Как составьте уравнение касательной к графику функции в точке

Уравнение касательной к графику функции

2 апреля 2011

Пусть дана функция f, которая в некоторой точке x0 имеет конечную производную f (x0). Тогда прямая, проходящая через точку (x0; f (x0)), имеющая угловой коэффициент f ’(x0), называется касательной.

А что будет, если производная в точке x0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример — функция y = |x| в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π/2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b, где k — угловой коэффициент. Касательная — не исключение, и чтобы составить ее уравнение в некоторой точке x0, достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x), которая имеет производную y = f ’(x) на отрезке [a; b]. Тогда в любой точке x0 ∈ (a; b) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x0) · (xx0) + f (x0)

Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.

Задача. Дана функция y = x3. Составить уравнение касательной к графику этой функции в точке x0 = 2.

Уравнение касательной: y = f ’(x0) · (xx0) + f(x0). Точка x0 = 2 нам дана, а вот значения f (x0) и f ’(x0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x0) = f (2) = 23 = 8;
Теперь найдем производную: f ’(x) = (x3)’ = 3x2;
Подставляем в производную x0 = 2: f ’(x0) = f ’(2) = 3 · 22 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x) = 2sin x + 5 в точке x0 = π/2.

В этот раз не будем подробно расписывать каждое действие — укажем лишь ключевые шаги. Имеем:

f (x0) = f (π/2) = 2sin (π/2) + 5 = 2 + 5 = 7;
f ’(x) = (2sin x + 5)’ = 2cos x;
f ’(x0) = f ’(π/2) = 2cos (π/2) = 0;

Уравнение касательной:

y = 0 · (xπ/2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет — просто мы наткнулись на точку экстремума.

Смотрите также:

  1. Правила вычисления производных
  2. Вводный урок по вычислению производных степенной функции
  3. Что такое логарифм
  4. Тест к уроку «Площади многоугольников без координатной сетки» (легкий)
  5. Текстовые задачи про рельсы
  6. Задача B4: Семья из трех человек едет из Москвы в Нижний Новгород

п.1. Уравнение касательной

Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Уравнение касательной
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}

Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) – существует и конечна.

Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$

Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}

п.2. Алгоритм построения касательной

На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)

Например:

Алгоритм построения касательной Пусть (f(x)=x^2+3).
Найдем касательную к этой параболе в точке (x_0=1).

(f(x_0)=1^2+3=4 )
(f'(x)=2x )
(f'(x_0)=2cdot 1=2)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

п.3. Вертикальная касательная

В случае, если производная (f'(x_0)=pminfty) – существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).

Внимание!

Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).

Например:

Вертикальная касательная Пусть (f(x)=sqrt[5]{x-1}+1).
Найдем касательную к этой кривой в точке (x_0=1).

(f(x_0)=sqrt[5]{1-1}+1=1)
(f'(x)=frac15(x-1)^{frac15-1}+0=frac15(x-1)^{-frac45}=frac{1}{5(x-1)^{frac45}} )
(f'(x_0)=frac{1}{5(1-1)^{frac45}}=frac10=+infty)
В точке (x_0) проходит вертикальная касательная.
Её уравнение: (x=1)
Ответ: (y=2x+2)

п.4. Примеры

Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

Пример 1а Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0).
Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*}

б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

Пример 1б Общее уравнение касательной: (f'(x)=4x+4)
По условию (f'(x_0)=tgalpha=tg45^circ=1)
Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*}

в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

Пример 1в Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*}

г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

Пример 1г У горизонтальной прямой (k=0).
Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*}

Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$

Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*} Пример 3
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})

Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b – для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Пример 4
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.

Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)

Пример 5 Ищем расстояние между двумя параллельными прямыми:
(y=2x) и (y=2x-1).
Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})

Уравнение касательной к графику функции

П. Романов, Т. Романова,
г. Магнитогорск,
Челябинская обл.

Уравнение
касательной к графику функции

Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. Тут, на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.

На современном этапе развития
образования в качестве одной из основных его
задач выступает формирование творчески мыслящей
личности. Способность же к творчеству у учащихся
может быть развита лишь при условии
систематического привлечения их к основам
исследовательской деятельности. Фундаментом для
применения учащимися своих творческих сил,
способностей и дарований являются
сформированные полноценные знания и умения. В
связи с этим проблема формирования системы
базовых знаний и умений по каждой теме школьного
курса математики имеет немаловажное значение.
При этом полноценные умения должны являться
дидактической целью не отдельных задач, а
тщательно продуманной их системы. В самом
широком смысле под системой понимается
совокупность взаимосвязанных взаимодействующих
элементов, обладающая целостностью и устойчивой
структурой.

Рассмотрим методику обучения
учащихся составлению уравнения касательной к
графику функции. По существу, все задачи на
отыскание уравнения касательной сводятся к
необходимости отбора из множества (пучка,
семейства) прямых тех из них, которые
удовлетворяют определенному требованию
– являются касательными к графику некоторой
функции. При этом множество прямых, из которого
осуществляется отбор, может быть задано двумя
способами:

а) точкой, лежащей на
плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок
прямых).

В связи с этим при изучении
темы «Касательная к графику функции» с целью
вычленения элементов системы нами были выделены
два типа задач:

1) задачи на касательную,
заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым
коэффициентом.

Обучение решению задач на
касательную осуществлялось при помощи
алгоритма, предложенного А.Г. Мордковичем [2].
Его принципиальное отличие от уже известных
заключается в том, что абсцисса точки касания
обозначается буквой a (вместо x0), в связи с чем
уравнение касательной приобретает вид

y = f(a) + f ‘(a)(x – a)

(сравните с y = f(x0) + f ‘(x0)(x
– x0)). Этот методический прием, на наш
взгляд, позволяет учащимся быстрее и легче
осознать, где в общем уравнении касательной
записаны координаты текущей точки, а где
– точки касания.

Алгоритм
составления уравнения касательной к графику
функции y = f(x)

1. Обозначить буквой a
абсциссу точки касания.
2. Найти f(a).
3. Найти f ‘(x) и f ‘(a).
4. Подставить найденные числа a, f(a), f ‘(a) в
общее уравнение касательной y = f(a) = f ‘(a)(x – a).

Этот алгоритм может быть
составлен на основе самостоятельного выделения
учащимися операций и последовательности их
выполнения.

Практика показала, что
последовательное решение каждой из ключевых
задач при помощи алгоритма позволяет
формировать умения написания уравнения
касательной к графику функции поэтапно, а шаги
алгоритма служат опорными пунктами действий.
Данный подход соответствует теории поэтапного
формирования умственных действий, разработанной
П.Я. Гальпериным и Н.Ф. Талызиной [3].

В первом типе задач были
выделены две ключевые задачи:

  • касательная проходит через
    точку, лежащую на кривой (задача 1);
  • касательная проходит через
    точку, не лежащую на кривой (задача 2).

Задача 1. Составьте уравнение
касательной к графику функции в точке M(3; – 2).

Решение. Точка M(3; – 2)
является точкой касания, так как

1. a = 3 – абсцисса точки
касания.
2. f(3) = – 2.
3. f ‘(x) = x2 – 4, f ‘(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение
касательной.

Задача 2. Напишите уравнения
всех касательных к графику функции y = – x2
– 4x + 2, проходящих через точку M(– 3; 6).

Решение. Точка M(– 3; 6) не
является точкой касания, так как f(– 3)
­ 6 (рис. 2).

1. a – абсцисса точки
касания.
2. f(a) = – a2 – 4a + 2.
3. f ‘(x) = – 2x – 4, f ‘(a) = – 2a – 4.
4. y = – a2 – 4a + 2 – 2(a + 2)(x – a)
– уравнение касательной.

Касательная проходит через
точку M(– 3; 6), следовательно, ее координаты
удовлетворяют уравнению касательной.

6 = – a2 – 4a + 2 – 2(a +
2)(– 3 – a),
a2 + 6a + 8 = 0
^ a1 = – 4, a2 = – 2.

Если a = – 4, то уравнение
касательной имеет вид y = 4x + 18.

Если a = – 2, то уравнение
касательной имеет вид y = 6.

Во втором типе ключевыми
задачами будут следующие:

  • касательная параллельна
    некоторой прямой (задача 3);
  • касательная проходит под
    некоторым углом к данной прямой (задача 4).

Задача 3. Напишите уравнения
всех касательных к графику функции y = x3 – 3x2
+ 3, параллельных прямой y = 9x + 1.

Решение.

1. a – абсцисса точки
касания.
2. f(a) = a3 – 3a2 + 3.
3. f ‘(x) = 3x2 – 6x, f ‘(a) = 3a2 – 6a.

Но, с другой стороны, f ‘(a) = 9
(условие параллельности). Значит, надо решить
уравнение 3a2 – 6a = 9. Его корни a = – 1, a = 3
(рис. 3).

4. 1) a = – 1;
2) f(– 1) = – 1;
3) f ‘(– 1) = 9;
4) y = – 1 + 9(x + 1);

y = 9x + 8 – уравнение
касательной;

1) a = 3;
2) f(3) = 3;
3) f ‘(3) = 9;
4) y = 3 + 9(x – 3);

y = 9x – 24 – уравнение
касательной.

Задача 4. Напишите уравнение
касательной к графику функции y = 0,5x2 – 3x + 1,
проходящей под углом 45° к прямой y = 0 (рис. 4).

Решение. Из условия f ‘(a) =
tg 45° найдем a:  a – 3 = 1
^ a = 4.

1. a = 4 – абсцисса точки
касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f ‘(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение
касательной.

Несложно показать, что
решение любой другой задачи сводится к решению
одной или нескольких ключевых задач. Рассмотрим
в качестве примера следующие две задачи.

1. Напишите уравнения
касательных к параболе y = 2x2 – 5x – 2, если
касательные пересекаются под прямым углом и одна
из них касается параболы в точке с абсциссой 3
(рис. 5).

Решение. Поскольку дана
абсцисса точки касания, то первая часть решения
сводится к ключевой задаче 1.

1. a = 3 – абсцисса точки
касания одной из сторон прямого угла.
2. f(3) = 1.
3. f ‘(x) = 4x – 5, f ‘(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой
касательной.

Пусть a – угол наклона первой
касательной. Так как касательные
перпендикулярны, то – угол наклона второй касательной. Из
уравнения y = 7x – 20 первой касательной имеем tg 
a = 7. Найдем

Это значит, что угловой
коэффициент второй касательной равен .

Дальнейшее решение сводится к
ключевой задаче 3.

Пусть B(c; f(c)) есть точка
касания второй прямой, тогда

1.  – абсцисса второй точки касания.
2. 
3. 
4. 
– уравнение
второй касательной.

Примечание. Угловой
коэффициент касательной может быть найден проще,
если учащимся известно соотношение
коэффициентов перпендикулярных прямых k1•k2
= – 1.

2. Напишите уравнения всех
общих касательных к графикам функций

Решение. Задача сводится к
отысканию абсцисс точек касания общих
касательных, то есть к решению ключевой задачи 1 в
общем виде, составлению системы уравнений и
последующему ее решению (рис. 6).

1. Пусть a – абсцисса
точки касания, лежащей на графике функции y = x2
+ x + 1.
2. f(a) = a2 + a + 1.
3. f ‘(a) = 2a + 1.
4. y = a2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a2.

1. Пусть c – абсцисса
точки касания, лежащей на графике функции  
2.
3. f ‘(c) = c.
4. 

Так как касательные общие, то

Итак, y = x + 1 и y = – 3x – 3
– общие касательные.

Основная цель рассмотренных
задач – подготовить учащихся к
самостоятельному распознаванию типа ключевой
задачи при решении более сложных задач,
требующих определенных исследовательских
умений (умения анализировать, сравнивать,
обобщать, выдвигать гипотезу и т. д.). К числу
таких задач можно отнести любую задачу, в которую
ключевая задача входит как составляющая.
Рассмотрим в качестве примера задачу (обратную
задаче 1) на нахождение функции по семейству ее
касательных.

3. При каких b и c прямые y = x и
y = – 2x являются касательными к графику функции
y = x2 + bx + c?

Решение.

Пусть t – абсцисса точки
касания прямой y = x с параболой y = x2 + bx + c; p
– абсцисса точки касания прямой y = – 2x с
параболой y = x2 + bx + c. Тогда уравнение
касательной y = x примет вид y = (2t + b)x + c – t2, а
уравнение касательной y = – 2x примет вид y = (2p +
b)x + c – p2.

Составим и решим систему
уравнений

Ответ:

 Задачи для
самостоятельного решения

1. Напишите уравнения
касательных, проведенных к графику функции y = 2x2
– 4x + 3 в точках пересечения графика с прямой y = x +
3.

Ответ: y = – 4x + 3, y = 6x – 9,5.

2. При каких значениях a
касательная, проведенная к графику функции y = x2
– ax в точке графика с абсциссой x0 = 1,
проходит через точку M(2; 3)?

Ответ: a = 0,5.

3. При каких значениях p
прямая y = px – 5 касается кривой y = 3x2 – 4x – 2?

Ответ: p1 = – 10, p2
= 2.

4. Найдите все общие точки
графика функции y = 3x – x3 и касательной,
проведенной к этому графику через точку P(0; 16).

Ответ: A(2; – 2), B(– 4; 52).

5. Найдите кратчайшее
расстояние между параболой y = x2 + 6x + 10 и
прямой

Ответ:

6. На кривой y = x2 – x + 1
найдите точку, в которой касательная к графику
параллельна прямой y – 3x + 1 = 0.

Ответ: M(2; 3).

7. Напишите уравнение
касательной к графику функции y = x2 + 2x –
| 4x |, которая касается его в двух точках.
Сделайте чертеж.

Ответ: y = 2x – 4.

8. Докажите, что прямая y = 2x
– 1 не пересекает кривую y = x4 + 3x2 + 2x.
Найдите расстояние между их ближайшими точками.

Ответ:

9. На параболе y = x2
взяты две точки с абсциссами x1 = 1, x2 = 3.
Через эти точки проведена секущая. В какой точке
параболы касательная к ней будет параллельна
проведенной секущей? Напишите уравнения секущей
и касательной.

Ответ: y = 4x – 3 – уравнение
секущей; y = 4x – 4 – уравнение касательной.

10. Найдите угол q между касательными
к графику функции y = x3 – 4x2 + 3x + 1,
проведенными в точках с абсциссами 0 и 1.

Ответ: q = 45°.

11. В каких точках
касательная к графику функции образует с осью Ox угол в 135°?

Ответ: A(0; – 1), B(4; 3).

12. В точке A(1; 8) к кривой проведена
касательная. Найдите длину отрезка касательной,
заключенного между осями координат.

Ответ:

13. Напишите уравнение всех
общих касательных к графикам функций y = x2
x + 1 и y = 2x2 – x + 0,5.

Ответ: y = – 3x и y = x.

14. Найдите расстояние между
касательными к графику функции параллельными оси абсцисс.

Ответ:

15. Определите, под какими
углами парабола y = x2 + 2x – 8 пересекает ось
абсцисс.

Ответ: q1 = arctg 6, q2 = arctg (– 6).

16. На графике функции найдите все
точки, касательная в каждой из которых к этому
графику пересекает положительные полуоси
координат, отсекая от них равные отрезки.

Ответ: A(– 3; 11).

17. Прямая y = 2x + 7 и парабола y
= x2 – 1 пересекаются в точках M и N. Найдите
точку K пересечения прямых, касающихся параболы в
точках M и N.

Ответ: K(1; – 9).

18. При каких значениях b
прямая y = 9x + b является касательной к графику
функции y = x3 – 3x + 15?

Ответ: – 1; 31.

19. При каких значениях k
прямая y = kx – 10 имеет только одну общую точку с
графиком функции y = 2x2 + 3x – 2? Для найденных
значений k определите координаты точки.

Ответ: k1 = – 5, A(– 2;
0); k2 = 11, B(2; 12).

20. При каких значениях b
касательная, проведенная к графику функции y = bx3
– 2x2 – 4 в точке с абсциссой x0 = 2,
проходит через точку M(1; 8)?

Ответ: b = – 3.

21. Парабола с вершиной на
оси Ox касается прямой, проходящей через точки A(1;
2) и B(2; 4), в точке B. Найдите уравнение параболы.

Ответ:

22. При каком значении
коэффициента k парабола y = x2 + kx + 1 касается
оси Ox?

Ответ: k = д 2.

23. Найдите углы между
прямой y = x + 2 и кривой y = 2x2 + 4x – 3.

Ответ:

24. Определите, под какими
углами пересекаются графики функций y = 2x2 +
3x – 3 и y = x2 + 2x + 3.

Ответ:

25. При каком значении k угол
между кривыми y = x2 + 2x + k и y = x2 + 4x + 4
будет равен 45°?

Ответ: k = – 3.

26. Найдите все значения x0,
при каждом из которых касательные к графикам
функции y = 5cos 3x + 2 и y = 3cos 5x в точках в
абсциссой x0 параллельны.

Ответ:

27. Под каким углом видна
окружность x2 + y2 = 16 из точки (8; 0)?

Ответ:

28. Найдите геометрическое
место точек, из которых парабола y = x2 видна
под прямым углом?

Ответ: прямая

29. Найдите расстояние между
касательными к графику функции образующими с
положительным направлением оси Ox угол 45°.

Ответ:

30. Найдите геометрическое
место вершин всех парабол вида y = x2 + ax + b,
касающихся прямой y = 4x – 1.

Ответ: прямая y = 4x + 3.

Литература

1. Звавич Л.И., Шляпочник Л.Я.,
Чинкина М.В. Алгебра и начала анализа: 3600 задач
для школьников и поступающих в вузы. – М., Дрофа,
1999.
2. Мордкович А. Семинар четвертый для молодых
учителей. Тема «Приложения производной». – М.,
«Математика», № 21/94.
3. Формирование знаний и умений на основе
теории поэтапного усвоения умственных действий.
/ Под ред. П.Я. Гальперина, Н.Ф. Талызиной.
– М., МГУ, 1968.

TopList

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Даны функция (y=f(x)) и точка (M(a;f(a))); известно, что существует f′(a).
Уравнение касательной к графику функции (y=f(x)) в точке (M) имеет вид (y=kx+m). Найдём значения коэффициентов (k) и (m).

Известно, что k=f′(a). Для вычисления значения (m) воспользуемся тем, что искомая прямая проходит через точку (M(a;f(a))). 
При подстановке координаты точки (M) в уравнение прямой, получим верное равенство (f(a)=ka+m), т. е. (m=f(a)-ka).

Подставим найденные значения коэффициентов (k) и (m) в уравнение прямой:

y=kx+m;y=kx+(f(a)−ka);y=f(a)+k(x−a);y=f(a)+f′(a)(x−a).

Нами получено уравнение касательной к графику функции (y=f(x)) в точке (x=a).

Алгоритм составления уравнения касательной к графику функции (y=f(x))

1. Обозначаем абсциссу точки касания буквой (a).

2. Вычисляем (f(a)).

3. Находим f′(x) и вычисляем f′(a).

4. Подставляем найденные числа (a), (f(a)), f′(a) в формулу y=f(a)+f′(a)(x−a).

Для функции (y=f(x)), имеющей производную в фиксированной точке (x), справедливо приближенное равенство Δy≈f′(x)⋅Δx;

или, подробнее, f(x+Δx)−f(x)≈f′(x)⋅Δx.

43. vienād..bmp

В этом приближённом равенстве заменим (x) на (a), вместо x+Δx будем писать (x) и тогда Δx будет равно (x-a). Получим:

f(x)−f(a)≈f′(a)(x−a) илиf(x)≈f(a)+f′(a)(x−a).

Смысл равенства заключается в том, что приближенное значение функции в точке (x) равно значению касательной в этой точке.

Добавить комментарий