Как составьте формулу n го числа арифметической прогрессии

        Суперполезная формула! Позволяет легко и просто (и главное — быстро!) искать любой член арифметической прогрессии! Да-да, любой! Какой хотите.) А заодно и массу других самых разных задач по прогрессии решать. Имеет смысл освоить и разобраться, правда?

        Вот поэтому осваиваем и разбираемся. В этом уроке.)

Вывод и смысл формулы n-го члена

        Итак, прошу любить и жаловать:

an = a1 + (n-1)·d

        Это и есть формула n-го члена арифметической прогрессии, собственной персоной.) Какие-то индексы, буковки непонятные. Ничего страшного! Сейчас всё расшифрую.

        В формуле:

        a1 — первый член арифметической прогрессии;

        d — разность арифметической прогрессии;

        n — номер члена;

        an — энный (n-й) член арифметической прогрессии.

        Как вы видите, большая часть входящих в формулу буковок (первый член, разность прогрессии, номер члена) уже должна быть вам хорошо знакома из прошлого урока. Если не читали, настоятельно рекомендую заглянуть. Там всё просто и доступно. Осталось лишь разобраться, что же такое n-й член.

        Мы с вами знаем (надеюсь), что любую арифметическую прогрессию в общем виде всегда можно записать в виде последовательности чисел:

        a1, a2, a3, a4, a5, …

        Символ a1 означает первый член прогрессии, a2 — второй член, a5 — пятый и так далее. Если нас интересует, скажем, десятый член прогрессии, то работаем с a10. Если сто тридцатый, то, соответственно, с a130. Элементарно, Ватсон!)

        А как можно обозначить в общем виде любой член арифметической прогрессии прогрессии с любым номером? Тоже элементарно! Вот так:

        an

        Это и есть n-й член арифметической прогрессии. Под буковкой n здесь скрываются сразу все номера членов: и 1, и 23 и 101 — все без исключения!

        И что нам даёт такая запись? Казалось бы, всего лишь вместо цифры буковка появилась — и что из этого? А вот что.

        Запись эта представляет собой очень мощный инструмент для работы с арифметической прогрессией. Сомневаетесь? Не надо.) Используя обозначение an, мы можем легко и просто искать любой член любой арифметической прогрессии! Как? Читаем дальше.)

        Возвращаемся снова к нашей формуле:

an = a1 + (n-1)·d

        Со всеми обозначениями мы успешно разобрались, а теперь разбираемся, в чём же её суть.

        Эта формула позволяет нам найти любой член арифметической прогрессии по его номеру “n“.

        Заманчиво, правда? Знаем номер члена — сразу же можем найти и сам этот член! Естественно, для этого нам надо знать ещё первый член a1 и разность прогрессии d. Ну так без этих двух ключевых параметров конкретную прогрессию и не задашь вовсе.

        Формула эта связывает четыре главных параметра любой арифметической прогрессии — аn, a1, d и n. Именно вокруг этих четырёх параметров и крутятся все-все задачки по прогрессии!

        Откуда же берётся эта формула и как её запомнить? А то уж больно часто сомнения грызут — то ли n там, то ли n-1, то ли n+1… Особенно на контрольных и экзаменах.

        Спокойствие! Сейчас мы с вами эту формулку выведем! Не очень строго, правда, но зато с полным пониманием всего происходящего. Что, как и откуда. И у вас сразу же отпадут все сомнения!

        Итак, рисуем числовую ось и последовательно отмечаем на ней члены нашей прогрессии:

        

        А теперь смотрим на рисунок и соображаем. Чему равен второй член прогрессии?

        Второй член равен первому члену плюс одно d:

        a2 = a1 + 1·d

        А третий член чему равен?

        Не вопрос! Третий член равен первому члену плюс два d:

        a3 = a1 + 2·d

        Ну как, улавливаете закономерность? Я же не просто так некоторые слова и цифры выделяю жирным шрифтом! Нет? Что ж, ладно. Ещё один шаг.)

        Чему равен четвёртый член?

        Четвёртый член равен первому члену плюс три d:

        a4 = a1 + 3·d

        Пора бы уже догадаться, что количество интервалов (т.е. d) всегда на единичку меньше, чем номер нужного нам члена n. Поэтому до номера n количество интервалов всегда будет n-1.

        Стало быть, наша формула, уже безо всяких сомнений, будет вот такой:

an = a1 + (n-1)·d

        Вот и весь секрет.)

        Совсем строгое доказательство данной формулы проводится так называемым методом математической индукции. Но метод этот — для особых гурманов.) Не каждый с ходу разберётся и поймёт, что к чему. А вот по картинке всё просто и наглядно! Да и вообще, картинка — очень мощный инструмент решения многих математических задач! И не только по прогрессиям. Так что не пренебрегаем ими. Скажем, в сложной боевой обстановке ЕГЭ вы переволновались и подзабыли случайно эту формулу. Ну, вот не помните, с кем не бывает! Ничего страшного. Есть пара-тройка минуток времени – рисуем картинку, отмечаем члены прогрессии и промежутки между членами — и всё сразу становится как на ладони!

        Разумеется, всё от конкретной задачи зависит. Бывают и такие задачи, рисовать картинку к которым весьма затруднительно, а то и вовсе невозможно. Тогда — только формула, да…) Ибо формула — это тяжёлая артиллерия, позволяющая подключить к решению задачи весь мощный арсенал математики — уравнения, неравенства, системы и т.д. Картинку ведь в уравнение не вставишь!

        Ну что, коли уж мы заговорили о задачках, то пора бы уже и порешать!

Решение задач с помощью формулы n-го члена арифметической прогрессии.

        Прямое применение формулы.

        Начнём с прямого применения формулы. В самом конце прошлого урока была вот такая задачка:

        В арифметической прогрессии известно, что a1 = 4 и d = 0,4. Найдите a141.

        Конечно, эту задачку можно и безо всяких формул решить. Исходя из смысла арифметической прогрессии. Прибавлять себе по 0,4 да считать. Часок-другой…)

        Зато по формуле решение осуществляется в одну строчку и занимает меньше минуты! Можете засекать время.)

        Итак, у нас имеются все данные для применения формулы.

        Известен первый член: a1 = 4.

        Известна также разность прогрессии: d = 0,4.

        Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нам надо найти a141. Так прямо и пишем:

        a141 =

        А вот здесь сосредотачиваемся! Вместо индекса n у нас появилось конкретное число 141. Что вполне естественно. Ибо нас интересует член прогрессии номер сто сорок один. Вот именно это и будет наше n! Именно это значение n = 141 мы и подставим в формулу n-го члена в скобки.

        Подставляем все наши данные в формулу и считаем:

        a141 = 4 + (141-1)·0,4 = 4+56 = 60

        Вот и всё, никаких фокусов. Так же быстро можно найти и четыреста третий член, и тысяча первый — любой! Какой хотим, такой и отыщем. Просто подставляем нужный номер в формулу вместо индекса n и в скобки. И считаем.)

        Рассмотрим теперь задачку похитрее.

        В арифметической прогрессии с разностью 3 пятнадцатый член равен 50. Найдите первый член этой прогрессии.

        Ну и как вам? Знаете, с чего начинать? Если знаете — вперёд и с песнями. Не знаете? Что ж, тогда подскажу.

        Пишем формулу n-го члена арифметической прогрессии!

        Да-да! Прямо на черновике или в тетрадке.)

        an = a1 + (n-1)·d

        А теперь глядим внимательно на нашу формулу и соображаем, какие данные у нас уже есть, а чего не хватает.

        Во-первых, нам известна разность прогрессии d:

        d = 3

        Во-вторых, нам известен пятнадцатый член прогрессии. Так и пишем:

        a15 = 50

        Всё? Не-а! У нас есть ещё номер n! Дело в том, что в условии a15 = 50 скрыты сразу два параметра прогрессии. Это, во-первых, значение самого пятнадцатого члена (50) и, во-вторых, его номер (15). То есть, n=15.

        Вот теперь уже можно подставить все известные нам данные в формулу:

        50 = a1 + 3·(15-1)

        Решаем это простенькое линейное уравнение и получаем ответ:

        a1 = 8

        Вот и все дела.)

        Ещё одна популярная задачка:

        Найдите разность арифметической прогрессии (an), если

        a1 = 6; a21 = -14.

        Первый шаг тот же самый: пишем формулу n-го члена арифметической прогрессии!

        an = a1 + (n-1)·d

        А теперь снова соображаем, что нам дано по условию задачи:

        a1 = 6

        a21 = -14

        n = 21

        Вот и всё. Всю ценную информацию из условия скачали. Подставляем наши известные величины в формулу и считаем банальную арифметику:

        -14 = 6 + (21-1)·d

        -14 = 6 + 20d

        -20 = 20d

        d = -1

        Всё. Это правильный ответ.)

        Так, задачки на поиск an, a1 и d порешали. Осталось научиться ещё номер члена находить.)

        Известно, что число 43 является членом арифметической прогрессии (an) c первым членом, равным 3 и разностью 0,4. Найдите номер этого члена.

        Вы удивитесь, но первый шаг снова точно такой же.

        Пишем формулу!

        an = a1 + (n-1)·d

        На первый взгляд кажется, что здесь две неизвестные величины — an и n. Но an — это какой-то член арифметической прогрессии под номером n. И этот член нам известен! Это 43. Нам неизвестен номер n этого члена. Так этот самый номер, как раз, и требуется отыскать!

        Подставляем член прогрессии 43 в формулу n-го члена вместе с остальными известными нам параметрами:

        43 = 3 + (n-1)·0,4

        Считаем простецкую арифметику и выражаем номер n:

        (n-1)·0,4 = 40

        n-1 = 100

        n = 101

        Готово дело.)

        Как вы видите, запись формулы в общем виде и подстановка в неё известных величин — весьма популярный приём в решении очень многих задач на прогрессии! Если вы, конечно, умеете выражать переменную из формулы. Ну так без этого умения математику можно и вовсе не изучать. Как, впрочем, и остальные точные науки тоже, да…

        А теперь ещё одна задачка на эту тему, но более творческая.

        Определите, будет ли число 74 членом арифметической прогрессии

        (an): -5,6; -4; -2,4; …

        Снова (да-да!) пишем формулу:

        an = a1 + (n-1)·d

        Начинаем подставлять известные нам данные. Гм… не подставляется что-то…

        Что, не видите никаких данных? Серьёзно? Ну, тогда срочно к окулисту. Без обид.) Что же всё-таки можно увидеть из предложенной нам последовательности? Первый член видим? Видим! Это -5,6. А разность d? Пока не видим, но… её можно посчитать, да.) Если, конечно, вы в курсе, что такое разность арифметической прогрессии:

        d = -4 — (-5,6) = 1,6

        Ну вот, уже кое-что. Осталось лишь разобраться с неизвестным нам номером n и загадочным числом 74. В предыдущей задачке нам прямым текстом было указано, что дан именно член прогрессии. А здесь про число 74 ничего непонятно — член оно, не член… Что делать?

        Что-что… Включим смекалку! Мы предположим, что число 74 — это всё-таки член нашей прогрессии! С неизвестным номером n. И снова попробуем отыскать, найти этот номер! Смело подставляем в формулу все наши числа:

        74 = -5,6 + (n-1)·1,6

        И выражаем n:

        (n-1)·1,6 = 79,6

        n — 1 = 49,75

        n = 50,75

        Во как! Номер получился дробный! А дробных номеров в прогрессиях не бывает. Уравнению ведь без разницы, с какими числами работать — целыми, дробными, отрицательными. Уравнение со всякими работает.) Вот оно нам честно и ответило: “В этой арифметической прогрессии число 74 имеет номер 50,75!”

        И какой же вывод можно сделать из полученного результата? Да! Число 74 не является членом нашей прогрессии! Оно находится где-то между пятидесятым и пятьдесят первым членами. Вот, если бы наш номер получился натуральным, то тогда — да, число 74 было бы членом нашей прогрессии. С найденным номером n.

        А так, ответ задачи: нет.

        Более сложные задачи.

        Рассмотрим теперь более хитрые задачки на применение формулы n-го члена. Например, такую:

        Известно, что в арифметической прогрессии a3 = 2,1 и a6 = 6,3. Найдите a4.

        Эту задачку мы с вами уже решали в прошлом уроке. Для её успешного решения мы рисовали с вами вот такую незамысловатую картинку:

        

        Из этой картинки мы легко определили разность прогрессии d и затем так же легко, прямо по смыслу арифметической прогрессии, посчитали нужный нам четвёртый член.

        Получили ответ: a4 = 3,5.

        Вспомнили? Отлично!

        То был графический способ. А сейчас мы с вами решим эту же задачку, но другим способом! Аналитическим.) С помощью формулы n-го члена, да. Нам ведь с формулой размяться нужно, правда?) Вот и разминаемся.

        Итак, что нам дано в условии задачи? Нам даны два члена некоторой арифметической прогрессии. А именно — третий и шестой её члены.

        Вот и расписываем их по формуле n-го члена!

        Именно так! Просто берём формулу n-го члена арифметической прогрессии и поочерёдно подставляем в неё известные нам данные для каждого члена.

        Для третьего члена a3 = 2,1 получим:

        2,1 = a1 + (3-1)·d

        2,1 = a1 + 2d

        Так, отлично. Одно уравнение составилось.

        То же самое проделываем и для шестого члена a6 = 6,3.

        Получим:

        6,3 = a1 + (6-1)·d

        6,3 = a1 + 5d

        Итак, мы получили два уравнения. Эти два уравнения относятся к одной и той же прогрессии. Стало быть, они должны выполняться одновременно. И, следовательно, они должны быть записаны в виде системы уравнений.

        Вот так:

        

        Всё. Мы перевели задание по арифметической прогрессии в чистую алгебру. И дальше можно уже временно вообще забыть про прогрессию и просто решить эту систему уравнений.

        Системка не самая трудная. Решаем самым простым способом — подстановкой. Из первого уравнения выражаем a1 и подставляем во второе:

        

        Приводим подобные во втором уравнении и получаем:

        

        Из второго уравнения легко находится d:

        d = 1,4

        Подставляем d = 1,4 в первое уравнение и получаем первый член:

        a1 = 2,1-2·1,4

        a1 = 2,1-2,8

        a1 = -0,7

        Вот и отлично. Знаем первый член a1, знаем разность d. И теперь мы без проблем можем найти любой интересующий нас член прогрессии. В том числе и четвёртый, да.)

        Пишем формулу n-го члена для n = 4:

        a4 = a1 + (4-1)·d = a1 + 3d

        Подставляем найденные числа и считаем:

        a4 = a1 + 3d = -0,7+3·1,4 = -0,7+4,2 = 3,5

        Вот и всё. Как и следовало ожидать, ответ получился тем же самым.)

        Ну как, хлопотно? Да, я согласен. Но зато аналитическому способу (алгебре) любые задачи по плечу! Если её знать, конечно.) А вот картинка годится лишь для маленьких кусочков прогрессии.

        Например, такая задачка:

        Известно, что в арифметической прогрессии a81 = 26 и a271 = 83. Найдите a11.

        Что, неохота картинку рисовать да безошибочно пальчиком считать промежутки? И правильно! Не надо.) Зато второму способу, алгебре, совершенно безразлично, какие числа стоят в задании! Большие числа или маленькие… Алгебра — это тяжёлая артиллерия. С любыми числами справляется.)

        Снова, как и в предыдущей задаче, расписываем каждый член прогрессии по формуле n-го члена:

        26 = a1 + 80d

        83 = a1 + 270d

        Объединяем эти уравнения в систему:

        

        А дальше решаем точно так же, как и в предыдущей задаче. Один в один. Дорешайте, чего уж там!

        Должно получиться:

        a11 = 5

        Рассмотрим ещё более хитрую задачку. С подвохом. Если невнимательно читать задание…

        Сумма первого и седьмого членов возрастающей арифметической прогрессии равна 14, а произведение третьего и шестого членов равно 10. Найдите двадцатый член прогрессии.

        Что, внушает? Решение по картинке и “на пальцах” не катит, да… Попробуем перевести всё задание в чистую алгебру? А та — всё сможет.)

        Ничего не боимся и используем главное правило всей математики: “Не знаешь, что нужно, делай что можно.”

        Вот и прикидываем, что в этой эпичной задачке можно сделать. Можно хотя бы расписать все данные нам члены (1-й, 7-й, 3-й, 6-й) в виде формул n-го члена, подставляя те числа, которые даны в условии.

        Вот и расписываем каждый член! Прямо по формуле!

        Ну, с первым членом всё и так ясно. Его вообще расписывать не надо.) Идём дальше.

        Для седьмого члена мы можем записать:

        a7 = a1 + (7-1)·d = a1 + 6d

        Третий член:

        a3 = a1 + (3-1)·d = a1 + 2d

        Шестой член:

        a6 = a1 + (6-1)·d = a1 + 5d

        А дальше снова читаем задачку и скачиваем всю остальную полезную информацию. А именно — связь между членами.

        Сумма первого и седьмого членов равна 14:

        a1 + a1 + 6d = 14

        2a1 + 6d = 14

        Так, одно уравнение готово. Читаем дальше.)

        Произведение третьего и шестого членов равно 10:

        (a1 + 2d)(a1 + 5d) = 10

        Получили два уравнения. Раз они относятся к одной и той же прогрессии, то должны выполняться одновременно. Объединяем наши полученные уравнения в систему:

        

        Вот и всё. Всю ценную информацию по прогрессии мы скачали и записали в виде системы уравнений. А дальше дело за алгеброй. Решение систем —  уже её работа. И наша с вами, к сожалению, тоже, да…

        Начнём с первого уравнения. Оно попроще будет. Выражаем из него a1. Для этого переносим 6d вправо и делим всё на двойку. Обычные тождественные преобразования, да.)

        2a1 = 14 — 6d

        a1 = 7 — 3d

        Теперь, ясное дело, подставляем это выражение во второе уравнение:

        (7 — 3d + 2d)(7 — 3d + 5d) = 10

        Приводим подобные в скобках:

        (7 — d)(7 + 2d) = 10

        Раскрываем скобки, приводим подобные и собираем всё слева:

        49 + 14d — 7d — 2d2 — 10 = 0

        -2d2 + 7d + 39 = 0

        Решаем это квадратное уравнение (помножив обе части на минус 1) и получаем корни:

        d1 = -3

        d2 = 6,5

        А вот и обещанный подводный камень! Что дальше? Получилось два значения разности d! Какое из них выбрать? Тупик?

        Вовсе нет! Просто ещё раз внимательно читаем условие задачи в поисках дополнительной информации! Там зачем-то употребляется слово “возрастающей”. А составители задач излишним словоблудием обычно не занимаются, да.) Вспоминаем из первого урока, что у возрастающей арифметической прогрессии разность всегда положительна.

        Стало быть, из двух вариантов выбираем d = 6,5.

        Так, отлично. Разность прогрессии найдена. По первому уравнению системы считаем первый член:

        a1 = 7 — 3d = 7 – 3·6,5 = -3,5

        Вот, практически, и всё. Что там от нас в задаче требуют? Двадцатый член? Да, пожалуйста!

        a20 = a1 + (20 — 1)·d = -3,5 + 19·6,5 = 120

        Ответ: 120

        А теперь мы рассмотрим с вами ещё несколько коротких и простых задачек. Они, по своей сути, и вправду очень простые, но многих учеников ставят в тупик своей непривычностью и нестандартной подачей условия. Вот и пугается народ. И спотыкается на ровном месте, теряя драгоценные баллы на экзамене…

        Работаем с видоизменённой формулой!

        Первым делом, давайте с вами вспомним, как мы обычно задаём любую арифметическую прогрессию? Варианта два:

        1) Отдельными параметрами прогрессии (скажем, a1 и d или a1 и an и т.п.);

        2) В виде последовательности чисел.

        Например:

        (an): 1, 5, 9, 13, 17, …

        К этим двум вариантам задания прогрессии мы уже попривыкли.) Но оказывается, есть ещё и третий вариант задания арифметической прогрессии! А именно – в виде формулы n-го члена. Да-да! Любую арифметическую прогрессию в общем виде можно задать формулой её n-го члена. Для каждой прогрессии — своей.)

        Смотрите сами.

        Пусть, например, в арифметической прогрессии a1 = 3 и d = 5. Запишем для неё формулу n-го члена:

        an = 3 + 5·(n-1)

        Раскрываем скобки и упрощаем:

        an = -2 + 5n

        Это выражение — тоже формула n-го члена! Только не общая, а уже для конкретной прогрессии. Задачки с такой видоизменённой формулой очень часто попадаются на экзамене. И частенько народ, не подумав, тут же радостно ответ пишет и… приехали.) Чем же эта формула так коварна? Здесь есть подводный камень: некоторые, глядя на формулу, сразу думают, что первый член — минус два. Хотя реально первый член — тройка…

        Например, такая задачка на основе реального варианта ОГЭ:

        Арифметическая прогрессия задана условием an = 5 — 1,5n. Найдите сумму первого и девятого её членов.

        Здесь прогрессия задана не совсем привычно. Формула какая-то… Ничего страшного. Бывает.) Эта формула — тоже формула n-го члена арифметической прогрессии. Она тоже позволяет найти любой член прогрессии по его номеру!

        Вот и ищем наши члены. Начинаем с первого члена. Тот, кто думает, что первый член — пятёрка, фатально ошибается! Потому что формула в задаче — видоизменённая. И первый член прогрессии в ней спрятан. Не беда, сейчас мы его отыщем.)

        Просто берём и подставляем n=1 в формулу:

        a1 = 5 — 1,5·1 = 3,5

        Вот так! Первый член — три с половиной! А вовсе не пятёрка…

        Подставляем теперь n=9 и считаем девятый член:

        a9 = 5 — 1,5·9 = -8,5

        Ну и считаем требуемую сумму:

        a1 + a9 = 3,5 + (-8,5) = -5

        Ответ: -5

        Вот и все дела. Теперь, надеюсь, видоизменённая формула n-го члена арифметической прогрессии не поставит вас навечно в тупик.)

        Работаем с рекуррентной формулой!

        Рассмотрим теперь ещё один сюрприз. Частенько в задачах на арифметическую прогрессию встречается ещё одно обозначение — an+1. Это, как вы уже, наверное, догадались, “эн плюс первый” член прогрессии. Всё очень просто. Это член прогрессии, номер которого больше номера n на единичку. И всё.) Например, если в какой-нибудь задаче мы берём за an третий член, то an+1 будет четвёртым членом. И тому подобное.

        Чаще всего обозначение an+1 встречается в так называемых рекуррентных формулах. Не пугаемся этого страшного слова!) Рекуррентная формула – это всего лишь способ задания любого члена арифметической прогрессии через предыдущий член. И всё.) Это ещё один, четвёртый способ задания арифметической прогрессии. Поработаем и с ним.

        Допустим, арифметическая прогрессия нам задана рекуррентной формулой:

        an+1 = an+4

        a1 = 3

        Можно посчитать второй член этой прогрессии? Легко! Если за an принять первый член прогрессии a1, то второй член будет, как раз, a1+1 = a2. Первый член нам уже дан отдельно. Это тройка. Вот и считаем по формуле:

        a2 = a1 + 4 = 3+4 = 7

        Третий член можно посчитать через второй:

        a3 = a2 + 4 = 7+4 = 11

        Четвёртый можно посчитать через третий, пятый – через четвёртый, и так далее. Продолжая эту цепочку, можно таким способом добраться до любого интересующего нас члена. А как можно посчитать сразу, скажем, 25-й член a25? К сожалению, никак… Пока предыдущий, 24-й член, не узнаем, 25-й не посчитаем. В этом и состоит принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная формула работает по принципу домино, только через предыдущий член, в то время как формула n-го члена — через первый и позволяет сразу находить любой член прогрессии по его номеру. Не просчитывая всю последовательность по порядочку.)

        Кстати, а как вы думаете, почему в рекуррентной формуле

        an+1 = an+4

        a1 = 3

        первый член a1 нам задан отдельно? Ответ прост: для последовательного подсчёта членов рекуррентным способом, нам всегда необходима некая точка отсчёта. А именно — некоторый стартовый член, с которого следует начинать. Это, кстати, не обязательно может быть именно первый член. Можно начать счёт со второго члена, с третьего — с любого! С того члена, который дополнительно указан в условии в качестве стартового.

        Подведём итог. Как вы видите, если число последовательно просчитываемых членов не очень большое (скажем, три или пять), то рекуррентные формулы вовсе не так уж и плохи на практике. А вот если считать предстоит много, то уже начинаются неудобства, да…

        К счастью, в арифметической прогрессии рекуррентную формулу очень легко превратить в обычную. Как? Просто посчитать пару последовательных членов, вычислить разность d, найти первый член (если надо), записать формулу n-го члена в привычном виде, да и работать с ней.

        В ОГЭ подобные задания частенько встречаются. Например, такая задачка:

        Арифметическая прогрессия задана условиями:

        an+1 = an+2,8

        a2 = 3

        Найдите 112-й член этой прогрессии.

        Здесь прогрессия задана рекуррентным способом. Ну и ничего страшного. Любой член прогрессии можно посчитать через предыдущий. Второй член нам уже известен. Это тройка. Через него можно посчитать третий член, через третий — четвёртый и так далее вплоть до нужного нам 112-го члена. Мрачноватая перспектива, вообще-то.) А времени на экзамене немного, да…

        Но! У нас же есть такой мощный инструмент, как формула n-го члена! Которая сразу выдаст нам любой член с любым номером! Вот и запустим её в дело. Для начала просто запишем в тетрадке:

        an = a1 + (n-1)·d

        А теперь смотрим на формулу и соображаем, какие данные у нас уже есть, а что нужно дополнительно посчитать.

        Пока у нас есть только номер члена n = 112. А вот первого члена a1 и разности d — пока не хватает. Не беда, сейчас отыщем!

        Читаем ещё раз задачку и видим, что:

        an+1 = an+2,8    и    a2 = 3

        Можно посчитать третий член по известному второму? Можно!

        Считаем:

        a3 = a2+2,8 = 3+2,8 = 5,8

        Ну вот. Теперь нам стали известны два последовательных члена прогрессии — второй и третий. Считаем разность прогрессии:

        d = a3 — a2 = 5,8 — 3 = 2,8

        Внимание! Ещё раз напоминаю, что разность прогрессии d — это не просто разница между двумя соседними членами! Это именно разность между членом и предыдущим членом! Стало быть, для определения разности, надо всегда от члена с большим номером отнять член с меньшим номером.

        Кстати сказать, а можно ли было сразу найти разность прогрессии, не вычисляя третий член? Можно! Давайте ещё разок посмотрим на нашу рекуррентную формулу:

        an+1 = an+2,8

        Переводим формулу на человеческий язык: каждый член (an+1) больше предыдущего члена (an) на 2,8. Прямо по смыслу и определению арифметической прогрессии, величина 2,8 и есть разность d! Вот и всё.)

        Так, разность прогрессии найдена. Осталось отыскать первый член. Не вопрос! Второй член нам уже дан по условию, а разность мы нашли только что. Вот и отнимаем разность прогрессии от второго члена:

        a1 = a2 — d = 3 — 2,8 = 0,2

        Вот и финишная прямая. Подставляем все чиселки в формулу n-го члена и считаем 112-й член:

        a112 = a1 + (112-1)·d = 0,2 + 111·2,8 = 311

        Ответ: 311

        Ну как, прониклись? Мощная штука формула n-го члена, правда? Тогда решаем самостоятельно.

        Для разминки:

        1. Записаны первые три члена арифметической прогрессии:

        20; 17; 14; …

        Какое число стоит в этой арифметической прогрессии на 91-м месте?

        2. В третьем ряду киноконцертного зала 34 места, а в пятнадцатом — 58 мест. Сколько мест в одиннадцатом ряду, если считать число мест в каждом ряду арифметической прогрессией?

        Эта чуть покруче будет:

        3. Дана арифметическая прогрессия:

        32; 31,6; 31,2; …

        Найдите номер первого отрицательного члена этой прогрессии.

        Картинку рисовать муторно, да. Слишком уж медленно наша прогрессия к отрицательным числам приближается… Но вы же формулу n-го члена знаете! Вперёд! Ну, и элемент творчества небольшой надо проявить, да.)

        А вот это уже не разминка:

        3. Известно, что в арифметической прогрессии a6 = 6 и a251 = -190. Найдите a101.

        4. Третий член арифметической прогрессии в три раза меньше шестого, а сумма второго и пятого членов равна 16. Найдите пятнадцатый член этой прогрессии.

        5. Сумма восьмого и четырнадцатого членов убывающей арифметической прогрессии равна нулю, а произведение третьего и двенадцатого членов равно -32. Найдите девятнадцатый член прогрессии.

        Задачки попроще, для отдыха:

        6. Арифметическая прогрессия задана условием: an = -0,6+8,6n. Найдите произведение первого и шестнадцатого её членов.

        7. Арифметическая прогрессия задана условиями:

        an+1 = an — 0,3

        a1 = 10

        Найдите 51-й член прогрессии.

        Ответы (в беспорядке): 54; -5; 82; -70; -250; 1096; -16; 50;

        Ну вот и второй этап знакомства с арифметической прогрессией успешно пройден! Осталось ещё научиться быстро складывать её члены. Такие задачки тоже часто встречаются! Об этом — в следующем уроке.

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

{displaystyle a_{1}, a_{1}+d, a_{1}+2d, ldots , a_{1}+(n-1)d, ldots  ,}

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):

{displaystyle a_{n}=a_{n-1}+d.}[1]

Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:

{displaystyle a_{n}=a_{1}+(n-1)d.}

Арифметическая прогрессия является монотонной последовательностью. При d>0 она является возрастающей, а при d<0 — убывающей. Если d=0, то последовательность будет стационарной. Эти утверждения следуют из соотношения a_{n+1}-a_n=d для членов арифметической прогрессии.

Свойства[править | править код]

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n может быть найден по формулам

a_n=a_1+(n-1)d
{displaystyle a_{n}=a_{m}-(m-n)d}

где a_{1} — первый член прогрессии, d — её разность, a_m — член арифметической прогрессии с номером m.

Доказательство формулы общего члена арифметической прогрессии

Пользуясь соотношением a_{n+1}=a_n+d выписываем последовательно несколько членов прогрессии, а именно:

a_2=a_1+d

a_3=a_2+d=a_1+d+d=a_1+2d

a_4=a_3+d=a_1+2d+d=a_1+3d

a_5=a_4+d=a_1+3d+d=a_1+4d

Заметив закономерность, делаем предположение, что a_n=a_1+(n-1)d. С помощью математической индукции покажем, что предположение верно для всех n in mathbb N:

База индукции (n=1) :

a_1=a_1+(1-1)d=a_1 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_k=a_1+(k-1)d. Докажем истинность утверждения при n=k+1:

a_{k+1}=a_k+d=a_1+(k-1)d+d=a_1+kd

Итак, утверждение верно и при n=k+1. Это значит, что a_n=a_1+(n-1)d для всех n in mathbb N.

Отметим, что в формулах общего члена n-й член прогрессии есть линейная функция. Об этом говорит следующая теорема.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы a_n являлась линейной функцией (от n)[3].

Доказательство

Необходимость. Пусть {displaystyle left{a_{n}right}} арифметическая прогрессия. Тогда, как было уже показано, a_n=a_1+(n-1)d, то есть {displaystyle a_{n}=nd+a_{1}-d}. Так как {displaystyle fleft(xright)=ax+b} есть линейная функция и {displaystyle xin mathbb {N} }, это значит, что {displaystyle a=d} и {displaystyle b=a_{1}-d}, т. е. a_n — линейная функция, где {displaystyle fleft(nright)=nd+a_{1}-d}.

Достаточность. Пусть a_n есть линейная функция, т. е. {displaystyle a_{n}=acdot x+b}. Так как {displaystyle xin mathbb {N} } и {displaystyle x=n}, то {displaystyle a_{n}=acdot n+b}, тогда {displaystyle a_{n+1}=acdot left(n+1right)+b}.
Рассмотрим {displaystyle a_{n+1}-a_{n}=left(acdot left(n+1right)+bright)-left(an+bright)}.
Отсюда следует, что {displaystyle a_{n+1}-a_{n}=a}, где a — величина постоянная. Тогда {displaystyle a_{n+1}=a_{n}+a}, а это значит по определению, что {displaystyle left{a_{n}right}} — арифметическая прогрессия.

Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. {displaystyle a_{n}+a_{m}=a_{k}+a_{l}Longleftrightarrow n+m=k+lquad vert ;forall left(n,,m,,k,,lin mathbb {N} right)}.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a_1, a_2, a_3, ldots есть арифметическая прогрессия Longleftrightarrow для любого её элемента выполняется условие

{displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}},ngeqslant 2.}

Доказательство характеристического свойства арифметической прогрессии

Необходимость.

Поскольку a_1, a_2, a_3, ldots — арифметическая прогрессия, то для n geqslant 2 выполняются соотношения:

a_n=a_{n-1}+d

a_n=a_{n+1}-d.

Сложив эти равенства и разделив обе части на 2, получим {displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность.

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется a_n=frac{a_{n-1}+a_{n+1}}2. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду a_{n+1}-a_n=a_n-a_{n-1}. Поскольку соотношения верны при всех n geqslant 2, с помощью математической индукции покажем, что a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

База индукции (n=2) :

a_2-a_1=a_3-a_2 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Докажем истинность утверждения при n=k+1:

a_{k+1}-a_{k}=a_{k+2}-a_{k+1}

Но по предположению индукции следует, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Получаем, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k=a_{k+2}-a_{k+1}

Итак, утверждение верно и при n=k+1. Это значит, что a_n=frac{a_{n-1}+a_{n+1}}2, n geqslant 2 Rightarrow a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

Обозначим эти разности через d. Итак, a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n=d, а отсюда имеем a_{n+1}=a_n+d для n in mathbb N. Поскольку для членов последовательности a_1, a_2, a_3, ldots выполняется соотношение a_{n+1}=a_n+d, то это есть арифметическая прогрессия.

Тождество арифметической прогрессии[править | править код]

Пусть {displaystyle a_{k},a_{l},a_{m}} — соответственно k-й, l-й, m-й члены арифметической прогрессии, где {displaystyle k,,l,,min mathbb {N} }. Тогда для всякой такой тройки выполняется комплементарное свойство арифметической прогрессии[нет в источнике], называемое тождеством арифметической прогрессии:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Доказательство тождества арифметической прогрессии

С помощью формулы общего члена выразим k-й, l-й, m-й члены:

{displaystyle a_{k}=a_{1}+(k-1)d,quad a_{l}=a_{1}+(l-1)d,quad a_{m}=a_{1}+(m-1)d.}

Вычитая почленно из первого равенства второе, а из второго третьего, получим:

{displaystyle a_{k}-a_{l}=(k-l)d,quad a_{l}-a_{m}=(l-m)d.}

Выражая из этих равенств d и приравнивая полученные выражения, получим:

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

По основному свойству пропорции:

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Откуда следует доказываемое тождество:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.

Доказательство

Преобразовав тождество арифметической прогрессии

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

к виду

{displaystyle a_{m}={dfrac {(l-m)a_{k}+(m-k)a_{l}}{l-k}},}

можно заметить, что m-й член есть линейная комбинация двух других членов (a_{{k}} и {displaystyle a_{l}}), поскольку оно равносильно

{displaystyle a_{m}={dfrac {l-m}{l-k}}a_{k}+{dfrac {m-k}{l-k}}a_{l}.}

Следствие 2. Для того, чтобы число {displaystyle a_{m}} являлось членом данной арифметической прогрессии с членами a_{{k}} и {displaystyle a_{l}}, необходимо и достаточно, чтобы было натуральным число

{displaystyle m={dfrac {(a_{l}-a_{m})k+(a_{m}-a_{k})l}{a_{l}-a_{k}}}.}

Формулировка ещё одного признака арифметической прогрессии.

Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.

{displaystyle left{a_{n}right}~-~div Longleftrightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Доказательство

Необходимость. Утверждение

{displaystyle left{a_{n}right}~-~div Rightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} }

очевидно (см. доказательство тождества арифметической прогрессии).

Достаточность. Докажем, что

{displaystyle left{a_{n}right}~-~div Leftarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Равенство

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

можно преобразовать к виду

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Если все три номера различны, тогда

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

Обозначим выражение, например, в левой части равенства за d, то есть

{displaystyle d={dfrac {a_{k}-a_{l}}{k-l}}.}

Откуда можно прийти к следующему предложению:

{displaystyle a_{k}=a_{l}+{left(k-lright)}d.}

Наконец, методом математической индукции, например, по l нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.

Действительно, при l=1 (база индукции) получаем формулу общего члена арифметической прогрессии:

{displaystyle a_{k}=a_{1}+{left(k-1right)}d.}

Предположим истинность утверждения (для l): формула {displaystyle a_{k}=a_{l}+{left(k-lright)}d} характеризует арифметическую прогрессию. Тогда покажем, что и при l+1 формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы

{displaystyle a_{k}=a_{l+1}+{left(k-left(l+1right)right)}d.}

По предположению индукции ({displaystyle a_{k}=a_{l}+{left(k-lright)}d}) заменим a_{k} на выражение {displaystyle a_{l}+{left(k-lright)}d}. Итак, получим следующее:

{displaystyle a_{l}+{left(k-lright)}d=a_{l+1}+{left(k-left(l+1right)right)}d.}

Методом тождественных преобразований имеем равносильное предложение

{displaystyle a_{l+1}=a_{l}+d.}

А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.

Значит, по принципу математической индукции можно утвердать, что для всякого l соотношение {displaystyle a_{k}=a_{l}+{left(k-lright)}d} верно только и только для членов арифметической прогрессии.

Аналогичные рассуждения проводятся для формулы {displaystyle d={dfrac {a_{l}-a_{m}}{l-m}}}.

Данное следствие целиком и полностью считается доказанным.

Сумма первых n членов арифметической прогрессии[править | править код]

Сумма первых n членов арифметической прогрессии {displaystyle S_{n}=sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+ldots +a_{n}} может быть найдена по формулам

{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n} , где a_{1} — первый член прогрессии, a_n — член с номером n, n — количество суммируемых членов.
{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot ({dfrac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a_{1} — первый член прогрессии, a_{2} — второй член прогрессии {displaystyle ,a_{n}} — член с номером n.
{displaystyle S_{n}={dfrac {2a_{1}+d(n-1)}{2}}cdot n} , где a_{1} — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
{displaystyle S_{n}=a_{frac {n+1}{2}}cdot n}, если n — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:

S_n=a_1+a_2+a_3+ ldots +a_{n-2}+a_{n-1}+a_n

S_n=a_n+a_{n-1}+a_{n-2}+ ldots +a_3+a_2+a_1 — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+ ldots +(a_{n-2}+a_3)+(a_{n-1}+a_2)+(a_n+a_1)

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде a_i+a_{n-i+1}, i=1,2,ldots,n. Воспользуемся формулой общего члена арифметической прогрессии:

a_i+a_{n-i+1}=a_1+(i-1)d+a_1+(n-i+1-1)d=2a_1+(n-1)d, i=1,2,ldots,n

Получили, что каждое слагаемое не зависит от i и равно 2a_1+(n-1)d. В частности, a_1+a_n=2a_1+(n-1)d. Поскольку таких слагаемых n, то

{displaystyle 2S_{n}=(a_{1}+a_{n})cdot nRightarrow S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n}

Третья формула для суммы получается подстановкой 2a_1+(n-1)d вместо a_1+a_n. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a_1+a_n в первой формуле для суммы можно взять любое из других слагаемых a_i+a_{n-i+1}, i=2,3,ldots,n, так как они все равны между собой.

Формулировка ещё одного факта: для всякой арифметической прогрессии при любом n выполняется равенство:

{displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n}.}

Примечание: S_{k} — сумма k первых членов арифметической прогрессии.

Доказательство

1. Очевидно, что {displaystyle {dfrac {S_{2n}}{2n}}-{dfrac {S_{n}}{n}}={dfrac {a_{1}+a_{2n}-left(a_{1}+a_{n}right)}{2}}={dfrac {a_{2n}-a_{n}}{2}},} или {displaystyle S_{2n}-2S_{n}=ncdot (a_{2n}-a_{n}).}

Прибавим к обеим частям S_{n} и получим, что {displaystyle S_{2n}-S_{n}=S_{n}+ncdot (a_{2n}-a_{n}).}

2. Покажем, что {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

Это так, поскольку можно написать верное равенство:

{displaystyle {dfrac {S_{3n}}{3n}}-{dfrac {S_{n}}{n}}={dfrac {a_{3n}-a_{n}}{2}}.} Из него следует, что {displaystyle {dfrac {S_{3n}}{3}}=S_{n}+{dfrac {a_{3n}-a_{n}}{2}}cdot n.}

3. Теперь докажем, что {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}
Перепишем последнее как {displaystyle a_{2n}={dfrac {a_{3n}+a_{n}}{2}}.}

Но гораздо лучше представить это равенство в виде {displaystyle a_{2n}={dfrac {a_{2n+1}+a_{2n-1}}{2}}.} Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}

4. А следовательно, {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

5. Тем самым, {displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n},} что и требовалось доказать.

Предыдущее свойство имеет обобщение.

Для любых натуральных k, l, m выполняется комплементарное свойство сумм:

{displaystyle {dfrac {l-m}{k}}cdot S_{k}+{dfrac {m-k}{l}}cdot S_{l}+{dfrac {k-l}{m}}cdot S_{m}=0.}

Ещё один признак арифметической прогрессии.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы сумма первых n членов последовательности была функцией не выше второй степени относительно n[6].

Сумма членов арифметической прогрессии от n-го до m-го[править | править код]

Сумма членов арифметической прогрессии с номерами от n до m {displaystyle S_{m,n}=sum _{i=n}^{m}a_{i}=a_{n}+a_{n+1}+ldots +a_{m}} может быть найдена по формулам

{displaystyle S_{m,n}={dfrac {a_{m}+a_{n}}{2}}cdot (m-n+1)} , где a_m — член с номером m, a_n — член с номером n, {displaystyle (m-n+1)} — количество суммируемых членов.

{displaystyle S_{m,n}={dfrac {2a_{n}+dleft(m-nright)}{2}}cdot left(m-n+1right),}

где a_n — член с номером n, d — разность прогрессии, {displaystyle (m-n+1)} — количество суммируемых членов.

Произведение членов арифметической прогрессии[править | править код]

Произведением первых n членов арифметической прогрессии {displaystyle left{a_{n}right}} называется произведение от a_{1} до a_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}a_{i}=a_{1}cdot a_{2}cdot a_{3}cdot ldots cdot a_{n-2}cdot a_{n-1}cdot a_{n}.} Обозначение: P_{n}.

Свойство произведения:

Число множителей-скобок {displaystyle {left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} равно {displaystyle {dfrac {n-1}{2}}}, а в самом произведении {displaystyle a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} их составляет {displaystyle {dfrac {n+1}{2}}} «штук».[10]

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a_1, a_2, a_3, ldots расходится при dne 0 и сходится при d=0. Причём

lim_{nrightarrowinfty} a_n=left{ begin{matrix} +infty, d>0 \ -infty, d<0  \ a_1, d=0 end{matrix} right.

Доказательство
Записав выражение для общего члена и исследуя предел lim_{nrightarrowinfty} (a_1+(n-1)d), получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a_1, a_2, a_3, ldots — арифметическая прогрессия с разностью d и число a>0. Тогда последовательность вида a^{a_1}, a^{a_2}, a^{a_3}, ldots есть геометрическая прогрессия со знаменателем a^d.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}= a^{a_n}, ngeqslant 2

Воспользуемся выражением для общего члена арифметической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}=sqrt{a^{a_1+(n-2)d}cdot a^{a_1+nd}}=sqrt{a^{2a_1+2(n-1)d}}=sqrt{(a^{a_1+(n-1)d})^2}=a^{a_1+(n-1)d}=a^{a_n}, ngeqslant 2

Итак, поскольку характеристическое свойство выполняется, то a^{a_1}, a^{a_2}, a^{a_3}, ldots — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=frac{a^{a_2}}{a^{a_1}}=frac{a^{a_1+d}}{a^{a_1}}=a^d.

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа {displaystyle 1,3,6,10,15,ldots } также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию {displaystyle 2,3,4,5,ldots }

Тетраэдральные числа {displaystyle 1,4,10,20,35,ldots } образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если left[a_{{i}}right]_{{1}}^{{n}} — арифметическая прогрессия порядка m, то существует многочлен P_{{m}}(i)=c_{{m}}i^{{m}}+...+c_{{1}}i+c_{{0}}, такой, что для всех iin left{1,....nright} выполняется равенство a_{{i}}=P_{{m}}(i)[11]

Примеры[править | править код]

{displaystyle T_{n}=sum _{i=1}^{n}i=1+2+3+ldots +n={frac {n(n+1)}{2}}}

Формула для разности[править | править код]

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

{displaystyle {mathit {d={frac {a_{m}-a_{n}}{m-n}}}}}.

Сумма чисел от 1 до 100[править | править код]

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле

frac{n(n+1)}2

то есть к формуле суммы первых n чисел натурального ряда.

См. также[править | править код]

  • Геометрическая прогрессия
  • Арифметико-геометрическая прогрессия

Примечания[править | править код]

  1. Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
  2. Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
  3. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  4. Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
  5. Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
  6. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  7. Из доказательства необходимости следует, что {displaystyle S_{n}=an^{2}+bn}, поэтому, если {displaystyle S_{n}=an^{2}+bn+c}, то необходимо сделать проверку. Например, если {displaystyle S_{n}=2n^{2}-n-6} — сумма первых n членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой {displaystyle S_{n}=2n^{2}-n} первых n членов, будет арифметической прогрессией.
  8. При n=1 произведение P_{n} равно {displaystyle a_{frac {1+1}{2}}=a_{1}}, что безусловно верно.
  9. Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и n-м членом.
  10. Пример применения формулы.
    Пусть {displaystyle div left{a_{n}right}:quad underbrace {27} _{a_{1}},;underbrace {20} _{a_{2}},;underbrace {13} _{a_{3}},;underbrace {6} _{a_{4}},;underbrace {-1} _{a_{5}}}, где {displaystyle d=-7}.

    По формуле {displaystyle P_{n}=a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} найдём произведение пяти первых членов. Количество сомножителей должно равняться {displaystyle {dfrac {5+1}{2}}=3}. Причём первым сомножителем будет {displaystyle a_{frac {5+1}{2}}=a_{3}=13}.

    Далее {displaystyle prod limits _{i=1}^{frac {5-1}{2}}{left(a_{frac {5+1}{2}}^{2}-{left[idright]}^{2}right)}=prod limits _{i=1}^{2}{left(a_{3}^{2}-{left[idright]}^{2}right)}=}{displaystyle ={left(a_{3}^{2}-{left[dright]}^{2}right)}cdot {left(a_{3}^{2}-{left[2dright]}^{2}right)}={left(169-49right)}cdot {left(169-4cdot 49right)}=}{displaystyle =120cdot {left(-27right)}}.

    Наконец, {displaystyle P_{n}=13cdot 120cdot {left(-27right)}=-42120}.
  11. Бронштейн, 1986, с. 139.

Литература[править | править код]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.

Ссылки[править | править код]

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Арифметическая прогрессия

  1. Понятие арифметической прогрессии
  2. Формула n-го члена арифметической прогрессии
  3. Свойства арифметической прогрессии
  4. Сумма первых n членов арифметической прогрессии
  5. Примеры

п.1. Понятие арифметической прогрессии

Арифметической прогрессией называют числовую последовательность, каждый член которой an, начиная со второго, равен сумме предыдущего члена an-1 и некоторого постоянного числа d: $$ mathrm{ a_n=a_{n-1}+d, ninmathbb{N}, nleq 2 } $$ Число d называют разностью арифметической прогрессии.

Например:
1. Последовательность 2, 5, 8, 11, 14, … является арифметической прогрессией с разностью d = 3.

2. Последовательность 12, 9, 6, 3, 0, –3, –6, … является арифметической прогрессией с разностью d = –3.

п.2. Формула n-го члена арифметической прогрессии

По определению арифметической прогрессии мы получаем рекуррентную формулу для n-го члена: an = an-1 + d. Из неё можно вывести аналитическую формулу:

a2 = a1 + d, $qquad$ a3 = a2 + d = (a1 + d) + d = a1 + 2d
a4 = a3 + d = (a1 + 2d) + d = a1 + 3d,…

Получаем:

an = a1 + (n – 1)d

Например:
Найдём a7, если известно, что a1 = 5, d = 3.
По формуле n-го члена получаем: a7 = a1 + 6d = 5 + 6 · 3 = 23

п.3. Свойства арифметической прогрессии

Свойство 1. Линейность

Арифметическая прогрессия является линейной функцией f(n) = kn + b:

an = dn + (a1 – d)

с угловым коэффициентом k = d и свободным членом b = a1 – d.

Свойство 1

Свойство 1

При d > 0 прогрессия линейно возрастает

При d < 0 прогрессия линейно убывает

Следствие: любую арифметическую прогрессию можно задать формулой: $$ mathrm{ a_n=dn+b, ninmathbb{N}, binmathbb{R}, dinmathbb{R}} $$ где d, b – некоторые числа.

Свойство 2. Признак арифметической прогрессии

Для того чтобы числовая последовательность была арифметической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним арифметическим предыдущего и последующего членов: $$ mathrm{ left{a_nright} – text{арифметическая прогрессия} Leftrightarrow a_n=frac{a_{n-1}+a_{n+1}}{2}, ninmathbb{N}, n geq 2 } $$ Следствие: каждый член прогрессии является средним арифметическим двух равноудалённых от него членов: $$ mathrm{ a_n=frac{a_{n-k}+a_{n+k}}{2}, ninmathbb{N}, ninmathbb{N}, n geq k+1 } $$

Например:
Найдём a9, если известно, что a7 = 10, a11 = 15
По следствию из признака арифметической прогрессии: (mathrm{a_9=frac{a_7+a_{11}}{2}=frac{10+15}{2}=12,5})

Свойство 3. Равенство сумм индексов

Если {an} – арифметическая прогрессия, то из равенства сумм индексов следует равенство сумм членов: $$ mathrm{ m+k=p+q Rightarrow a_m+a_k=a_p+a_q } $$ Следствие: сумма членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ a_1 + a_n=a_2+a_{n-1}=a_3+a_{n-2}=… } $$

Например:
Найдём a6, если известно, что a2 = 5, a4 = 10, a8 = 20
По равенству сумм индексов a2 + a8 = a4 + a6
Откуда a6 = a2 + a8 – a4 = 5 + 20 – 10 = 15

п.4. Сумма первых n членов арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна произведению среднего арифметического её крайних членов и количества членов: $$mathrm{ S_n=frac{a_1+a_n}{2}n} $$

Если учесть, что an = a1 + d(n – 1), получаем ещё одну формулу для суммы: $$mathrm{ S_n=frac{2a_1+d(n-1)}{2}n} $$

Например:
Найдём сумму первых 100 натуральных чисел: 1 + 2 +…+ 100
В этом случае a1 = 1, a100 = 100, n = 100
(mathrm{ S_{100}=frac{1+100}{2}cdot 100=5050})

п.5. Примеры

Пример 1. Найдите первый член и разность арифметической прогрессии, если:
а) a7 = 10, a15 = 42
Найдем разность данных членов: a15 – a7 = (a1 + 14d) – (a1 + 6d) = 8d
Получаем разность прогрессии: 42 – 10 = 8d ⇒ d = 32 : 8 = 4
7-й член: a7 = a1 + 6d = a1 + 6 · 4 = 10 ⇒ a1 = 10 – 24 = –14
Ответ: a1 = –14, d = 4

б) a10 = 95, S10 = 500
Сумма прогрессии: (mathrm{S_{10}=frac{a_1+a_{10}}{2}cdot 10Rightarrow 500=(a_1+95)cdot 5Rightarrow a_1+95=100Rightarrow a_1=5})
10-й член: (mathrm{a_{10}=a_1+9dRightarrow95=5+9dRightarrow 9d=90Rightarrow d=10})
Ответ: a1 = 5, d = 10

Пример 2. Найдите сумму первых 100 нечётных натуральных чисел.
Чему равно последнее слагаемое этой суммы?
Ищем сумму (mathrm{underbrace{1+3+5+…}_{100 text{слагаемых}}})
По условию a1 = 1, d = 2, n = 100. Получаем:
(mathrm{S_{100}=frac{2a_1+d(n-1)}{2}n=frac{2cdot 1+2cdot 99}{2}cdot 100=10000})
Формула n-го члена данной прогрессии: (mathrm{a_n=a_1+d(n-1)=dn+(a_1-d)=2n-1})
100-й член (mathrm{a_{100}=2cdot 100-1=199})
Ответ: S100 = 10000, a100 = 199

Пример 3*. Сколько членов арифметической прогрессии 10, 16, 22, … находится между числами 110 и 345?
По условию a1 = 10, d = 16 – 10 = 6
Формула n-го члена данной прогрессии an = a1 + d(n – 1) = dn + (a1 – d) = 6n + 4
Заданные числа могут быть членами данной прогрессии или находиться по «соседству» с ними. Подставим их в формулу для n-го члена: begin{gather*} mathrm{ 6k+4=110Rightarrow 6k=106Rightarrow k=17frac23Rightarrow 17lt klt 18 }\ mathrm{ 6m+4=345Rightarrow 6m=341Rightarrow m=56frac56Rightarrow 56lt mlt 57 } end{gather*} Ближайший сосед справа к 100 – это a18 = 6 · 18 + 4 = 112, k = 18
Ближайший сосед слева к 345 – это a56 = 6 · 56 + 4 = 340, m = 56
Свойство 1
Количество членов прогрессии в заданном интервале:

n = m – k + 1 = 56 – 18 + 1 = 39

Ответ: 39

Пример 4. Одиннадцатый член арифметической прогрессии равен 7.
Найдите сумму её первых 21 членов.
По свойству суммы индексов: a11 + a11 = a1 + a21
Откуда a1 + a21 = 2a11 = 14
Искомая сумма: (mathrm{S_{21}=frac{a_1+a_{21}}{2}cdot 21=frac{14}{2}cdot 21=147})
Ответ: 147

Пример 5. Величины углов выпуклого пятиугольника образуют арифметическую прогрессию. Найдите третий член этой прогрессии.
Сумма углов выпуклого пятиугольника S5 = 180° · (5 – 2) = 540°
Если углы образуют арифметическую прогрессию, то: $$ mathrm{ S_5=frac{a_1+a_5}{2}cdot 5=540^circRightarrow a_1+a_5=216^circ } $$ По свойству суммы индексов: a3 + a3 = a1 + a5
Откуда: (mathrm{a_3=frac{a_1+a_5}{2}=108^circ})
Ответ: 108°

Пример 6. При каких значениях x числа x2 – 11, 2x2 + 29, x4 – 139 в заданной последовательности являются членами арифметической прогрессии?
Для последовательных членов получаем уравнение:

a2 – a1 = a3 – a2
(2x2 + 29) – (x2 – 11) = (x4 – 139) – (2x2 + 29)
x4 – 3x2 – 208 = 0 ⇒ (x2 + 13)(x2 – 16) = 0 ⇒ x2 = 16 ⇒ x = ±4

Ответ: x = ±4

Пример 7. Сумма первых трёх членов убывающей арифметической прогрессии равна 9, а сумма их квадратов равна 99. Найдите седьмой член прогрессии.
По условию d < 0 и: $$ left{ begin{array}{ l } mathrm{a_1+a_2+a_3=9} & \ mathrm{a_1^2+a_2^2+a_3^2=99} & end{array}right. $$ Используем свойство прогрессии: (mathrm{a_2=frac{a_1+a_3}{2}}). Получаем из первого уравнения:

3a2 = 9 ⇒ a_2 = 3

Тогда a1 = a2 – d = 3 – d, a3 = a2 + d = 3 + d. Подставляем во второе уравнение:

(3 – d)2 + 32 + (3 + d)2 = 99
9 – 6d + d2 + 9 + 9 + 6d + d2 = 99
2d2 = 72 ⇒ d2 = 36 ⇒ d = ±6

Выбираем отрицательное значение d = –6
1-й член прогрессии: a1 = a2 – d = 3 + 6 = 9
7-й член прогрессии: a7 = a1 + 6d = 9 + 6(–6) = –27
Ответ: x = –27

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

Для нахождения любого члена (его часто называют n-й член) арифметической прогрессии используют универсальную формулу:

Формула n-го члена арифметической прогресии

{a_n=a_1+(n-1)cdot d}

a1 – первый член прогрессии,

d – разность прогрессии (разница между членами прогрессии),

n – номер члена.

Пример нахождения члена арифметической прогрессии

Задача 1

Найдите 10-й член арифметической прогрессии 1; 3; 5…

Решение

Первый член прогрессии a1 = 1.

Разность прогрессии можно найти, если вычесть из второго члена первый. В нашем случае d = a2 – a1 = 3 – 1 = 2.

Искомый член прогрессии имеет номер 10, т. е. n = 10. Подставим значения в формулу и получим результат:

a_n=a_1+(n-1)cdot d = 1+(10-1)cdot 2 = 1+18 = 19

Ответ: 19

Ответ легко проверить с помощью калькулятора – проверить . А чтобы найти сумму членов прогрессии используйте калькулятор.

Добавить комментарий