчитать скорость движения автомобиля:
$upsilon = frac{3.5 space км}{0.05 space ч} = 70 frac{км}{ч}$.

Получается, что водитель нарушил правила дорожного движения, ведь $70 frac{км}{ч} > 50 frac{км}{ч}$.

Ответ: нарушил.

Задача №5

Росток бамбука за сутки вырастает на $86.4 space см$. На сколько он вырастает за $1 space мин$?

Дано:
$S = 86.4 space см$
$t = 1 space сут$
$t_1 = 1 space мин$

$S_1 — ?$

Показать решение и ответ

Скрыть

Решение:

Переведем сутки в минуты:
$t = 1 space сут = 24 space ч = 24 cdot 60 space мин = 1440 space мин$.

Рассчитаем скорость роста бамбука, выраженную в сантиметрах в минуту:
$upsilon = frac{86.4 space см}{1440 space мин} = 0.06 frac{см}{мин}$.

Понятие скорости в физике определяет расстояние, которое тело проходит в единицу времени. В нашем случае полученную скорость роста мы можем описать так:
бамбук вырастает на расстояние, равное $0.06 space см$, за $1 space мин$.

Значит,
$S_1 =  0.06 space см = 0.6 space мм$.

Ответ: $S_1 =  0.6 space мм$.

Задача №6

Самолет, летящий со скоростью $300 frac{км}{ч}$, в безветренную погоду пролетел расстояние между аэродромами A и B за $2.2 space ч$. Обратный полет из-за встречного ветра он совершил за $2.5 space ч$. Определите скорость ветра.

Дано:
$upsilon_1 = 300 frac{км}{ч}$
$t_1 = 2.2 space ч$
$t_2 = 2.5 space ч$

$upsilon_в — ?$

Показать решение и ответ

Скрыть

Решение:

Сначала вычислим расстояние между аэродромами, которое пролетает самолет:
$S = upsilon_1 t_1$,
$S = 300 frac{км}{ч} cdot 2.2 space ч = 660 space км$.

Теперь рассчитаем скорость, с которой самолет совершил обратный полет:
$upsilon_2 = frac{S}{t_2}$,
$upsilon_2 = frac{660 space км}{2.5 space ч} = 264 frac{км}{ч}$

Если бы ветра не было, то скорость самолета составила бы $300 frac{км}{ч}$. Но ветер направлен противоположно движению самолеты, вектор его скорости противоположно направлен вектору скорости самолета. Поэтому мы можем записать, что скорость самолета, летящего при встречном ветре, равна разности скорости самолета в безветренной обстановке и скорости ветра:
$upsilon_2 = upsilon_1 — upsilon_в$.

Рассчитаем скорость ветра:
$upsilon_в = upsilon_1 — upsilon_2$,
$upsilon_в = 300 frac{км}{ч} — 264 frac{км}{ч} = 36 frac{км}{ч}$,
или в СИ $upsilon_в = 36 cdot frac{1000 space м}{3600 space с} = 10 frac{м}{с}$.

Ответ: $upsilon_в = 10 frac{м}{с}$.

Определите по графику равномерного движения, изображенному на рисунке 1:

  • скорость движения
  • путь, пройденный телом в течение $4.5 space с$
  • время, в течение которого пройден путь, равный $15 space м$
Рисунок 1. График равномерного движения

Показать решение и ответ

Скрыть

Решение:

Скорость равномерного движения рассчитывается по формуле:
$upsilon = frac{S}{t}$.

Выберем на графике такую точку, данные которой мы можем точно определить. Например, в момент времени, равный $4 space с$, был пройден путь, равный $16 space м$.

Используя эти данные, рассчитаем скорость:
$upsilon = frac{16 space м}{4 space с} = 4 frac{м}{с}$.

Найдем путь, пройденный телом в течение $4.5 space с$. Если мы взглянем на график, то в этот момент времени тело прошло путь, приблизительно равный $18 space м$. Давайте проверим точность этих данных с помощью вычислений:
$S = upsilon t$,
$S = 4 frac{м}{с} cdot 4.5 space с = 18 space м$.

Используя график, мы не можем точно определить время, в течение которого пройден путь, равный $15 space м$. Поэтому вычислим его:
$t = frac{S}{upsilon}$,
$t = frac{15 space м}{4 frac{м}{с}} = 3.75 space с$.

Ответ: $4 frac{м}{с}$, $18 space м$, $3.75 space с$.

Задача №8

Средняя скорость велосипедиста на всем пути равна $40 frac{км}{ч}$. Первую половину пути он ехал со скоростью $60 frac{км}{ч}$. С какой скоростью велосипедист проехал остаток пути?

Дано:
$upsilon_{ср} = 40 frac{км}{ч}$
$upsilon_1 = 60 frac{км}{ч}$
$S_1 = S_2 = frac{1}{2}S$

$upsilon_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу средней скорости при неравномерном движении:
$upsilon_{ср} = frac{S}{t}$.

Общее время движения $t$ мы можем представить в виде суммы $t_1 + t_2$, где $t_1$ — это время движения на первой половине пути, а $t_2$ — время движения на второй половине пути:
$upsilon_{ср} = frac{S}{t_1 + t_2}$.

Время мы можем выразить через скорость на данном участке пути и пройденный за это время путь:
$t_1 = frac{S_1}{upsilon_1} = frac{frac{1}{2}S}{upsilon_1} = frac{S}{2 upsilon_1}$,
$t_2 = frac{S_2}{upsilon_2} = frac{frac{1}{2}S}{upsilon_2} = frac{S}{2 upsilon_2}$,
$upsilon_{ср} = frac{S}{frac{S}{2 upsilon_1} + frac{S}{2 upsilon_2}} = frac{S}{frac{S(upsilon_1 + upsilon_2)}{2 upsilon_1 upsilon_2}} = frac{2 upsilon_1 upsilon_2}{upsilon_1 + upsilon_2}$.

Теперь выразим отсюда скорость $upsilon_2$, с которой велосипедист двигался вторую половину пути:
$2 upsilon_1 upsilon_2 = upsilon_{ср} upsilon_1 + upsilon_{ср} upsilon_2$,
$2 upsilon_1 upsilon_2 — upsilon_{ср} upsilon_2 = upsilon_{ср} upsilon_1$,
$upsilon_2 cdot (2 upsilon_1 —  upsilon_{ср}) = upsilon_{ср} upsilon_1$,
$upsilon_2 = frac{upsilon_{ср} upsilon_1}{2 upsilon_1 —  upsilon_{ср}}$.

Рассчитаем эту скорость:
$upsilon_2 = frac{40 frac{км}{ч} cdot 60 frac{км}{ч}}{2 cdot 60 frac{км}{ч} —  40 frac{км}{ч}} = frac{2400 frac{км}{ч}}{80} = 30 frac{км}{ч}$.

Ответ: $upsilon_2 =  30 frac{км}{ч}$.

Задача №9

На рисунке 2 дан график пути движения поезда. Определите скорости движения на участках, изображенных отрезками графика OA, AB и BC. Какой путь пройден поездом в течении $3 space ч$ с начала его движения?

Рисунок 2. График движения поезда

Дано:
$t = 3 space ч$

$upsilon_1 — ?$, $upsilon_2 — ?$, $upsilon_3 — ?$
$S — ?$

Показать решение и ответ

Скрыть

Решение:

Для того чтобы определить скорость на каждом участке пути, мы будем выбирать удобную нам точку на графике и проводить вычисления.

Определим скорость движения поезда на участке OA. В момент времени, равный $1 space ч$, пройденный поездом путь составил $40 space км$:
$upsilon_1 = frac{S_1}{t_1}$,
$upsilon_1 = frac{40 space км}{1 space ч} = 40 frac{км}{ч}$.

Участок графика AB параллелен оси времени, пройденный путь не изменяется. Значит скорость здесь равна нулю: $upsilon_2 = 0 frac{км}{ч}$.

Определим скорость движения поезда на участке BC. По наклону прямой графика мы видим, что скорость после остановки изменилась. За время с $2 space ч$ до $3 space ч$, пройденный путь изменился с $60 space км$ до $80 space км$. Значит, за $1 space ч$ поезд прошел путь, равный $20 space км$:
$upsilon_3 = frac{S_3}{t_3}$,
$upsilon_3 = frac{20 space км}{1 space ч} = 20 frac{км}{ч}$.

Теперь нам нужно найти путь, пройденный поездом за $3 space ч$ с момента начала движения. Этот путь будет складываться из трех составляющих на разных участках:
$S = S_1 + S_2 + S_3$.

Путь $S_2$, соответствующий участку AB будет равен нулю, так как на нем скорость движения равна нулю.

Тогда, используя данные графика и рассчитанные значения скоростей, мы можем записать:
$S = S_1 + S_3 = upsilon_1 t_1 + upsilon_3 t_3$,

$S = 40 frac{км}{ч} cdot 1.5 space ч + 20 frac{км}{ч} cdot 1 space ч = 80 space км$.

Ответ: $upsilon_1 = 40 frac{км}{ч}$, $upsilon_2 = 0 frac{км}{ч}$, $upsilon_3 = 20 frac{км}{ч}$, $S = 80 space км$.

Задача №10

От одной и той же станции в одном и том же направлении отправляются два поезда. Скорость первого $30 frac{км}{ч}$, второго $40 frac{км}{ч}$. Второй поезд отправляется через $10 space мин$ после первого. После сорокаминутного движения первый поезд делает пятиминутную остановку, потом продолжает двигаться дальше с прежней скоростью.
Определите графически, когда и на каком расстоянии от станции второй поезд догонит первый. Графическое решение проверьте вычислением.

Дано:
$upsilon_1 = 30 frac{км}{ч}$
$upsilon_2 = 40 frac{км}{ч}$
$t_{01} = 0 space мин$
$t_{02} = 10 space мин$
$t_1 = 40 space мин$
$t_{1о} = 5 space мин$

$t — ?$
$S — ?$

Показать решение и ответ

Скрыть

Решение:

Сначала займемся построением графика движения поездов. 

По оси $x$ мы будем откладывать время, а по оси $y$ — расстояние. Время оставим в $мин$, а расстояние будем отмечать в $км$. 

Построим график движения первого поезда (рисунок 3). Он начинает свое движение в момент времени $t_{01} = 0 space мин$.

Движется он со скоростью $30 frac{км}{ч}$ в течение $t_1 = 40 space мин$. Переведем эту скорость в $frac{км}{мин}$ и вычислим, какое расстояние этот поезд пройдет за указанное время:
$upsilon_1 = 30 frac{км}{ч} = 30 frac{км}{60 space мин} = 0.5 frac{км}{мин}$,
$S_1 = upsilon_1 t_2$,
$S = 0.5 frac{км}{мин} cdot 40 space мин = 20 space км$.

Поставим эту точку на графике и соединим с началом координат.

Рисунок 3. График движения первого поезда

Далее поезд сделал остановку. Этот участок графика будет параллелен оси времени — значение пройденного пути остается постоянным, ведь поезд никуда не двигается.

Далее поезд продолжает движение с прежней скоростью. Без вычислений мы можем провести из точки, соответствующей концу остановки, прямую параллельную первой части графика.

Теперь построим тут же график движения для второго поезда (рисунок 4).

Он начинает свое движение не из начала координат, а из точки, соответствующей времени $t_{02} = 10 space мин$.

Он движется со скоростью $40 frac{км}{ч}$. Это означает, что за $1 space ч = 60 space мин$ он проходит путь, равный $40 space км$. Отметим эту точку на координатной плоскости и соединим с точкой начала движения.

Рисунок 4. Графики движения обоих поездов

Итак, графически мы получили, что

  • Второй поезд догонит первый в момент времени $t = 40 space мин$
  • Поезда встретятся на расстоянии $S = 20 space км$ от места отправления

Теперь подтвердим полученные данные вычислениями. Поезда встретятся друг с другом, пройдя определенный путь $S$. Это случится через определенное время $t$:
$S = S_1 = S_2$,
$S_1 = upsilon_1 t$,
$S_2 = upsilon_2 (t — t_{02})$.

Найдем это время:
$upsilon_1 t = upsilon_2 (t — t_{02})$,
$upsilon_2 t — upsilon_1 t = upsilon_2 t_{02}$,
$t (upsilon_2 — upsilon_1) = upsilon_2 t_{02}$,
$t = frac{upsilon_2 t_{02}}{upsilon_2 — upsilon_1}$.

Перед расчетом переведем $мин$ в $ч$: $t_{02} = 10 space мин = frac{10}{60} space ч = frac{1}{6} space ч$.

Теперь рассчитаем время встречи двух поездов:
$t = frac{40 frac{км}{ч} cdot frac{1}{6} space ч}{40 frac{км}{ч} — 30 frac{км}{ч}} = frac{4}{6} space ч = frac{2}{3} space ч = 40 space мин$.

Используя полученное значение времени и скорость движения первого поезда, рассчитаем расстояние, на котором встретятся поезда:
$S = upsilon_1 t$,
$S = 30 frac{км}{ч} cdot frac{2}{3} space ч = 20 space км$.

Ответ: $t = 40 space мин$, $S = 20 space км$.

Задача №11

Поезд прошел $25 space км$ за $35 space мин$, причем первые $10 space км$ он прошел в течение $18 space мин$, вторые $10 space км$ в течение $12 space мин$, а последние $5 space км$ за $5 space мин$. Определите среднюю скорость поезда на каждом участке и на всем пути.

Дано:
$S = 25 space км$
$t = 35 space мин$
$S_1 = 10 space км$
$t_1 = 18 space мин$
$S_2 = 10 space км$
$t_2 = 12 space мин$
$S_3 = 5 space км$
$t_3 = 5 space мин$

$upsilon_{1ср} — ?$, $upsilon_{2ср} — ?$, $upsilon_{3ср} — ?$
$upsilon_{ср} — ?$

Показать решение и ответ

Скрыть

Решение:

Переведем время из $мин$ в $ч$:

  • $t = 35 space мин = frac{35}{60} space ч = frac{7}{12} space ч$
  • $t_1 = 18 space мин = frac{18}{60} space ч = frac{3}{10} space ч = 0.3 space ч$
  • $t_2 = 12 space мин = frac{12}{60} space ч = frac{1}{5} space ч = 0.2 space ч$
  • $t_3 = 5 space мин = frac{5}{60} space ч = frac{1}{12} space ч$

Теперь рассчитаем среднюю скорость на каждом участке пути:

  • $upsilon_{1ср} = frac{S_1}{t_1}$,
    $upsilon_{1ср} = frac{10 space км}{0.3 space ч} approx 33.3 frac{км}{ч}$
  • $upsilon_{2ср} = frac{S_2}{t_2}$,
    $upsilon_{2ср} = frac{10 space км}{0.2 space ч} = 50 frac{км}{ч}$
  • $upsilon_{3ср} = frac{S_3}{t_3}$,
    $upsilon_{3ср} = frac{5 space км}{frac{1}{12} space ч} = 60 frac{км}{ч}$

Рассчитаем среднюю скорость на на всем пути:
$upsilon_{ср} = frac{S}{t}$,
$upsilon_{ср} = frac{25 space км}{frac{7}{12} space ч} approx 42.9 frac{км}{ч}$

Ответ: $upsilon_{1ср}  approx 33.3 frac{км}{ч}$, $upsilon_{2ср} = 50 frac{км}{ч}$, $upsilon_{3ср} = 60 frac{км}{ч}$, $upsilon_{ср} approx 42.9 frac{км}{ч}$.

Давно планировал начать рубрику для школьников и студентов (а может и не только для них), в которой будет рассказываться о методах решения конкретных задачи и подготовке к экзаменам по физике. Само собой, в этой же рубрике мы поговорим и про егэ по физике, которое пугает ребят больше всего. Пусть рубрика на канале называется #инженер репетитор

Как решать задачи на скорость по физике

Ну а начнем с самого простого – научимся решать задачи на скорость. Эти задачки являются базой для дальнейшего понимания кинематики и динамики, и будут вылезать на протяжении всей механики.

Давайте сначала кратенько вспомним, а что такое скорость?

Кратко про скорость в физике

Скорость в физике – это то насколько быстро изменяется некоторая физическая величина с течением времени. Векторная величина, которая имеет размер и направление.

Например, мы нагреваем комнату. Каждый час система отопления прибавляет в комнате один градус. Значит, скорость прогрева комнаты составляет один градус в час. Или едем мы на велосипеде и за один час проезжаем 20 км. Значит, мы едем со скоростью 20 километров в час.

Вот собственно и всё, что нужно помнить из теории по этому вопросу.

Задачки на скорость обычно сконцентрированы в разделе механики, но вылезают и в других более серьезных разделах физики – скорость света, время течения какой-то реакции, скорость изменения чего-то.

Однако, разобравшись как решать подобные задачи для движения чего-то материального, разобраться и в других разделах проблем не составит. Так или иначе, когда говорят про задачи на скорость, обычно подразумевают именно кинематику и динамику.

Как решать задачи на скорость по физике

Итак, а какие собственно задачи в этой теме бывают и как их решать :)?

Задачи по скорости и их типы

Все задачи из этой темы обычно сводятся к тому, что нужно вытащить скорость из некоторой закономерности. Для этого нужно понимать и примерно помнить формулировки, связанные со скоростью. Их не так много. Не забываем и классические косяки – например привести всё к единой системе СИ.

Самые простые задачки на скорость

Как решать задачи на скорость по физике

Самый простой случай, когда нам известно пройденное расстояние и время, а нужно найти скорость:

S = v * t, значит V = S / t

Находим скорость в м/с или км/ч.

Задачки на “встречу”

Задачки на “встречу”. Кто-то едет навстречу кому-то или кто-то кого-то встретил. Обычно такие задачки, с помощью витиеватого условия, пытаются заморочить читателю голову, но суть-то от этого не меняется.

Как решать задачи на скорость по физике

Нам, например, задают граничные условия и указывают, что два мотоциклиста едут по одной дороге в одну сторону и выехали одновременно. Дальше они встретились. Ну и один другого подождал на точке встречи. Один едет 20 минут, а другой едет со скоростью 50 км/ч 60 минут. Найдите скорость первого мотоциклиста. Проблем быть не должно 🙂

Считаем по приведенной выше формуле сколько проехал второй мотоциклист до времени встречи. Из этого расстояния выражаем скорость первого мотоциклиста. Ведь в точке встречи расстояние, которое они проехали было одинаковым. Вот вам и решение.

Вообще, относительно, всей этой тематики, очень полезно освоить процесс рисования чертежей и схем. Нужно сделать доходчивую и понятную схему, которая будет в нужном масштабе отражать все перемещения и их особенность. Это будет залогом практически 100% успеха. Плюс внимательность!

Задачи на скорость в присутствии ускорения

Задачки на равноускоренное движение. Этот тип задач чуть сложнее. В дело вступает ускорение. Что такое ускорение? Это уже, в свою очередь, быстрота изменения скорости. Обозначается буквой а.

Обычно большая часть величин для решения такой задачи дана или выводится из нехитрой формулы:

V = Vo + аt, где V – скорость, а – ускорение, t – время движения.

В отличие от равномерного движения тело тут перемещается равноускоренно. Т.е. за каждый интервал времени скорость изменяется на одинаковую величину. Это применимо, например, к свободному падению с высоту. Пусть всё тот же мотоциклист едет первый час со скоростью 40 км/ч, а потом разгоняется до 60 км/ч и дальше ускоряется на 20 км/ч каждый час.

Опять-таки, все задачи тут завязаны на “кручу верчу обмануть хочу”. И да, на всякий случай отмечу, что все наши рассуждения из пунктов 1 и 2 тут тоже применимы, а ещё ускорение может получиться отрицательным и это не должно вас пугать.

Для решения задач из данной категории вам потребуется внимательно читать условие задачи и включить логику.

Задачки на среднюю скорость

Как решать задачи на скорость по физике

Задачки на среднюю скорость. Тоже очень просто решаются. Что такое средняя скорость – это скорость, полученная как среднее арифметическое от скоростей на каждом из участков.

V средняя = Весь путь (S1+S2+S3+…) / всё время (t1+t2+t3+…)

Ну а дальше опять комбинаторика :). Подставь-посчитай-вырази. Ловкость рук и внимательность.

Сразу отмечу, что когда мы обсуждаем скорость или ускорение в том разрезе, как мы его видели до сих пор, мы всегда подразумевали именно среднее значение величин. Или не совсем-таки среднее, но условно разбитое на удобное для вычисления количество участков. Усредненное если желаете. В жизни же всё немного иначе.

Речь идёт о том, что если вы представите реальное движение того же несчастного мотоциклиста (или любого другого тела), о котором мы уже много раз вспомнили, он не будет ехать равномерно. Он поедет с рваным ритмом. Там на светофоре постоял. Там перед ямой затормозил. Дальше мотобат его хлопнул, документы проверяет…Бед будет много! И всё это отражается на скорости и как следствие – на ускорении. Это значит, что он действительно может проехать за час свои 50 км, но при этом за полчаса он проедет не 25 км, как мы ожидаем, а всего лишь 10 км, а дальше нагонит разницу.

Если мы высчитываем интегральный или усредненный показатель, нам в принципе-то, фиолетово. Главное, чтобы цифры сошлись. Но если нам нужно определить значение в конкретный момент, то расчёты уже будут неточные. И тут…

задачки, где есть мгновенная скорость

Что такое мгновенная скорость?

Как решать задачи на скорость по физике

Это скорость в конкретный момент времени. Берем мотоциклиста, смотрим на его траекторию. Тыкаем пальцем в любую точку и узнаем, что там скорость пусть 10 км/ч. А через 5 минут уже 70 км/ч. А ещё через 10 минут – опять 10 км/ч. И вовсе не 50 км/ч на всём участке. Или ещё лучше – рисуем график изменения его расстояния в зависимости от времени. По такому графику всегда можно найти мгновенную скорость.

Как подступиться к подобным задачкам?

Для начала мы вспомним, что скорость это – первая производная от функции изменения расстояния по времени. Ведь производная – это и есть скорость изменения величины.

Дальше нам нужна функция, по которой изменялось расстояние. Без неё ничего решить не выйдет. Ведь данных попросту нет.

Исходя из формы кривой у нас будет её уравнение. Дальше нужно его дифференцировать.

Также в этом разделе часто вылезает некоторое дельта R. Что это такое и почему оно в формуле? Это всего лишь то самое значение расстояния (ничтожно малое), пройденного телом, за время стремящееся к нулю.

Ну и да…Для решения задач теперь нужно учитывать, что скорость мгновенная. Больше ничего не меняется.

Задачки на скорость при движении по кривой или окружности

Ещё мы можем столкнуться с понятием угловой скорости.

Начнем с того, что определим, чем вообще ситуация при движении по окружности отличается от ситуации с движением по обычной траектории? По сути дела ничем, кроме того, что путь будет высчитываться относительно окружности – будем считать длину окружности или дуги по известным всем формулам и использовать приведенные ранее зависимости для нахождения скорости.

Это тот самый случай, про который я говорю что учить без понимания бессмысленно. Ведь по сути нам сейчас нужно запомнить только формулы, приведенные раннее, а для криволинейного движения всё высчитаем, опираясь на них и понимая суть вопроса.

Но ко всему этому добавится угловая скорость. Что это? При движении материальной точки по окружности у неё есть линейная скорость, а есть угловая. Смотрим картинку.

Как решать задачи на скорость по физике

Линейная скорость обозначена V, а угловая W (омега). Линейная скорость – это та же скорость, что мы разобрали выше. Она же мгновенная в данном случае. Скорость материальной точки, направленна по касательной к траектории.

Угловая скорость – это то, насколько быстро вращается наш радиус R. Представьте себе часы со стрелками. Стрелка вращается с некоторой скоростью, или – изменяет угол с некоторой скоростью. Вот вам и угловая скорость 🙂 И всё! Считается вот так:

Как решать задачи на скорость по физике

Видите, логика совершенно такая же, как мы рассматривали выше.

Соответственно, в задачках на угловую скорость нужно мыслить аналогично самому первому пункту в нашем гиде. Это просто обычная материальная точка (тело) которая перемещается по окружности. Отличается только траектория ,а в отдельную тему это выделяют попросту для удобства восприятия.

Как решать задачи на скорость по физике

Также, если есть задачка на криволинейное движение, то нужно иметь представление о виде траектории движения тела. Если траектория сложная, то её разбивают на простые геометрические формы и суммируют результаты.

Если нужно сложить скорости

Ещё бывают случаи, когда нужно выполнять сложение скоростей. Например, сложить две скорости разных тел и найти результирующую. Или сложить скорости одного тела.

Опять-таки, бояться таких задачек не нужно!

Вся логика строится из навыка оперировать с векторами.

Скорость – это величина векторная. Значит и зарисовать её можно с помощью вектора определенной длины. Вектора скорости могут быть расположены в одной плоскости или в объеме.

Советую посмотреть вот этот ролик на моем канале

Если вектора скорости находятся в одной плоскости то всё совсем просто. Чаще всего решение сводится к операциям над прямоугольными треугольниками. Бывают и очень простые случаи – векторы скорости вообще направлены вдоль одной прямой. Уже неважно разно направлены они или сонаправлены.

Чуть сложнее ситуация, если векторы скорости расположены в объеме. Там мы приходим к единичным векторам. Ситуация более геморройная, но от того не более сложная.

Как решать задачи на скорость по физике

———————-

Итак, друзья!

Я постарался изложить все основы, которые могут помочь вам разобраться с решением задач на скорость. Очень надеюсь, что материал вам поможет.

Писать и разбирать каждую задачку – это довольно объемная штука. Такое нужно рассматривать уже в формате индивидуальных занятий.

Если я забыл осветить что-то в статье или не полностью/непонятно раскрыл теорию вопроса – пожалуйста пишите об этом в комментариях и я дополню статью и отвечу на ваш вопрос :)…Давайте вместе сделаем полезный и полный мануал. Ещё можно спросить меня в социальных сетях прямо на страничке https://vk.com/inznan или на лицекниге https://web.facebook.com/inznan

Ну и ответьте пожалуйста на вопрос, нужны ли такие материалы на моем проекте:

В нашей сегодняшней статье мы разберем по одной задаче из каждого подраздела кинематики. 

Надоело грызть гранит науки и хочется полезной и легкой для восприятия информации? Добро пожаловать в наш телеграм! Здесь вас ждет ежедневная и разнообразная рассылка.

Примеры решения задач по разным разделам кинематики

Давайте вспомним, какие темы мы уже рассматривали в рубрике «Физика для чайников»:

  • задачи на равномерное движение;
  • задачи на равноускоренное движение;
  • задачи на движение по окружности;
  • задачи на относительность движения;
  • задачи на свободное падение тел.

Кинематика – от греческого κινειν – двигаться.

Задачи по кинематике с решениями

Задача №1. Относительность движения

Условие

Теплоход движется по озеру параллельно берегу со скоростью v1 = 25 км/ч. От берега отходит катер со скоростью v2 = 40 км/ч. Через какое наименьшее время катер сможет догнать теплоход, если в начальный момент теплоход и катер находились на одной нормали к берегу и расстояние между ними было S = 1 км?

Решение

Задача №1. Относительность движения

t – искомое наименьшее время. Катер может двигаться по самым разным траекториям, но для того, чтобы догнать теплоход за наименьшее время с максимальнойскоростью, катеру нужно плыть по прямой в некоторую точку, в которую теплоход приплывет одновременно с прибытием туда катера. В таком случае траектории теплохода и катера образуют прямоугольный треугольник вместе с отрезком, соединяющим их положения в начальный момент времени. Расстояния, пройденные соответственно теплоходом и катером до момента встречи:

Задача №1. Относительность движения

Далее воспользуемся теоремой Пифагора:

Задача №1. Относительность движения

Переводим в СИ и подставляем значения

Задача №1. Относительность движения

Ответ: 115 секунд.

Задача №2. Свободное падение тел

Условие

Камень, свободно падающий без начальной скорости, пролетел вторую половину пути за 1 секунду. С какой высоты h упал камень?

Решение

Направим ось Y вертикально вниз. За начало координат примем точку, из которой летел камень. Закон движения камня в проекции на ось имеет вид:

Задача №2. Свободное падение тел

Время падения камня:

Задача №2. Свободное падение тел

Для середины пути справедливы соотношения:

Задача №2. Свободное падение тел

Время t2, за которое пройдена вторая половина пути (оно известно по условию), можно вычислить по формуле:

Задача №2. Свободное падение тел

Отсюда находим высоту:

Задача №2. Свободное падение тел

Ответ: 57,7 метров

Кстати! Для всех наших читателей действует скидка 10% на любой вид работы.

Задача №3. Движение по окружности

Условие

Каковы линейная и угловая скорости точек на экваторе Земли при ее вращении вокруг своей оси?

Решение

Линейную и угловую скорости при движении по окружности можно найти по формулам:

Задача №3. Движение по окружности

Обратимся к справочнику и найдем радиус Земли: 6370 км. Период обращения – 24 часа или 86400 секунд. Осталось произвести вычисления:

Задача №3. Движение по окружности

Ответ: 463 метра в секунду; 7,3 на 10 в минус пятой степени радиан в секунду.

Задача №4. Равномерное движение

Условие

Автомобиль проехал два одинаковых участка пути с разными скоростями (v1=15 м/с, v2=10 м/с). Найти среднюю скорость автомобиля. 

Решение

Средняя скорость при равномерном прямолинейном движении равна отношению пройденного пути к затраченному времени. 

Задача №4. Равномерное движение

Ответ: 12 метров в секунду.

Задача №5. Равноускоренное движение

Условие

Движение тела описывается уравнением  x = At + Bt²,  где  A= 4 м/с,  B= -0.05 м/с². Найти координату и ускорение тела в момент времени, когда скорость тела обращается в ноль.

Решение

Подставим значения из условия и запишем закон движения тела, скорость и ускорение найдем соответственно как первую и вторую производные:

Задача №5. Равноускоренное движение

В момент, когда скорость равна нулю:

Задача №5. Равноускоренное движение

Ответ: 80 метров; -0,1 метра на секунду в квадрате.

Вопросы по теме “Кинематика”

Вопрос 1. Чем отличается путь от перемещения?

Ответ. Путь – скалярная величина, равная длине траектории. Перемещение – вектор, соединяющий начальную и конечную точки пути.

Вопрос 2. Что изучает кинематика?

Ответ. Кинематика изучает движение тел, величины и связи, характеризующие его. Кинематика не изучает причины, по которым происходит движение.

Вопрос 3. Может ли ускорение быть отрицательным?

Ответ. Ускорение – векторная величина, отрицательной может быть его проекция на координатную ось. Например, если ускорение направлено противоположно скорости, тело будет замедляться.

Вопрос 4. Что такое инерциальная система отсчета?

Ответ. Инерциальная система отсчета – такая система, в которой свободные тела движутся равномерно и прямолинейно (или покоятся), если на них не действуют внешние силы (или действие этих сил скомпенсировано). 

Вопрос 5. В чем заключается относительность движения?

Ответ. Положение и перемещение тела в пространстве всегда описывается относительно другого тела (тело отсчета), с которым связана система отсчета и координаты. В зависимости от выбора тела отсчета, движение может описываться по-разному.

Нужна помощь в решении задач по физике или в заданиях любому другому предмету? Обращайтесь в профессиональный студенческий сервис.

Подробности
Обновлено 02.09.2018 16:06
Просмотров: 1670

Задачи по физике – это просто!

Вспомним

Формулы для расчета пройденного пути, скорости и времени движения при равномерном прямолинейном движении:

Не забываем
Решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики на движение и перевод единиц измерения для 7 класса.

Задача 1. Примеры перевода единиц измерения

Задача 2. Примеры перевода единиц измерения

Перевести м/с в км/ч.

Задача 3. Пример сравнения величин с разными единицами измерения

Сравнить величины.

Задача 4

Поезд двигался прямолинейно и равномерно 0,5 часа со скоростью 20 м/с. Определить пройденный путь.

Задача 5

Определить скорость поезда, если он прошел 28 километров за 5 минут.

Задача 6

Определить время движения поезда, если он прошел 1 км со скоростью 72 км/ч.

Добавить комментарий