Как зная корни уравнения найти его коэффициенты

Решение квадратных уравнений: формула корней, примеры

В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

Квадратное уравнение, его виды

Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

Приведенные и неприведенные квадратные уравнения

По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

9 · x 2 − x − 2 = 0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

Решение

Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x – 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

Ответ: x 2 + 3 · x – 1 1 6 = 0 .

Полные и неполные квадратные уравнения

Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

Решение неполных квадратных уравнений

Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

  • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
  • a · x 2 + c = 0 при b = 0 ;
  • a · x 2 + b · x = 0 при c = 0 .

Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

Решение уравнения a·x 2 =0

Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень – нуль.

Кратко решение оформляется так:

− 3 · x 2 = 0 , x 2 = 0 , x = 0 .

Решение уравнения a · x 2 + c = 0

На очереди – решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

  • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
  • делим обе части уравнения на a , получаем в итоге x = – c a .

Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения – c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда – c a = – 2 1 = – 2 ) или знак плюс (например, если a = − 2 и c = 6 , то – c a = – 6 – 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда – c a 0 и – c a > 0 .

В случае, когда – c a 0 , уравнение x 2 = – c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при – c a 0 ни для какого числа p равенство p 2 = – c a не может быть верным.

Все иначе, когда – c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = – c a будет число – c a , поскольку – c a 2 = – c a . Нетрудно понять, что число – – c a – также корень уравнения x 2 = – c a : действительно, – – c a 2 = – c a .

Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = – c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

Для x 1 и − x 1 запишем: x 1 2 = – c a , а для x 2 – x 2 2 = – c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = – c a и x = – – c a .

Резюмируем все рассуждения выше.

Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = – c a , которое:

  • не будет иметь корней при – c a 0 ;
  • будет иметь два корня x = – c a и x = – – c a при – c a > 0 .

Приведем примеры решения уравнений a · x 2 + c = 0 .

Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

Решение

Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
Разделим обе части полученного уравнения на 9 , придем к x 2 = – 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

Необходимо решить уравнение − x 2 + 36 = 0 .

Решение

Перенесем 36 в правую часть: − x 2 = − 36 .
Разделим обе части на − 1 , получим x 2 = 36 . В правой части – положительное число, отсюда можно сделать вывод, что x = 36 или x = – 36 .
Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

Ответ: x = 6 или x = − 6 .

Решение уравнения a·x 2 +b·x=0

Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

Закрепим материал примером.

Необходимо найти решение уравнения 2 3 · x 2 – 2 2 7 · x = 0 .

Решение

Вынесем x за скобки и получим уравнение x · 2 3 · x – 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x – 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

Кратко решение уравнения запишем так:

2 3 · x 2 – 2 2 7 · x = 0 x · 2 3 · x – 2 2 7 = 0

x = 0 или 2 3 · x – 2 2 7 = 0

x = 0 или x = 3 3 7

Ответ: x = 0 , x = 3 3 7 .

Дискриминант, формула корней квадратного уравнения

Для нахождения решения квадратных уравнений существует формула корней:

x = – b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

Запись x = – b ± D 2 · a по сути означает, что x 1 = – b + D 2 · a , x 2 = – b – D 2 · a .

Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

Вывод формулы корней квадратного уравнения

Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

  • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
  • выделим полный квадрат в левой части получившегося уравнения:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 – b 2 · a 2 + c a = = x + b 2 · a 2 – b 2 · a 2 + c a
    После этого уравнения примет вид: x + b 2 · a 2 – b 2 · a 2 + c a = 0 ;
  • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 – c a ;
  • наконец, преобразуем выражение, записанное в правой части последнего равенства:
    b 2 · a 2 – c a = b 2 4 · a 2 – c a = b 2 4 · a 2 – 4 · a · c 4 · a 2 = b 2 – 4 · a · c 4 · a 2 .

Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 :

  • при b 2 – 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
  • при b 2 – 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

Отсюда очевиден единственный корень x = – b 2 · a ;

  • при b 2 – 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = b 2 · a – b 2 – 4 · a · c 4 · a 2 , что то же самое, что x + – b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = – b 2 · a – b 2 – 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 – 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

Вернемся к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

Вновь сформулируем выводы:

  • при D 0 уравнение не имеет действительных корней;
  • при D = 0 уравнение имеет единственный корень x = – b 2 · a ;
  • при D > 0 уравнение имеет два корня: x = – b 2 · a + D 4 · a 2 или x = – b 2 · a – D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = – b 2 · a + D 2 · a или – b 2 · a – D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = – b + D 2 · a , x = – b – D 2 · a .

Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

x = – b + D 2 · a , x = – b – D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

Алгоритм решения квадратных уравнений по формулам корней

Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

  • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
  • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 найти единственный корень уравнения по формуле x = – b 2 · a ;
  • при D > 0 определить два действительных корня квадратного уравнения по формуле x = – b ± D 2 · a .

Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = – b ± D 2 · a , она даст тот же результат, что и формула x = – b 2 · a .

Примеры решения квадратных уравнений

Приведем решение примеров при различных значениях дискриминанта.

Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

Решение

Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
Для их нахождения используем формулу корня x = – b ± D 2 · a и, подставив соответствующие значения, получим: x = – 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

x = – 2 + 2 · 7 2 или x = – 2 – 2 · 7 2

x = – 1 + 7 или x = – 1 – 7

Ответ: x = – 1 + 7 ​​​​​​, x = – 1 – 7 .

Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

Решение

Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = – b 2 · a .

x = – 28 2 · ( – 4 ) x = 3 , 5

Ответ: x = 3 , 5 .

Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

Решение

Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

x = – 6 + 2 · i 10 или x = – 6 – 2 · i 10 ,

x = – 3 5 + 1 5 · i или x = – 3 5 – 1 5 · i .

Ответ: действительные корни отсутствуют; комплексные корни следующие: – 3 5 + 1 5 · i , – 3 5 – 1 5 · i .

В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

Формула корней для четных вторых коэффициентов

Формула корней x = – b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

x = – 2 · n ± D 2 · a , x = – 2 · n ± 4 · n 2 – a · c 2 · a , x = – 2 · n ± 2 n 2 – a · c 2 · a , x = – n ± n 2 – a · c a .

Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

x = – n ± D 1 a , где D 1 = n 2 − a · c .

Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

  • найти D 1 = n 2 − a · c ;
  • при D 1 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 определить единственный корень уравнения по формуле x = – n a ;
  • при D 1 > 0 определить два действительных корня по формуле x = – n ± D 1 a .

Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

Решение

Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

x = – n ± D 1 a , x = – – 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 или x = 3 – 13 5

x = 3 1 5 или x = – 2

Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

Ответ: x = 3 1 5 или x = – 2 .

Упрощение вида квадратных уравнений

Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x – 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

Связь между корнями и коэффициентами

Уже известная нам формула корней квадратных уравнений x = – b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

Самыми известными и применимыми являются формулы теоремы Виета:

x 1 + x 2 = – b a и x 2 = c a .

В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней – 22 3 .

Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2 · x 1 · x 2 = – b a 2 – 2 · c a = b 2 a 2 – 2 · c a = b 2 – 2 · a · c a 2 .

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Как найти коэффициенты уравнения зная его корни

Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени ? Оказы вается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

Решите уравнение: `x^3 +4x^2 – 2x-3=0`.

Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

`x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr`

Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравне ния? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.

Если несократимая дробь `p//q` (`p` – целое, `q` – натуральное) является корнем многочлена с целыми коэффициентами , то сво бодный член делится на `p` , а старший коэффициент делится на `q`.

Пусть несократимая дробь `p//q` – корень многочлена (8). Это означает, что

`a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ . “+a_2 (p/q)^2 +a_1(p/q)+0=0`.

Умножим обе части на `q^n`, получаем:

`a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + . + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

а) `x^4+4x^3-102x^2-644x-539=0`; (15)

б) `6x^4-35x^3+28x^2+51x+10=0`. (16)

а) Попробуем найти целые корни уравнения. Пусть `p` – корень. Тогда `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители:

Поэтому `p` может принимать значения:

Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:

1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.

б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in<+-1;+-2;+-5;+-10>`; `qin<1;2;3;6>`.Возможные варианты для `x_0`:

Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` – корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.

К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.

Разложите на множители:

а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

в) Вынесем `x^2` за скобки и сгруппируем:

Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:

В итоге получаем:

Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

Прибегнем к методу неопределённых коэффициентов. Пусть

Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

Далее каждый из квадратных трёхчленов можно разложить на множители.

Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.

[spoiler title=”источники:”]

http://zftsh.online/articles/5013

[/spoiler]

Ульяна Потапкина

Профи

(812)


2 года назад

1)Если a + b + c = 0 (сумма коэффициентов), то x1 = 1, x2 = c/a
2) Если a – b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то x1 = -1, x2 = -c/a
3) по теореме Виета

Предводитель восстанияУченик (208)

2 года назад

А что такое с/а? Спасибо за ответ!

Ульяна ПотапкинаПрофи (812)

2 года назад

Коэффициенты перед переменной

Ульяна ПотапкинаПрофи (812)

2 года назад

c – свободный член, а- коэфaициент перед x^2

Tanza Kosta

Гений

(61054)


2 года назад

Квадратное уравнение должно быть вида:
х² + px + q = 0

где -р=х1+х2, q=x1*x2

p = b/a, q = c/a

Коэфициент а определить нельзя

Предводитель восстанияУченик (208)

2 года назад

Ага, т. е. теорема Виета? Спасибо за ответ!

Tanza Kosta
Гений
(61054)
Да. Поделите все уравнение на А, получите приведенное квадратное уравнение

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac<1> <3>— 5frac<6> <5>z + frac<1><7>z^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+1<,>4=0, quad 8x^2-7x=0, quad x^2-frac<4><9>=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ <1,2>= pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac<2a>+left( frac<2a>right)^2- left( frac<2a>right)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ <1,2>= frac < -b pm sqrt> <2a>), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac <2a>).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Методы решения квадратных уравнений. Формула Виета для квадратного уравнения

Квадратные уравнения часто появляются в ряде задач по математике и физике, поэтому уметь их решать должен каждый школьник. В этой статье подробно рассматриваются основные методы решения уравнений квадратных, а также приводятся примеры их использования.

Какое уравнение называется квадратным

В первую очередь ответим на вопрос этого пункта, чтобы лучше понимать, о чем пойдет речь в статье. Итак, уравнение квадратное имеет следующий общий вид: c + b*x+a*x2=0, где a, b, c — некоторые числа, которые называются коэффициентами. Здесь a≠0 — это обязательное условие, в противном случае указанное уравнение вырождается в линейное. Остальные коэффициенты (b, c) могут принимать абсолютно любые значения, включая ноль. Так, выражения типа a*x2=0, где b=0 и c=0 или c+a*x2=0,где b=0, или b*x+a*x2=0, где c=0 — это тоже уравнения квадратные, которые называют неполными, поскольку в них либо линейный коэффициент b равен нулю, либо нулевым является свободный член c, либо они оба зануляются.

Вам будет интересно: Химические цепочки превращений: примеры и способы решения

Уравнение, в котором a=1, называют приведенным, то есть оно вид имеет: x2 + с/a + (b/a)*x =0.

Решение квадратного уравнения заключается в нахождении таких значений x, которые удовлетворяют его равенству. Эти значения называются корнями. Поскольку рассматриваемое уравнение — это выражение второй степени, то это означает, что максимальное число его корней не может превышать двух.

Какие методы решения уравнений квадратных существуют

В общем случае существует 4 метода решения. Ниже перечисляются их названия:

  • Разложение на множители.
  • Дополнение до квадрата.
  • Использование известной формулы (через дискриминант).
  • Способ решения геометрический.

    Вам будет интересно: Каково значение слова «транспарентность»?

    Как понятно из приведенного списка, первые три метода являются алгебраическими, поэтому они используются чаще, чем последний, который предполагает построение графика функции.

    Существует еще один способ решения по теореме Виета уравнений квадратных. Его можно было бы включить 5-м в список выше, однако, это не сделано, поскольку теорема Виета является простым следствием 3-го метода.

    Далее в статье рассмотрим подробнее названные способы решения, а также приведем примеры их использования для нахождения корней конкретных уравнений.

    Метод №1. Разложение на множители

    Для этого метода в математике квадратных уравнений существует красивое название: факторизация. Суть этого способа заключается в следующем: необходимо квадратное уравнение представить в виде произведения двух членов (выражений), которое должно равняться нулю. После такого представления можно воспользоваться свойством произведения, которое будет равно нулю только тогда, когда один или несколько (все) его членов являются нулевыми.

    Теперь рассмотрим последовательность конкретных действий, которые нужно выполнить, чтобы найти корни уравнения:

  • Перебросить все члены в одну часть выражения (например, в левую) так, чтобы в другой его части (правой) остался только 0.
  • Представить сумму членов в одной части равенства в виде произведения двух линейных уравнений.
  • Приравнять каждое из линейных выражений к нулю и решить их.

    Вам будет интересно: Коммуникативная методика обучения английскому языку: главные принципы, учебники, результаты, отзывы

    Как видно, алгоритм факторизации является достаточно простым, тем не менее, у большинства школьников возникают трудности во время реализации 2-го пункта, поэтому поясним его подробнее.

    Чтобы догадаться, какие 2-а линейных выражения при умножении их друг на друга дадут искомое квадратное уравнение, необходимо запомнить два простых правила:

    • Линейные коэффициенты двух линейных выражений при умножении их друг на друга должны давать первый коэффициент квадратного уравнения, то есть число a.
    • Свободные члены линейных выражений при их произведении должны давать число c искомого уравнения.

    После того, как подобраны все числа множителей, следует выполнить их перемножение, и если они дают искомое уравнение, тогда переходить к пункту 3 в изложенном выше алгоритме, в противном случае следует изменить множители, но делать это нужно так, чтобы приведенные правила всегда выполнялись.

    Пример решения методом факторизации

    Покажем наглядно, как алгоритм решения уравнения квадратного составить и найти неизвестные корни. Пусть дано произвольное выражение, например, 2*x-5+5*x2-2*x2 = x2+2+x2+1. Перейдем к его решению, соблюдая последовательность пунктов от 1-го до 3-х, которые изложены в предыдущем пункте статьи.

    Пункт 1. Перенесем все члены в левую часть и выстроим их в классической последовательности для квадратного уравнения. Имеем следующее равенство: 2*x+(-8)+x2=0.

    Пункт 2. Разбиваем на произведение линейных уравнений. Поскольку a=1, а с=-8, то подберем, например, такое произведение (x-2)*(x+4). Оно удовлетворяет изложенным в пункте выше правилам поиска предполагаемых множителей. Если раскрыть скобки, то получим: -8+2*x+x2, то есть получается точно такое же выражение, как в левой части уравнения. Это означает, что мы правильно угадали множители, и можно переходить к 3-му пункту алгоритма.

    Пункт 3. Приравниваем каждый множитель нулю, получаем: x=-4 и x=2.

    Если возникают какие-либо сомнения в полученном результате, то рекомендуется выполнить проверку, подставляя найденные корни в исходное уравнение. В данном случае имеем: 2*2+22-8=0 и 2*(-4)+(-4)2-8=0. Корни найдены правильно.

    Таким образом, методом факторизации мы нашли, что заданное уравнение два корня различных имеет: 2 и -4.

    Метод №2. Дополнение до полного квадрата

    В алгебре уравнений квадратных метод множителей не всегда может использоваться, поскольку в случае дробных значений коэффициентов квадратного уравнения возникают сложности в реализации пункта 2 алгоритма.

    Метод полного квадрата, в свою очередь, является универсальным и может применяться для квадратных уравнений любого типа. Суть его заключается в выполнении следующих операций:

  • Члены уравнения, содержащие коэффициенты a и b, необходимо перебросить в одну часть равенства, а свободный член c — в другую.
  • Далее, следует части равенства (правую и левую) разделить на коэффициент a, то есть представить уравнение в приведенном виде (a=1).
  • Сумму членов с коэффициентами a и b представить в виде квадрата линейного уравнения. Поскольку a=1, то линейный коэффициент будет равен 1, что касается свободного члена уравнения линейного, то он равен должен быть половине линейного коэффициента приведенного уравнения квадратного. После того, как составлен квадрат линейного выражения, необходимо в правую часть равенства, где находится свободный член, добавить соответствующее число, которое получается при раскрытии квадрата.
  • Взять квадратный корень со знаками «+» и «-» и решить полученное уже уравнение линейное.

    Описанный алгоритм может на первый взгляд быть воспринят, как достаточно сложный, однако, на практике его реализовать проще, чем метод факторизации.

    Пример решения с помощью дополнения до полного квадрата

    Приведем пример уравнения квадратного для тренировки его решения методом изложенным в предыдущем пункте. Пусть дано уравнение квадратное -10 — 6*x+5*x2 = 0. Начинаем решать его, следуя описанному выше алгоритму.

    Пункт 1. Используем метод переброски при решении уравнений квадратных, получаем: — 6*x+5*x2 = 10.

    Пункт 2. Приведенный вид этого уравнения получается путем деления на число 5 каждого его члена (если равенства обе части поделить или умножить на одинаковое число, то равенство сохранится). В результате преобразований получим: x2 — 6/5*x = 2.

    Пункт 3. Половина от коэффициента — 6/5 равна -6/10 = -3/5, используем это число для составления полного квадрата, получаем: (-3/5+x)2. Раскроем его и полученный свободный член следует вычесть из части равенства левой, чтобы удовлетворить исходному виду квадратного уравнения, что эквивалентно его добавлению в правую часть. В итоге получаем: (-3/5+x)2 = 59/25.

    Пункт 4. Вычисляем квадратный корень с положительным и отрицательным знаками и находим корни: x = 3/5±√59/5 = (3±√59)/5. Два найденных корня имеют значения: x1 = (√59+3)/5 и x1 = (3-√59)/5.

    Поскольку проведенные вычисления связаны с корнями, то велика вероятность допустить ошибку. Поэтому рекомендуется проверить правильность корней x2 и x1. Получаем для x1: 5*((3+√59)/5)2-6*(3+√59)/5 — 10 = (9+59+6*√59)/5 — 18/5 — 6*√59/5-10 = 68/5-68/5 = 0. Подставляем теперь x2: 5*((3-√59)/5)2-6*(3-√59)/5 — 10 = (9+59-6*√59)/5 — 18/5 + 6*√59/5-10 = 68/5-68/5 = 0.

    Таким образом, мы показали, что найденные корни уравнения являются истинными.

    Метод №3. Применение известной формулы

    Этот метод решения уравнений квадратных является, пожалуй, самым простым, поскольку он заключается в подставлении коэффициентов в известную формулу. Для его использования не нужно задумываться о составлении алгоритмов решения, достаточно запомнить только одну формулу. Она приведена на рисунке выше.

    В этой формуле подкоренное выражение (b2-4*a*c) называется дискриминантом (D). От его значения зависит то, какие корни получатся. Возможны 3-и случая:

    • D>0, тогда уравнение корня два имеет действительных и разных.
    • D=0, тогда получается корень один, который можно вычислить из выражения x = -b/(a*2).
    • D 0 — параболы ветви направлены вверх, наоборот, если a 0. Ее экстремум имеет координаты: x=4/10=2/5, y=-4*2/5+5*(2/5)2+10 = 9,2. Поскольку минимум кривой лежит над осью абсцисс (y=9,2), то она не пересекает последнюю ни при каких значениях x. То есть действительных корней приведенное уравнение не имеет.

    Теорема Виета

    Как выше было отмечено, эта теорема является следствием метода №3, который основан на применении формулы с дискриминантом. Суть теоремы Виета заключается в том, что она позволяет связать в равенство коэффициенты уравнения и его корни. Получим соответствующие равенства.

    Воспользуемся формулой для вычисления корней через дискриминант. Сложим два корня, получаем: x1+x2 = -b/a. Теперь умножим корни друг на друга: x1*x2, после ряда упрощений получается число c/a.

    Таким образом, для решения уравнений квадратных по теореме Виета можно использовать полученных два равенства. Если все три коэффициента уравнения известны, тогда корни можно найти путем решения соответствующей системы из этих двух уравнений.

    Пример использования теоремы Виета

    Необходимо составить квадратное уравнение, если известно, что оно имеет вид x2+c = -b*x и корни его равны 3 и -4.

    Поскольку в рассматриваемом уравнении a=1, то формулы Виета будут иметь вид: x2+x1 =-b и x2*x1= с. Подставляя известные значения корней, получаем: b = 1 и c = -12. В итоге восстановленное уравнение квадратное приведенное будет вид иметь: x2-12 = -1*x. Можно подставить в него значение корней и убедиться, что равенство выполняется.

    Обратное применение Виета теоремы, то есть вычисление корней по известному виду уравнения, позволяет для небольших целых чисел a, b и c быстро (интуитивно) находить решения.

    источники:

    http://www.math-solution.ru/math-task/quadr-eq

    http://1ku.ru/obrazovanie/9864-metody-resheniya-kvadratnyx-uravnenij-formula-vieta-dlya-kvadratnogo-uravneniya/

  • Для самых любопытных объясняем откуда появились такие названия:
    • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
    • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
    • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

    Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Как мы уже знаем, есть три вида неполных квадратных уравнений:

    • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
    • ax 2 + c = 0, при b = 0;
    • ax 2 + bx = 0, при c = 0.

    Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

    Как решить уравнение ax 2 = 0

    Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

    Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

    Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

    Пример 1. Решить −6x 2 = 0.

    1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
    2. По шагам решение выглядит так:

    Как решить уравнение ax 2 + с = 0

    Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

    Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

    Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

    • перенесем c в правую часть: ax 2 = — c,
    • разделим обе части на a: x 2 = — c/а.

    Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

    Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

    Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

    • не имеет корней при — c/а 0.
    В двух словах

    Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Решение задач по математике онлайн

    Содержание

    1. Решение квадратных уравнений
    2. Дискриминант
    3. Корни квадратного уравнения
    4. Неполные квадратные уравнения
    5. Как решать квадратные уравнения
    6. Что называют квадратным уравнением
    7. Примеры квадратных уравнений
    8. Как решать квадратные уравнения
    9. Неполные квадратные уравнения
    10. Решение (корни) квадратного уравнения
    11. Определение квадратного уравнения и общее понятие о его корнях
    12. Геометрический смысл решения квадратного уравнения
    13. Три случая после нахождения дискриминанта квадратного уравнения
    14. Решение полных квадратных уравнений
    15. Корни приведённого квадратного уравнения
    16. Теорема Виета
    17. Решение неполных квадратных уравнений
    18. Разложение квадратного трёхчлена на множители с применением корней квадратного уравнения
    19. Из истории решения квадратных уравнений
    20. Различные прикладные задачи на квадратные уравнения

    Решение квадратных уравнений

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    formula1Основная формула корней квадратного уравнения

    Первое уравнение:
    x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2) 2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    formula2

    Второе уравнение:
    15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    formula5Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

    Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    formula6Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

    5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

    Источник

    Как решать
    квадратные уравнения

    В предыдущих уроках мы разбирали «Как решать линейные уравнения», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

    Что называют квадратным уравнением

    Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

    Если максимальная степень, в которой стоит неизвестное — « 2 », значит, перед вами квадратное уравнение.

    Примеры квадратных уравнений

    Чтобы найти « a », « b » и « c » нужно сравнить свое уравнение с общим видом квадратного уравнения « ax 2 + bx + c = 0 ».

    Давайте потренируемся определять коэффициенты « a », « b » и « c » в квадратных уравнениях.

    Как решать квадратные уравнения

    В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней.

    Чтобы решить квадратное уравнение нужно:

    Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

    Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду « ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения.

    Определим коэффициенты « a », « b » и « c » для этого уравнения.

    Подставим их в формулу и найдем корни.

    x 2 − 3x − 4 = 0
    x1;2 =

    x1;2 =

    −(−3) ± √ (−3) 2 − 4 · 1· (−4)
    2 · 1

    x1;2 =

    x1;2 =

    x1;2 =

    x1 = x2 =
    x1 = x2 =
    x1 = 4 x2 = −1

    Ответ: x1 = 4 ; x2 = −1

    Обязательно выучите наизусть формулу для нахождения корней.

    С её помощью решается любое квадратное уравнение.

    Рассмотрим другой пример квадратного уравнения.

    В данном виде определить коэффициенты « a », « b » и « c » довольно сложно. Давайте вначале приведем уравнение к общему виду « ax 2 + bx + c = 0 ».

    Теперь можно использовать формулу для корней.

    x1;2 =

    −(−6) ± √ (−6) 2 − 4 · 1 · 9
    2 · 1

    x1;2 =

    x1;2 =

    x1;2 =

    x =

    x = 3
    Ответ: x = 3

    Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

    Рассмотрим пример квадратного уравнения, у которого нет корней.

    5x 2 + 2x = − 3
    5x 2 + 2x + 3 = 0
    x1;2 =

    −2 ± √ 2 2 − 4 · 3 · 5
    2 · 5

    x1;2 =

    x1;2 =

    Ответ: нет действительных корней.

    Итак, мы получили ситуацию, когда под корнем стоит отрицательное число. Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».

    Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?

    На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».

    Неполные квадратные уравнения

    Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты « b » и/или « c ». Как например, в таком уравнении:

    Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке «Неполные квадратные уравнения».

    Источник

    Решение (корни) квадратного уравнения

    Определение квадратного уравнения и общее понятие о его корнях

    Например, квадратным является уравнение

    называются неполными квадратными уравнениями.

    Найти корни квадратного уравнения значит решить квадратное уравнение.

    Корни квадратного уравнения имеют следующие сферы применения:

    — для разложении квадратного трёхлена на множители, что, в свою очередь, является приёмом упрощения выражений (например, сокращения дробей, вынесение за скобки общего знаменателя и т.д.) в частности, при нахождении пределов, производных и интегралов;

    — для решения задач на соотношения параметров меняющегося объекта (корни квадратного уравнения, чаще всего один, являются обычно конечным решением).

    Геометрический смысл решения квадратного уравнения

    sq equa

    Три случая после нахождения дискриминанта квадратного уравнения

    1. Если дискриминант больше нуля (sq6), то квадратное уравнение имеет два различных действительных корня.

    Они вычисляются по формулам:

    sq7и

    sq8.

    Часто пишется так: sq9.

    3. Если дискриминант меньше нуля (sq12), то квадратное уравнение не имеет действительных корней, а имеет комплексные корни, но нахождение комплексных корней в этой статье рассматривать не будем. В общем случае правильным решением является констатация того, что квадратное уравнение не имеет действительных корней.

    Пример 1. Определить, сколько действительных корней имеет квадратное уравнение:

    sq3.

    Решение. Найдём дискриминант:

    sq26.

    Дискриминант больше нуля, следовательно, квадратное уравнение имеет два действительных корня.

    Пример 2. Определить, сколько действительных корней имеет квадратное уравнение:

    sq39.

    Решение. Найдём дискриминант:

    sq40.

    Дискриминант равен нулю, следовательно, квадратное уравнение имеет один действительный корень.

    Пример 3. Определить, сколько действительных корней имеет квадратное уравнение:

    sq41.

    Решение. Найдём дискриминант:

    sq42.

    Дискриминант меньше нуля, следовательно, квадратное уравнение не имеет действительных корней.

    Решение полных квадратных уравнений

    Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Пример 4. Найти корни квадратного уравнения:

    sq3.

    В примере 1 нашли дискриминант этого уравнения:

    sq26,

    Решение квадратного уравнения найдём по формуле для корней:

    sq27

    Пример 5. Найти корни квадратного уравнения:

    sq39.

    В примере 2 нашли дискриминант этого уравнения:

    sq40.

    Применим формулу корней квадратного уравнения sq43. Отсюда sq44, sq45. Найденные корни квадратного уравнения равны друг другу, а это значит, что уравнение имеет единственный корень: sq46

    Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Корни приведённого квадратного уравнения

    Пусть дано квадратное уравнение sq1. Так как sq13, то разделив обе части данного уравнения на a, получим уравнение sq14. Полагая, что sq15и sq16, приходим к уравнению sq17, в котором первый коэффициент равен 1. Такое уравнение называется приведённым.

    Формула корней приведённого уравнения имеет вид:

    sq18.

    Теорема Виета

    Существуют формулы, связывающие корни квадратного уравнения с его коэффициентами. Они впервые были получены французским математиком Ф.Виетом.

    sq76

    Следствие. Если приведённое квадратное уравнение x² + px + q = 0 имеет действительные корни sq77и sq78, то

    sq25

    Пояснение формул: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Следовательно, теорему Виета можно применять и для поиска корней приведённого квадратного уравнения.

    Иначе говоря, надо найти числа p и q такие, чтобы квадратное уравнение

    sq57

    имело корни sq58и sq59.

    По формулам Виета sq60, sq61. Требуемое в условии задачи уравнение имеет вид sq62

    Решение неполных квадратных уравнений

    Пример 7. Решить квадратное уравнение sq66.

    Решение. Чтобы решить данное неполное квадратное уравнение, разложим его левую часть на множители. Получим

    sq67

    Произведение sq68равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю: sq69или sq70. Решая уравнение sq70, находим sq71.

    Следовательно, произведение sq68обращается в нулю при sq69и при sq71. Поэтому числа 0 и 1/2 являются корнями неполного квадратного уравнения sq66.

    Пример 8. Решить квадратное уравнение sq72.

    Решение. Чтобы решить данное неполное квадратное уравнение, перенесём в его правую часть свободный член с противоположным знаком и разделим обе части уравнения на 3. Получим уравнение

    sq73.

    Так как sq74, то уравнение sq73не имеет действительных корней. Следовательно, не имеет действительных корней и эквивалентное ему неполное квадратное уравнение sq72.

    Разложение квадратного трёхчлена на множители с применением корней квадратного уравнения

    Если известны корни квадратного уравнения, то трёхчлен, представляющий собой левую часть уравнения, можно разложить на множители по следующей формуле:

    sq33.

    Этот приём часто используется для упрощения выражений, особенно сокращения дробей.

    Пример 9. Упростить выражение:

    sq34.

    Решение. Числитель данной дроби можем рассматривать как квадратный трёхчлен в отношении x и разложить его на множители, предварительно найдя его корни. Найдём дискриминант квадратного уравнения:

    sq35.

    Корни квадратного уравнения будут следующими:

    sq36.

    Разложим квадратный многочлен на множители:

    sq37.

    Упростили выражение, проще не бывает:

    sq38.

    Пример 10. Упростить выражение:

    sq47.

    sq48.

    Корни первого квадратного уравнения будут следующими:

    sq49.

    Находим дискриминант второго квадратного уравнения:

    sq50.

    Так как дискриминант равен нулю, второе квадратное уравнение имеет два совпадающих корня:

    sq51.

    Подставим корни квадратных уравнений, разложим числитель и знаменатель на множители и получим:

    sq52.

    Упрощать выражения путём решения квадратных уравнений требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Разумеется, квадратного трёхчлена может может и не быть в выражении в первоначальном виде, он может быть получен в процессе предварительных преобразований выражения.

    Из истории решения квадратных уравнений

    Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику Брахмагупте (около 598 г.). Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации. Суть его рассуждений видна из рисунка ниже (он рассматривает уравнение x² + 10x = 39 ).

    alhorezmi

    sq75

    Различные прикладные задачи на квадратные уравнения

    Пример 11. Отрезок ткани стоит 180 у.ед. Если бы ткани в отрезке было на 2,5 м больше и цена отрезка оставалась бы прежней, то цена 1 м ткани была бы на 1 у.ед. меньше. Сколько ткани в отрезке?

    Решение. Примем количество ткани в отрезке за x и получим уравнение:

    sq28

    Приведём обе части уравнения к общему знаменателю:

    sq29

    Произведём дальнейшие преобразования:

    sq30

    Получили квадратное уравнение, которое и решим:

    sq31

    sq32

    Ответ: в отрезке 20 м ткани.

    Пример 12. Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках. Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом 2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

    Решение. Примем за x количество товара, взвешиваемого в одном ящике. Тогда получим уравнение:

    sq53

    Приведём обе части уравнения к общему знаменателю, произведём дальнейшие преобразования и получим квадратное уравнение. Процесс записывается так:

    sq54

    sq55

    Найдём корни квадратного уравнения:

    sq56

    Количество товара не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь положительный корень.

    Ответ: в одном ящике взвешивают 12,5 кг ткани.

    Источник

    Содержание:

    Квадратные уравнения

    В предыдущих классах вы уже научились составлять и решать уравнения, но лишь простейшие, к которым сводятся относительно несложные задачи. Для решения более сложных задач используют квадратные уравнения. Изучив эту тему, вы сможете решать прикладные задачи из разных отраслей знаний.

    В этой главе вы узнаете, что такое:

    • неполные квадратные уравнения;
    • формула корней квадратного уравнения;
    • теорема Виета;
    • разложение квадратного трёхчлена на множители.

    Неполные квадратные уравнения

    Пример:

    Одно из двух чисел больше другого на 6, а их произведение равно 112. Найдите эти числа.

    Решение:

    Обозначим меньшее искомое число буквой х. Тогда большее число равно х + 6. Их произведение — 112. Следовательно,

    х(х + 6) = 112, или х2 + 6х- 112 = 0.

    Это уравнение второй степени с одной переменной. Такие уравнения называют также квадратными.

    Квадратным называют уравнение вида ах2 + bх + c = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения

    Числа а, b, с — коэффициенты квадратного уравнения: а — первый коэффициент, b — второй, с — свободный член.

    По определению, первый коэффициент квадратного уравнения не может быть равен нулю. Если хотя бы один коэффициент (b или с) равен нулю, то квадратное уравнение называют неполным.

    Неполные квадратные уравнения бывают трёх видов:

    1) ах2 = 0; 2) ах2 + bх = 0; 3) ах2 + с = 0.

    1. Уравнение вида ах2 = О равносильно уравнению х2 = 0, и поэтому всегда имеет только один корень х = О.

    2. Уравнение вида ах2 + bх = 0 равносильно уравнению х(ах + b) = 0 и всегда имеет два корня: х1 = 0, х2 =Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение 2 + 4х = 0.

    Решение:

    Вынесем переменную х за скобки: х(5х + 4) = 0. Следовательно, х = О, или 5х + 4 = 0,отсюда х = -0,8. О т в е т. х1 = 0, х2 = -0,8.

    3. Квадратное уравнение вида ах2 + с = О равносильно уравнению х2 = Квадратные уравнения - определение и вычисление с примерами решения . Если Квадратные уравнения - определение и вычисление с примерами решения > 0 , то оно имеет два решения: если Квадратные уравнения - определение и вычисление с примерами решения<0 — ни одного решения.

    Пример:

    Решите уравнение 2 -3 = 0.

    Решение:

    Преобразуем данное уравнение: 2 = 3, Квадратные уравнения - определение и вычисление с примерами решения, х — число, квадрат которого равен Квадратные уравнения - определение и вычисление с примерами решения, то есть квадратный корень из числа Квадратные уравнения - определение и вычисление с примерами решения . Таких корней два: Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения. Ответ. Квадратные уравнения - определение и вычисление с примерами решения. Если знаки коэффициентов а и с разные, то число Квадратные уравнения - определение и вычисление с примерами решения положительное, и уравнение имеет два корня. Если знаки коэффициентов а и с одинаковы, то число — отрицательное. Следовательно, уравнение ах2 + с = 0 не имеет корней.

    Хотите знать ещё больше?

    Некоторые квадратные уравнения (полные) можно решать приведением их к неполным квадратным уравнениям. Например, по формуле квадрата двучлена, уравнение х2 – 2х + 1 = 0 можно представить в виде (х – 1)2 = 0 и решить так: (х-1)2 равно нулю лишь в том случае, если х – 1 = 0, то есть х = 1.

    Таким способом можно решить любое квадратное уравнение, выразив его левую часть в виде квадрата двучлена.

    Например, Квадратные уравнения - определение и вычисление с примерами решения. Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Решите квадратное уравнение: а) Зх2 – 6х = 0; б) 2у2 -72 = 0.

    Решение:

    а) Зх2 – 6х = 0; Зх(х – 2) = 0; х1 = 0; х-2 = 0; х2 = 2.

    б) 2 -72 = 0; 2(у2 36)-0; у2– 36 – 0; y1 = 6; y2 = -6. Ответ. a) x1 = 0, х2 = 2; б)у1=6, у2 =-6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, отсюда х1 = -20, х2 = 20.

    При этих значениях х знаменатель не равен нулю. Следовательно, х1 = – 20, х2 = 20 — корни уравнения. О т в е т. х1 = – 20, х2 = 20 .

    Формула корней квадратного уравнения

    Решим уравнение х2 + 6х-112=0, которое мы составили по условию задачи.

    Решение:

    Если к выражению х2 + 6х прибавить 9, то получим квадрат двучлена х + 3. Поэтому данное уравнение равносильно уравнению х2 + 6х + 9-9-112=0, или (х + 3)2 = 121. Следовательно, х + 3 = 11, отсюда х = 8; или х + 3 = -11, отсюда х = -14. Ответ. х1 = 8, х2 = -14.

    Такой способ решения квадратного уравнения называют способом выделения квадрата двучлена.

    Решим этим способом уравнение 5х2 – 2х – 3 = 0.

    Чтобы первый его член стал квадратом одночлена с целым коэффициентом, умножим обе части данного уравнения на 5: 25х2 -10х – 15=0, 25х2-2 . 5х + 1 – 1 – 15 = 0, (5х- 1)2 = 16.

    Следовательно, 5х – 1 = 4, отсюда 5х = 5, х = 1; или 5х – 1 = – 4, отсюда 5х = – 3, х = – 0,6. От в е т. х1 = 1, х2 = -0,6.

    Решим таким способом уравнение ах2 + bх + с = 0.

    Умножим обе части уравнения на 4а (помним, что Квадратные уравнения - определение и вычисление с примерами решения):

    2х2 + 4ах.b + 4ас = 0,

    (2ах)2 + 2 . 2ах . b + b2 – b2 + 4ас = 0,

    (2ах + b)2 = b2 – 4ас.

    Выражение b2 — 4ас называют дискриминантом (от латинскогоdiscriminans — различающий) данного квадратного уравнения и обозначают буквой D.

    Если D < 0, то данное уравнение не имеет корней: не существует такого значения х, при котором значение выражения (2ах + b)2 было бы отрицательным.

    Если D = 0, то 2ах + и = 0, отсюда х = Квадратные уравнения - определение и вычисление с примерами решения – единственный корень. Если D > 0, то данное квадратное уравнение равносильно уравнению Квадратные уравнения - определение и вычисление с примерами решения, отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае уравнение имеет два корня, они отличаются только знаками перед Квадратные уравнения - определение и вычисление с примерами решения . Кратко их записывают так: Квадратные уравнения - определение и вычисление с примерами решения , где Квадратные уравнения - определение и вычисление с примерами решения.

    Это формула корней квадратного уравнения ах2 + bх + с = 0. Пользуясь ею, можно решить любое квадратное уравнение.

    Пример:

    Решите уравнение: а) Зх2 – 5х + 2 = 0; б) х2 + 6х + 9 = 0; в) 5х2 – х + 1 = 0.

    Решение:

    a) D = 25 – 24 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    б) D = 36-36 = 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    в) D =1 – 20 = -19, D < 0. Уравнение корней не имеет.

    Ответ. а)х1 = 1, х2= Квадратные уравнения - определение и вычисление с примерами решения ; б) х = -3: в) уравнение корней не имеет. Формулу корней квадратного уравнения применяют при решении многих уравнений, которые-сводятся к квадратным.

    Пример:

    Решите уравнение: а) 4х4 – 9х2 +5=0; б) (Зх2 – x – 3)(3х2 – х + 5) = 9.

    Решение:

    Такие уравнения удобно решать путём введения вспомогательной переменной.

    a) 4x4 – 9x2 + 5 = 0. Пусть x2 — t, тогда x4 = t2, получим уравнение относительно переменной t: 4x2 – 9x2+ 5 = 0, D = (-9)2 – 4 .4 .5 = 81 – 80 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения/

    Вернёмся к переменной x: l) x2 = l, xl=-l, x2=l;

    2) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение вида ax4 + bx2 + c=0 называют биквадратным. б) (Зх2 – х – 3)(3х2 – х + 5) = 9. Пусть 2 – х = t, тогда относительно переменной t получим уравнение: (t – 3)(t + 5) = 9, t2 + 2t – 15 = 9, t2 + 2t – 24 = 0, D= 4. 4 (-24) = 4 + 96 – 100, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения.

    1)3х2-х=-6,Зх2-х + 6-0, D = (-1)2-4. 3. 6=-71, D<0, следовательно, это уравнение корней не имеет. 2 ) Зх2 – х = 4, Зх2 – х – 4 – О, х1 = -1, х2 = Квадратные уравнения - определение и вычисление с примерами решения. Ответ. а) х1 = -1, х2 = 1, х3 = Квадратные уравнения - определение и вычисление с примерами решения, х4 = Квадратные уравнения - определение и вычисление с примерами решения; б) x1 = -1, x2 =Квадратные уравнения - определение и вычисление с примерами решения .

    Хотите знать ещё больше?

    Формулу корней уравнения ах2 + bх + с = 0 можно записать и в таком виде:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если второй коэффициент уравнения — чётное число, то есть уравнение имеет вид ах2 + 2kx + с = 0, то

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если первый коэффициент квадратного уравнения равен 1, то такое уравнение называют приведённым. Приведённое квадрат ное уравнение имеет вид х2 + рх + q = 0, Формула его корней:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Выведите эти формулы из основной формулы корней квадратного уравнения.

    Выполним вместе!

    Пример:

    Приведите уравнение (х – 4)(2х + 1) = Зх(х – 1) к квадратному и найдите его корни.

    Решение:

    (х- 4)(2х 4-1) = Зх(х-1). Раскроем скобки и сведём подобные слагаемые: 2 – 8х + х – 4 = 3х2 – 3х,

    Зх2 – 2х2 – 3х + 8х – х + 4 = 0, х2 +4х +4 = 0.

    Решим полученное уравнение, принимая во внимание, что в его левой части — квадрат двучлена: х2 + 2 . х . 2 + 22 = (х +2)2. Следовательно, (х +2)2 — 0, отсюда х + 2 = 0, х = -2.

    Ответ. х = -2.

    Пример:

    Решите дробное рациональное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Дробь равна нулю, если числитель равен нулю, а знаменатель не равен нулю, х2 – 5х + 6 = 0:

    D=25-4.6=1, Квадратные уравнения - определение и вычисление с примерами решения, х1 =2, х2 =3. Данное уравнение эти значения не удовлетворяют, поскольку при х = 2 знаменатель первой дроби равен 0, а при х = 3 знаменатель второй дроби равен 0. Ответ. Уравнение корней не имеет.

    Теорема Виета

    Квадратное уравнение называют приведённым, если первый его коэффициент равен единице. В таблице — примеры трёх приведённых квадратных уравнений, их корни, а также суммы и произведения корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сравните сумму корней каждого приведённого квадратного уравнения с его вторым коэффициентом, а произведение корней — со свободным членом.

    Теорема Виета: Если приведённое квадратное уравнение имеет два корня, то их сумма равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение — свободному члену.

    Доказательство. Если уравнение х2 + рх + q = 0 имеет корни х1 и х2, то их можно найти по формулам:

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения где D = р2 – 4q — дискриминант уравнения.

    Сложим и перемножим эти корни:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Итак, x1 + х2 =— р, x1 . х2 = q, что и требовалось доказать. Примечание. Если р2 – 4q = 0, то уравнение х2+ рх + q = 0 имеет один корень Квадратные уравнения - определение и вычисление с примерами решения.

    Формулы (*) в этом случае дают Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения Поэтому часто считают, что данное уравнение имеет два равных корня. Теорема Виета верна и для этого случая, поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждое квадратное уравнение вида Квадратные уравнения - определение и вычисление с примерами решения равносильно приведённому квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Если такое уравнение имеет корни х1 и х2,то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема (обратная теореме Виета). Если сумма m и n произведение чисел тип равны соответственно — р и q, то m и n тип — корни уравнения х2 + рх + q =0.

    Доказательство. Пусть m + n =-р и m . n =q. При данных условиях уравнение х2 + рх 4 q = 0 равно сильно уравнению х2 – (m + n)х + m n = 0.

    Подставим в это уравнение вместо переменной х числа m и n:

    m2 – (m +n)m + mn = m2m2nm + mn= 0,

    n2 – (m +n)n+ mn = n2mnn2 +mn = 0.

    Итак, m и n — корни данного уравнения, что и требовалось доказать. Из теоремы Виета следует: если р и q – целые числа, то целые решения уравнения х2 + рх + q= 0 — это делители числа q. Пользуясь обратной теоремой, можно проверить, является та или другая пара чисел корнями приведённого квадратного уравнения. Это даёт возможность устно решать такие уравнения.

    Пример:

    Решите уравнение х2 + 12х + 11 = 0.

    Решение:

    Если уравнение имеет целые корни, то их произведение равно 11. Это могут быть числа 1 и 11 либо – 1 и -11. Второй коэффициент уравнения положительный, поэтому корни отрицательные. Ответ. х1 = -1, х2 = -11.

    Хотите знать ещё?

    Теорема Виета верна не толоко для приведённого квадратного уравнения, но и для уравнений высших степеней Например, если уравнение третьей степени х3+4ах2 +bх + с = 0 имеет корни х1, х2 и х3, то

    x1+x2+x3=-a

    x1x2+x1x3+x2x3=b

    x1x2x3 = – c.

    Если такое уравнение с целыми коэффициентами имеет целые решения, то они являются делителями свободного члена.

    Выполним вместе!

    Пример:

    Найдите сумму и произведение корней уравнения:

    а) х2 + х-6 = 0; б)х2 + 2х + 3 = 0.

    Решение:

    а) D=1 +24 >0. Корни существуют, поэтому x1 + х2 = -1; x1 . х2 = -6;

    б) D= 4-12<0. Корней не существует. Ответ. а)х1 + х2 = -1,х1 -х2 = -6; б) корней не существует.

    Пример:

    При каких значениях m произведение корней уравнения х2 + 8х + m – 7 = 0 равно 3?

    Решение:

    m-7 = 3, m = 10. Ответ. m = 10.

    Пример:

    Не решая уравнение х2 – 4х + 1 = 0, найдите сумму квадратов его корней.

    Решение:

    D = 16 – 4 > 0. Корни существуют. x1 + х2 = 4; х1 .х2 = 1;

    (x1 + x2)2 = 16; x21+2x1x2+x22 =16;

    х12 +2. 1+x22 =16; x21 +x22 =16-2, х2122 =14.

    Ответ. x21+x22=14.

    Квадратный трёхчлен

    Квадратным трёхчленом называют многочлен вида ах2 + bх+ с, где х — не ременная, a, b, c — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения.

    Переменную квадратного трёхчлена можно обозначить любой буквой. Примеры квадратных трёхчленов:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратный трёхчлен приравнять к нулю, то получим квадратное уравнение. Его корни и дискриминант называют соответственно корнями и дискриминантом данного квадратного трёхчлена. Например, дискриминант и корни квадратного трёхчлена 2 — 7х – 6 равны соответственно 169, 2 и Квадратные уравнения - определение и вычисление с примерами решения , поскольку это дискриминант и корни уравне ния 2 – 7х – 6 = 0.

    Из теоремы Виета следует правило разложения квадратных трёхчленов на множители.

    Если m и n — корни уравнения x2+ рх + q = 0, то х2 + рх + q = (х-m)(х – n).

    Поскольку х2 + рх + q = х2 – (m -n)х 4+mn = х2 – mх – nх 4- mn = (y- m )(х – n).

    Пример:

    Разложите на множители трёхчлен: х2+4х- 21.

    Решение:

    а) Корни уравнения х2+4х- 21=0 равны 3 и -7. Поэтому

    х2+ 4х – 21 =(х- 3)(х +7).

    Ответ.(х- 3)(х +7).

    Верна и такая теорема.

    Если корни квадратного трёхчлена ах2 + bх + с равны m и n, то его можно разложить на множители:

    ах2 +bх + с = а(х — m)(х — n).

    Доказательство:

    Квадратные уравнения - определение и вычисление с примерами решения. Следовательно, корни m и n трёхчлена ах2+bx+c также являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения. По теореме Виета,

    Квадратные уравнения - определение и вычисление с примерами решения

    Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Например, если нужно разложить на множители трёхчлен Зх2+5х-2, то решаем уравнение Зх2+5х-2-0. Его дискриминант D = 25+24= 49, поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать и так;

    Зх2+ 5х 2 = (Зх 1 )(х+ 2).

    Разложение квадратных трёхчленов на множители применяется при сокращении дробей, приведении их к общему знаменателю и т. д. Например, чтобы сократить дробь Квадратные уравнения - определение и вычисление с примерами решения сначала следует разложить ее числитель и знаменатель на множители. Поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждый квадратный трёхчлен ах2 + bх + c можно представить в виде а(х-k)2+ р, где k и р некоторые числа. Такое преобразование называют выделением квадрата двучлена. Как выполнить подобное преобразование, покажем на примере. Чтобы выделить из квадратного трёхчлена 2х2 – 12х + 25 квадрат двучлена, сначала вынесем за скобки множитель 2:

    Квадратные уравнения - определение и вычисление с примерами решения Одночлен представим в виде произведения 2 . Зх, прибавим к нему 9 и отнимем 9: Квадратные уравнения - определение и вычисление с примерами решения

    В результате имеем: 2х2 – 12х + 25 = 2 (х – 3)2 + 7.

    Выделение квадрата двучлена даёт возможность решать задачи на нахождение наибольшего или наименьшего значения квадратного трёхчлена. Например, чтобы найти, при каком значении х значение выражения 2х2 -12х + 25 наименьшее, выделим из него квадрат двучлена:

    2– 12x+25 =2(х-3)2 + 7.

    Второе слагаемое полученной суммы — число 7, а первое имеет наименьшее значение, если равно 0, то есть х=3. Следовательно, трёхчлен 2– 12x+25 имеет наименьшее значение 7. если х = 3.

    Хотите знать ещё больше?

    Если квадратный трёхчлен имеет дробные корни, го при разложении его на линейные множители желательно первый коэффициент этого трёхчлена “внести в скобки” Например:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите значение функцииКвадратные уравнения - определение и вычисление с примерами решения при х = 2008.

    Решение:

    Числитель формулы разложим на множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 2008, то у = 2008 – 1 = 2007. О т в е т. у = 2007.

    Решение задач составлением квадратных уравнений

    С помощью квадратных уравнений можно упростить решение многих задач.

    Пример:

    Найдите два числа, произведение и среднее арифметическое которых равны соответственно 108 и 10,5.

    Решение:

    Если среднее арифметическое двух чисел равно 10,5, то их сумма в 2 раза больше, то есть 21. Пусть одно из искомых чисел х, тогда другое равно 21-х.

    Имеем уравнение:

    х(21 – х) = 108, или х2 – 21х + 108 = 0.

    Решим это уравнение: D = 212 – 4. 108 = 9,

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 9, то 21 – х = 12; если х = 12, то 21 – х = 9.

    Ответ. 9 и 12.

    Пример:

    Собственная скорость моторной лодки — 18 км/ч. Расстояние 12 км по течению реки она проходит на 9 мин быстрее, чем против течения. Найдите скорость течения реки.

    Решение:

    9 мин = 0,15 ч. Если скорость течения реки равна х км/ч, то скорость лодки по течению составляет (18 + х) км/ч, а против течения — (18 – х) км/ч. Расстояние 12 км по течению она проходит за Квадратные уравнения - определение и вычисление с примерами решенияч, а против течения — за Квадратные уравнения - определение и вычисление с примерами решенияч. Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    отсюда 4(18 + х) – 4(18 – х) – 0,05(18 – х)(18 + х) = 0,

    х2 + 160х – 324 = 0, D = 1602 + 4.324 = 26 896.

    Квадратные уравнения - определение и вычисление с примерами решения

    Задачу удовлетворяет только положительный корень. Ответ. 2 км/ч.

    Пример:

    На плоскости n точек расположены таким образом, что никакие три из них не лежат на одной прямей. Если любую из этих точек соединить отрезком со всеми другими, то получим 351 отрезок. Найдите число n.

    Решение:

    Из одной точки выходит n – 1 отрезков, из всех n данных точек — n(n – 1) отрезков. При этом каждый отрезок повторяется дважды, поскольку имеет два конца. Следовательно, всего отрезков Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение: D = 1 + 4 .702 = 2809, Квадратные уравнения - определение и вычисление с примерами решения отсюда n1= 27, n2 = -26. Отрицательный корень задачу не удовлетворяет.

    Ответ. n = 27

    Хотите знать ещё больше?

    В задачах кроме числовых данных иногда бывают и параметры. В этом случае решение желательно дополнить соответствующими исследованиями — указать, какие значения могут принимать параметры. Например, решим такую задачу.

    Пример:

    Найдите стороны равнобедренного треугольника, если известно, что две его неравные высоты равны а и b.

    Решение:

    Обозначим стороны треугольника буквами: АС = АВ = х, СВ = у (рис. 62).

    Квадратные уравнения - определение и вычисление с примерами решенияРис. 62

    Воспользуемся теоремой Пифагора и формулой для вычисления площади треугольника и составим систему

    Квадратные уравнения - определение и вычисление с примерами решения

    Вычислим из второго уравнения с, подставим его в первое и получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения.

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Исследование. В полученных значениях x и у под знаком корня имеем разность 2 – b2, которая должна быть положительной, что возможно только при b < 2а.

    Следовательно, данное решение задачи верно не при любых положительных а и b, а лишь при b < 2а.

    Далее. Мы рассмотрели случай, когда на основание y и опущена высота а. Но для этих же значений а и b возможен иной вариант (рис. 63). Имеем:

    Квадратные уравнения - определение и вычисление с примерами решенияотсюда Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае а < 2b. Ответ. Если a < 2b < 4а, то задача имеет два решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет также одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите три последовательных целых числа, сумма квадратов которых равна 509.

    Решение:

    Пусть искомые числа: х -1, х, х + 1. Тогда имеем уравнение: (х – 1)2 + х2 + (х + 1)2 =509. Решим его.

    Раскроем скобки и сведём подобные слагаемые: х2 -2х + 1+ х2+ х2+2х+1- 509=0,.

    2-507=0, отсюда х2 =169, х1= 13, х2=- 13

    = 0, отсюда х2 – 169, х, 13, х . = 13. Следовательно, два других числа: 12, 14 или -12, 14. Ответ. 12, 13, 14 или 12. -13, II.

    Следовательно, два других числа: 12,14 или -12, -14.

    Ответ. 12,13,14 или -12, 13, 14.

    ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

    Квадратные уравнения простейших видов вавилонские математики умели решать ещё 4 тыс. лет тому назад. Со временем их решали также в Китае и Греции. Особое внимание квадратным уравнениям уделил Мухаммед аль-Хо-резми (IX в.). Он показал, как решать (при положительных а и b) уравнения видов х2 + ах = b, х2 + а = bх, ах + b = х2, не используя каких-либо выражений, даже числа записывал словами. Например, уравнение х2 + 21 = 10х учил решать так: «Раздели пополам корни, получится пять, и умножь это на равное ему — будет двадцать пять, и отними от этого двадцать один, то останется четыре, добудь из этого корень, будет два, и отними это от половины корней, то есть от пяти, — останется три; это и будет корень, который ты ищешь». Отрицательных корней тогда не вычисляли. Индийские учёные в решении этого вопроса пошли дальше. Они находили также отрицательные корни квадратных уравнений. Например, Бхаскара (1114 -1178), решая уравнение х2 – 45х = 250, находит два корня: 50 и 5. И только после этого делает замечание: «Второе значение в данном случае не следует брать, люди ведь не воспринимают отрицательных абстрактных чисел». Алгебраические задачи на составление уравнений индийские учёные записывали в стихотворной форме и рассматривали их как особый вид искусства. Они объясняли: «Как солнце затмевает звёзды своим светом, так и человек учёный способен затмить славу других на народных собраниях, предлагая алгебраические задачи и, тем более, решая их». Формулы корней квадратного уравнения вывел Франсуа Виет (1540—1603). Теорему, впоследствии названную его именем, учёный сформулировал так: «Если (В + В) А -А2 равно BD, то А равно В и равно В». Отрицательных корней он не рассматривал. Современные способы решения квадратных уравнений появились благодаря научным трудам Рене Декарта (1596— 1650) и Исаака Ньютона (1643—1727).

    ОСНОВНОЕ В ГЛАВЕ

    Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами. Числа, удовлетворяющие уравнению, — его решения (или корни). Решить уравнение означает найти все его решения либо показать, что их не существует. Два уравнения называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считают равносильными друг другу. Квадратным называют уравнения вида ах2 + bх + с = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения. Выражение D = b2 – 4ас — его дискриминант. Если Квадратные уравнения - определение и вычисление с примерами решения, то данное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Если D — 0, то эти корни равны. Если D < 0, то такое квадратное уравнение не имеет действительных корней. Если необходимо, например, решить квадратное уравнение 2 + 9х – 5 = 0, то находим его дискриминант: D = 92 – 4.2 .(-5) =121. Поэтому корни уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения Квадратное уравнение называют неполным, если хотя бы один его коэффициент, кроме первого, равен нулю. Уравнение: ах2 = 0 имеет единственный корень: х = 0;

    ax2 = 0 имеет единственный корень: х = 0; ах2 +bх = 0 имеет два корня: х1 = 0, х2=Квадратные уравнения - определение и вычисление с примерами решения; ах2 + с = 0 имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения , если с : а < 0, и ни одного, если с • а > 0.

    Квадратное уравнение называют приведенным, если его первый коэффициент равен единице. Если уравнение х2 + рх + q = 0 имеет два корня, то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета Если приведённое квадратное уравнение х2 +рх + q = 0 имеет два корня, то их сумма равна р, а произведение — q.

    Квадратные уравнения

    • Изучив материал этого параграфа, вы научитесь решать уравнения вида Квадратные уравнения - определение и вычисление с примерами решения
    • Ознакомитесь с теоремой Виета для квадратного уравнения.
    • Овладеете приемами решения уравнений, сводящихся к квадратным.

    Вы умеете решать линейные уравнения, то есть уравнения вида Квадратные уравнения - определение и вычисление с примерами решения, где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа.

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Например, каждое из линейных уравнений Квадратные уравнения - определение и вычисление с примерами решения

    является уравнением первой степени. А вот линейные уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются уравнениями первой степени.

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения.

    То, что множество уравнений первой степени является подмножеством множества линейных уравнений, иллюстрирует схема на рисунке 34.

    Вы также умеете решать некоторые уравнения, содержащие переменную во второй степени. Например, готовясь к изучению новой темы, вы решили уравнения Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (упражнение 589). Каждое из этих уравнений имеет вид Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения. Число Квадратные уравнения - определение и вычисление с примерами решения называют первым или старшим коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    Например, квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет следующие коэффициенты: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — это приведенные квадратные уравнения.

    Поскольку в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения старший коэффициент не равен нулю, то неприведенное квадратное уравнение всегда можно преобразовать в приведенное, равносильное данному. Разделив обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения получим приведенное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Существует три вида неполных квадратных уравнений.

    1. При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    2. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    3. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Решим неполные квадратные уравнения каждого вида.

    1. Поскольку Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень Квадратные уравнения - определение и вычисление с примерами решения
    2. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Это уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения один из которых равен нулю, а другой является корнем уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения
    3. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Поскольку Квадратные уравнения - определение и вычисление с примерами решения то возможны два случая: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения

    Обобщим полученные результаты:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения Но корень Квадратные уравнения - определение и вычисление с примерами решения не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения Последнее уравнение не имеет корней.

    Ответ: 2.

    Формула корней квадратного уравнения

    Зная коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения можно найти его корень по формуле Квадратные уравнения - определение и вычисление с примерами решения

    Выведем формулу, позволяющую по коэффициентам Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения находить его корни.

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения (1)

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то, умножив обе части этого уравнения на 4а, получим уравнение, равносильное данному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выделим в левой части этого уравнения квадрат двучлена: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения (2)

    Существование корней уравнения (2) и их количество зависят от знака значения выражения Квадратные уравнения - определение и вычисление с примерами решения Это значение называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения и обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Термин «дискриминант» происходит от латинского слова discriminare, что означает «различать», «разделять».

    Теперь уравнение (2) можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения (3)

    Возможны три случая: Квадратные уравнения - определение и вычисление с примерами решения

    1. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3), а следовательно, и уравнение (1) корней не имеет. Действительно, при любом значении Квадратные уравнения - определение и вычисление с примерами решения выражение Квадратные уравнения - определение и вычисление с примерами решения принимает только неотрицательные значения.

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    2. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) принимает вид

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    3. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) можно записать в виде

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Применяют также краткую форму записи:

    Квадратные уравнения - определение и вычисление с примерами решения

    Эту запись называют формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Полученную формулу можно применять и в случае, когда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    При решении квадратных уравнений удобно руководствоваться следующим алгоритмом:

    • найти дискриминант Квадратные уравнения - определение и вычисление с примерами решения квадратного уравнения;
    • если Квадратные уравнения - определение и вычисление с примерами решения то в ответе записать, что корней нет;
    • если Квадратные уравнения - определение и вычисление с примерами решения то воспользоваться формулой корней квадратного уравнения.

    Если второй коэффициент квадратного уравнения представить в виде Квадратные уравнения - определение и вычисление с примерами решения то можно пользоваться другой формулой, которая во многих случаях облегчает вычисления.

    Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Найдем его дискриминант: Квадратные уравнения - определение и вычисление с примерами решения Обозначим выражение Квадратные уравнения - определение и вычисление с примерами решения через Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то по формуле корней квадратного уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    то есть

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Для данного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    2) Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение имеет один корень:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что данное уравнение можно решить другим способом. Умножив обе части уравнения на —2, получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 2.

    3) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать одним из двух способов: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    4) Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение не имеет корней.

    Ответ: корней нет.

    5) Представим данное уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения и применим формулу корней для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет

    корни —8 и 2, однако корень —8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет корни —2 и 8, однако корень 8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —2; 2.

    2) Поскольку Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения то искомые корни должны удовлетворять двум условиям одновременно: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения В таком случае говорят, что данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет корни —2 и 12, но корень —2 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 12.

    3) Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    2) При Квадратные уравнения - определение и вычисление с примерами решения получаем линейное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеющее один корень.

    При Квадратные уравнения - определение и вычисление с примерами решения данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Несколько поколений учителей математики приобретали педагогический опыт, а их учащиеся углубляли свои знания, пользуясь чудесной книгой «Квадратные уравнения» блестящего украинского педагога и математика Николая Андреевича Чайковского. Н. А. Чайковский оставил значительное научное и педагогическое наследие. Его труды известны далеко за пределами Украины.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Готовясь к изучению этого пункта, вы выполнили упражнения 677, 678. Возможно, эти упражнения подсказали вам, каким образом сумма и произведение корней квадратного уравнения связаны с его коэффициентами.

    Теорема: (теорема Виета). Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Условием теоремы предусмотрено, что данное квадратное уравнение имеет корни. Поэтому его дискриминант Квадратные уравнения - определение и вычисление с примерами решения не может быть отрицательным.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Применив формулу корней квадратного уравнения, запишем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения В этом случае считают, что Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Иными словами, сумма корней приведенного квадратного уривнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Теорема: (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Преобразуем его в приведенное:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Французский математик, по профессии юрист. В 1591 г. ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений, благодаря чему стало возможным выражать свойства уравнений и их корни общими формулами. Среди своих открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

    Согласно условию теоремы это уравнение можно записать так: Квадратные уравнения - определение и вычисление с примерами решения (*)

    Подставим в левую часть этого уравнения вместо Квадратные уравнения - определение и вычисление с примерами решения сначала число Квадратные уравнения - определение и вычисление с примерами решения а затем число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения (*), а следовательно, и корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Это следствие позволяет решать некоторые квадратные уравнения устно, не используя формулу корней квадратного уравнения.

    Пример:

    Найдите сумму и произведение корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выясним, имеет ли данное уравнение корни. Имеем: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Найдите коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения Квадратные уравнения - определение и вычисление с примерами решения если его корнями являются числа —7 и 4.

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение с целыми коэффициентами, корни которого равны: 1) 4 и Квадратные уравнения - определение и вычисление с примерами решения; 2) Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения.

    Решение:

    1) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Умножив обе части этого уравнения на 7, получаем квадратное уравнение с целыми коэффициентами:

    Квадратные уравнения - определение и вычисление с примерами решения

    2) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Известно, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Число 4 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения Найдите второй корень уравнения и значение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, причем Квадратные уравнения - определение и вычисление с примерами решения По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение, корни которого на 4 больше соответствующих корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни искомого уравнения.

    По условию Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, по теореме, обратной теореме Виета, искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Определение: Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решениягде Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Приведем примеры многочленов, являющихся квадратными трехчленами:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что левая часть квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом.

    Определение: Корнем квадратного трехчлена называют значение переменной, при котором значение квадратного трехчлена равно нулю.

    Например, число 2 является корнем квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения надо решить соответствующее квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Значение выражения Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен корней не имеет. Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень, если Квадратные уравнения - определение и вычисление с примерами решения — то два корня.

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Разложим его на множители методом группировки (подобное упражнение, 724, вы выполняли при подготовке к изучению этого пункта).

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    О таком тождественном преобразовании говорят, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения разложили на линейные множители Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Связь между корнями квадратного трехчлена и линейными множителями, на которые он раскладывается, устанавливает следующая теорема.

    Теорема: Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Доказательство: Поскольку числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то по теореме Виета

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда

    Квадратные уравнения - определение и вычисление с примерами решения

    Замечание. Если дискриминант квадратного трехчлена равен нулю, то считают, что квадратный трехчлен имеет два равных корня, то есть Квадратные уравнения - определение и вычисление с примерами решения В этом случае разложение квадратного трехчлена на линейные множители имеет следующий вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема:. Если дискриминант квадратного трехчлена отрицательный, то данный трехчлен нельзя разложить на линейные множители.

    Доказательство: Предположим, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения можно разложить на линейные множители. Тогда существуют такие числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения при которых выполняется равенство Квадратные уравнения - определение и вычисление с примерами решения Отсюда получаем, что тип — корни данного квадратного трехчлена. Следовательно, его дискриминант неотрицательный, что противоречит условию.

    Пример:

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Найдем корни данного трехчлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    2) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    3) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Разложим на множители квадратный трехчлен, являющийся числителем данной дроби. Решив уравнение Квадратные уравнения - определение и вычисление с примерами решения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теперь можно записать:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения разложение на множители трехчленаКвадратные уравнения - определение и вычисление с примерами решения содержит множитель Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Поскольку разложение данного трехчлена на множители должно содержать множитель Квадратные уравнения - определение и вычисление с примерами решения то один из корней этого трехчлена равен —5. Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, приводимых к квадратным уравнениям

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Подставив в исходное уравнение вместо Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения соответственно Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения, получим квадратное уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решая это уравнение, находим: Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то решение исходного уравнения сводится к решению двух уравнений:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать двумя способами: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    Заменой Квадратные уравнения - определение и вычисление с примерами решения биквадратное уравнение сводится к квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Такой способ решения уравнений называют методом замены переменной.

    Метод замены переменной можно использовать не только при решении биквадратных уравнений.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выполним замену Квадратные уравнения - определение и вычисление с примерами решения Тогда исходное уравнение сводится к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь надо решить следующие два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения Первое из них корней не имеет. Из второго уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 0; 1.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем: Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то эти уравнения корней не имеют, а следовательно, и исходное уравнение корней не имеет.

    Ответ: корней нет.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —3.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 7.

    Решение уравнений методом замены переменной

    В п. 22 вы ознакомились с решением уравнений методом замены переменной. Рассмотрим еще несколько примеров, иллюстрирующих эффективность этого метода.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения Это уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь решение исходного уравнения сводится к решению двух уравнений

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: —3; —1; 2; 6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Преобразуем это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решив эти два квадратных уравнения, получаем ответ.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки легко убедиться, что число 0 не является корнем данного уравнения. Тогда, разделив обе части данного уравнения на Квадратные уравнения - определение и вычисление с примерами решенияперейдем к равносильному уравнению:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Произведем замену: Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    С учетом замены получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Такая замена позволяет переписать исходное уравнение следующим образом:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки можно убедиться, что число 0 не является корнем данного уравнения. Следовательно, можно разделить обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение, равносильное исходному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Замена Квадратные уравнения - определение и вычисление с примерами решения приводит к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Завершите решение самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Может возникнуть вопрос: почему при решении примеров 1—5 мы не пытались упростить уравнения с помощью тождественных преобразований?

    Дело в том, что после тождественных преобразований нам пришлось бы решать уравнение вида Квадратные уравнения - определение и вычисление с примерами решения (вы можете убедиться в этом самостоятельно). При Квадратные уравнения - определение и вычисление с примерами решения такое уравнение называют уравнением четвертой степени, при Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияуравнением третьей степени. Частным случаем этого уравнения, когда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения является биквадратное уравнение. Его вы решать умеете.

    В общем случае для решения уравнений третьей и четвертой степеней необходимо знать формулы нахождения их корней. С историей открытия этих формул вы можете ознакомиться в следующем рассказе.

    Секретное оружие Сципиона дель Ферро

    Вы легко решите каждое из следующих уравнений третьей степени:

    Квадратные уравнения - определение и вычисление с примерами решения

    Все они являются частными случаями уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения Вывести формулу его корней — задача сложная. Недаром появление этой формулы считают выдающимся математическим открытием XVI века.

    Первым изобрел способ решения уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — положительные числа, итальянский математик Сципион дель Ферро (1465-1526). Найденную формулу он хранил в секрете. Это было обусловлено тем, что карьера ученого того времени во многом зависела от его выступлений в публичных математических турнирах. Поэтому было выгодно хранить открытия в тайне, рассчитывая использовать их в математических соревнованиях как секретное оружие.

    После смерти дель Ферро его ученик Фиоре, владея секретной формулой, вызвал на математический поединок талантливого математика-самоучку Никколо Тарталья. За несколько дней до турнира Тарталья сам вывел формулу корней уравнения третьей степени. Диспут, на котором Тарталья одержал убедительную победу, состоялся 20 февраля 1535 года.

    Впервые секретная формула была опубликована в книге известного итальянского ученого Джероламо Кардан о «Великое искусство». В этой работе также описан метод решения уравнения четвертой степени, открытый Людовико Феррари (1522—1565).

    В XVTI-XVIII вв. усилия многих ведущих математиков были сосредоточены на поиске формулы для решения уравнений пятой степени. Получению результата способствовали работы итальянского математика Паоло Руффини (1765-1822) и норвежского математика Нильса Хенрика Абеля. Сам результат оказался абсолютно неожиданным: было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения пятой и более высоких степеней через коэффициенты уравнения, используя лишь четыре арифметических действия и действие извлечения корня.

    Квадратные уравнения - определение и вычисление с примерами решения

    Рациональные уравнения как математические модели реальных ситуаций

    В п. 7 вы уже ознакомились с задачами, в которых рациональные уравнения служили математическими моделями реальных ситуаций. Теперь, когда вы научились решать квадратные уравнения, можно существенно расширить круг рассматриваемых задач.

    Пример:

    Из пункта Квадратные уравнения - определение и вычисление с примерами решения выехал велосипедист, а через 45 мин после этого в том же направлении выехал грузовик, догнавший велосипедиста на расстоянии 15 км от пункта Квадратные уравнения - определение и вычисление с примерами решения. Найдите скорость велосипедиста и скорость грузовика, если скорость грузовика на 18 км/ч больше скорости велосипедиста.

    Решение:

    Пусть скорость велосипедиста равна Квадратные уравнения - определение и вычисление с примерами решения км/ч, тогда скорость грузовика составляет Квадратные уравнения - определение и вычисление с примерами решения км/ч. Велосипедист проезжает 15 км за Квадратные уравнения - определение и вычисление с примерами решения ч, а грузовик — за Квадратные уравнения - определение и вычисление с примерами решения ч. Разность Квадратные уравнения - определение и вычисление с примерами решения показывает, на сколько часов грузовик проезжает 15 км быстрее, чем велосипедист. Поскольку грузовик проехал 15 км на 45 мин,

    то есть на Квадратные уравнения - определение и вычисление с примерами решения ч, быстрее, чем велосипедист, то получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решив квадратное уравнение системы, получим Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Корень —30 не удовлетворяет условию задачи. Следовательно, скорость велосипедиста равна 12 км/ч, а скорость грузовика составляет: 12 + 18 = 30 (км/ч).

    Ответ: 12 км/ч, 30 км/ч.

    Пример:

    Одна бригада работала на ремонте дороги 7 ч, после чего к ней присоединилась вторая бригада. Через 2 ч их совместной работы ремонт был завершен. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно, если первой для этого требуется на 4 ч больше, чем второй?

    Решение:

    Пусть первая бригада может самостоятельно отремонтировать дорогу за Квадратные уравнения - определение и вычисление с примерами решения ч, тогда второй для этого нужно Квадратные уравнения - определение и вычисление с примерами решения ч. За 1 ч первая бригада ремонтирует Квадратные уравнения - определение и вычисление с примерами решения часть дороги, а вторая Квадратные уравнения - определение и вычисление с примерами решения часть дороги. Первая бригада работала 9 ч и отремонтировала Квадратные уравнения - определение и вычисление с примерами решения дороги, а вторая бригада работала 2 ч и отремонтировала соответственно Квадратные уравнения - определение и вычисление с примерами решения дороги. Поскольку в результате была отремонтирована вся дорога, то можно составить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно). Второй корень не удовлетворяет условию задачи, поскольку тогда вторая бригада могла бы отремонтировать дорогу за 3 — 4 = —1 (ч), что не имеет смысла.

    Следовательно, первая бригада может отремонтировать дорогу за 12 ч, а вторая — за 8 ч.

    Ответ: 12 ч, 8 ч.

    Пример:

    Водный раствор соли содержал 120 г воды. После того как в раствор добавили 10 г соли, его концентрация увеличилась на 5 %. Сколько граммов соли содержал раствор первоначально?

    Решение:

    Пусть исходный раствор содержал Квадратные уравнения - определение и вычисление с примерами решения г соли. Тогда его масса была равна Квадратные уравнения - определение и вычисление с примерами решения г, а концентрация соли составляла Квадратные уравнения - определение и вычисление с примерами решения

    После того как к раствору добавили 10 г соли, ее масса Квадратные уравнения - определение и вычисление с примерами решения

    в растворе составила Квадратные уравнения - определение и вычисление с примерами решения г, а масса раствора Квадратные уравнения - определение и вычисление с примерами решения г. Теперь концентрация соли составляет Квадратные уравнения - определение и вычисление с примерами решения что на 5 %, то есть на Квадратные уравнения - определение и вычисление с примерами решения больше, чем Квадратные уравнения - определение и вычисление с примерами решения Отсюда можно записать: Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно), из которых второй корень не удовлетворяет условию задачи.

    Следовательно, раствор содержал первоначально 30 г соли.

    Ответ: 30 г.

    ГЛАВНОЕ В ПАРАГРАФЕ 3

    Уравнение первой степени

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Квадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным уравнением.

    Приведенное квадратное уравнение

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Неполное квадратное уравнение

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Решение неполного квадратного уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант квадратного уравнения

    Для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения его дискриминант Квадратные уравнения - определение и вычисление с примерами решения — это значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    то Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Многочлен вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения— некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным трехчленом.

    Разложение квадратного трехчлена на множители

    Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители: Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Биквадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    —–

    Квадратные уравнения

    В этом разделе вы научитесь:

    • решать квадратные уравнения различными способами;
    • применять квадратные уравнения для решения задач;
    • по каким формулам находят площади треугольников и четырёхугольников;
    • применять формулы площадей при решении задач;
    • находить площадь сложных фигур, разделяя их на простые геометрические фигуры.

    Квадратные уравнения широко применяются в строительстве, финансах и дизайне.

    На практике также, широко применяются формулы для вычисления площадей.

    Это интересно!

    Великий учёный Востока аль – Хорезми в своём труде «Китаб мухтасаб ал-джабр и ва-л-мукабала», что в переводе означает «Книга о восполнении и противопоставлении» показал различные способы решения квадратных уравнений. Одним из них является метод подбора. Хорезми выбирал число и подставлял его в уравнение вместо неизвестного. После чего, становилось понятно, является ли данное число корнем уравнения.

    Например,

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения называется квадратным уравнением. Здесь Квадратные уравнения - определение и вычисление с примерами решения – постоянные, Квадратные уравнения - определение и вычисление с примерами решения – неизвестная. Квадратные уравнения - определение и вычисление с примерами решения – первый коэффициент, Квадратные уравнения - определение и вычисление с примерами решения – второй коэффициент, Квадратные уравнения - определение и вычисление с примерами решения – свободный член.

    Например, в уравнении Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратное уравнение с обеих сторон разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим уравнение Квадратные уравнения - определение и вычисление с примерами решения Здесь, обозначив Квадратные уравнения - определение и вычисление с примерами решения можно записать

    Квадратные уравнения - определение и вычисление с примерами решения Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения называется приведённым квадратным уравнением. Например, разделив уравнение Квадратные уравнения - определение и вычисление с примерами решения на 2, получим равносильное ему приведённое квадратное уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решенияили Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называется неполным квадратным уравнением.

    Уравнения, Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения являются неполными квадратными уравнениями.

    1) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Разделив обе части уравнения на число Квадратные уравнения - определение и вычисление с примерами решенияполучим уравнение Квадратные уравнения - определение и вычисление с примерами решения Его корнями является Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Разделим обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения

    2) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Для решения таких уравнений применяют вынесение общего множителя за скобку: Квадратные уравнения - определение и вычисление с примерами решенияПроизведение равно нулю, если хотя бы один из множителей равен нулю, т.е. Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Отсюда следует, что уравнение Квадратные уравнения - определение и вычисление с примерами решенияимеет два корня, один из которых всегда равен Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнении Квадратные уравнения - определение и вычисление с примерами решения надо левую часть уравнения разложить на множители: Квадратные уравнения - определение и вычисление с примерами решения

    3) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения имеют одинаковые знаки, то действительных корней нет (почему?). Если Квадратные уравнения - определение и вычисление с примерами решения имеют разные знаки, то уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения методом разложения на множители

    Решение уравнения Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители надо найти два числа тип (если это возможно), чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения. Если Квадратные уравнения - определение и вычисление с примерами решения являются целыми числами, то Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения – также целые числа. В этом случае, если Квадратные уравнения - определение и вычисление с примерами решения то заданной уравнение можно записать в виде : Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияположительные числа, то надо найти два положительных числа, чтобы их произведение было равно 8, а сумма – равна 6. Это числа 2 и 4. Зная, что Квадратные уравнения - определение и вычисление с примерами решения то уравнение можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияОтсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Квадратные уравнения - определение и вычисление с примерами решения Так как в уравнении Квадратные уравнения - определение и вычисление с примерами решения отрицательное число, а Квадратные уравнения - определение и вычисление с примерами решения положительное, то надо найти два отрицательных числа, чтобы их произведение было равно 18, а сумма была равна -9. Зная, что Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решениято уравнение можно записать так Квадратные уравнения - определение и вычисление с примерами решения Отсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 4. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнения вида Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители, надо найти два числа, чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения Тогда за-данное уравнение можно решить записав его в виде Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения такие , что Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения В нём Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения а значит оба числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения отрицательные. Найдём два целых отрицательных, числа, произведение которых равно 40, а сумма равна -13. Это числа -5 и -8.

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. В трёхчлене Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Составим список целых отрицательных множителей числа 16. Как видно целых чисел, которые удовлетворяют условию Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения не существует. Это говорит о том, что данный трёхчлен невозможно разложить на множители.

    Квадратные уравнения - определение и вычисление с примерами решения

    Метод выделения полного квадрата

    Для выделения полного квадрата из двухчленах Квадратные уравнения - определение и вычисление с примерами решения его надо дополнить членом Квадратные уравнения - определение и вычисление с примерами решения

    Это правило одинаково как для положительных, так и для отрицательных Квадратные уравнения - определение и вычисление с примерами решенияПример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения С обеих сторон дополним данное уравнение Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата, сначала запишем его в виде Квадратные уравнения - определение и вычисление с примерами решения Для того, чтобы выражение слева соответствовало модели площади квадрата, не хватает всего одной единичной алгебраической карты. Значит, с каждой стороны следует добавить 1. Тогда выражение слева можно представить в виде квадрата двухчлена так

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения графическим методом

    Графический метод

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения Тогда решением уравнения будут абсциссы точек пересечения параболы Квадратные уравнения - определение и вычисление с примерами решения и прямой Квадратные уравнения - определение и вычисление с примерами решения При этом прямая может пересекаться с параболой (тогда уравнение имеет два различных корня), может касаться параболы (в этом случае уравнение удовлетворяется при единственном значении неизвестного) или может вообще не иметь общих точек с параболой (тогда уравнение не имеет действительных-корней).

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики пересекаются в двух точках. Абсциссы точек пересечения равны — 3 и 1. При проверке убеждаемся, что обе точки являются корнями уравнения.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Для построения прямой Квадратные уравнения - определение и вычисление с примерами решения составим таблицу

    Квадратные уравнения - определение и вычисление с примерами решения

    Абсцисса точки касания прямой и параболы равна 1. Уравнение удовлетворяется при единственном значении неизвестного: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики не имеют точек пересечения. Это говорит о том, что данное уравнение не имеет действительных корней.

    Обе части квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения можно преобразовать в приведённое квадратное уравнение, разделив его на Квадратные уравнения - определение и вычисление с примерами решения которое затем удобно решить по способу, представленному выше. Обычно графическим способом находятся приближенные значения корней.

    Калькулятор для построения графиков

    Используя онлайн калькуляторы для построения графиков можно построить различные графики. На рисунке представлены графики функций Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения построенные при помощи графического калькулятора www.meta-calculator.com/online.

    Квадратные уравнения - определение и вычисление с примерами решения

    Решить квадратное уравнение также можно при помощи графического калькулятора, построив в одной системе координат параболу и прямую

    На рисунке корни уравнение Квадратные уравнения - определение и вычисление с примерами решения записанного в виде Квадратные уравнения - определение и вычисление с примерами решениянайдены графически при помощи графического калькулятора www.my.hrw.com/malh06_07/nsmedia/tools/Graph_Calcula-tor/graphCa lc.html

    Квадратные уравнения - определение и вычисление с примерами решения

    Формула для нахождения корней квадратного уравнения

    Мы уже научились находить корни квадратного уравнения методом разложения на множители и методом выделения полного квадрата. Для нахождения корней любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата можно записать обобщённую формулу.

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения эта формула является формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Если в формуле для нахождения корней квадратного уравнения принять Квадратные уравнения - определение и вычисление с примерами решения то ее можно записать как Квадратные уравнения - определение и вычисление с примерами решения

    Наличие корней квадратного уравнения зависит от знака Квадратные уравнения - определение и вычисление с примерами решения называется дискриминантом (определителем) квадратного уравнения.

    1) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение не имеет действительных корней.

    2) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два равных корня. Квадратные уравнения - определение и вычисление с примерами решения

    3) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два различных корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а это значит, что уравнение имеет два различных действительных корня. Квадратные уравнения - определение и вычисление с примерами решения

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения дискриминант находится по формуле для приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения При Квадратные уравнения - определение и вычисление с примерами решения для корней приведённого квадратного уравнения, верны следующие формулы Квадратные уравнения - определение и вычисление с примерами решения

    Если второй коэффициент квадратного уравнения является четным числом (т.е. Квадратные уравнения - определение и вычисление с примерами решения), то уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияТогда Квадратные уравнения - определение и вычисление с примерами решения Обозначим Квадратные уравнения - определение и вычисление с примерами решениятогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Решим приведённое квадратное уравнение: Квадратные уравнения - определение и вычисление с примерами решения По формуле нахождения корней приведённого квадратного уравнения имеем Квадратные уравнения - определение и вычисление с примерами решения т.е. Квадратные уравнения - определение и вычисление с примерами решения

    Внимание! Если сложить найденные корни, то получим число противоположное коэффициенту при Квадратные уравнения - определение и вычисление с примерами решения На самом деле, из уравнения Квадратные уравнения - определение и вычисление с примерами решения с другой стороны Квадратные уравнения - определение и вычисление с примерами решения Если умножить полученные корни, получим число равное свободному члену уравнения: 3 • 4 = 12. Это свойство верно для любого приведённого квадратного уравнения.

    Теорема: В приведённом квадратном уравнении сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение, равно свободному члену Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Известно, что Квадратные уравнения - определение и вычисление с примерами решения корни приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда получим: Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, для уравнения Квадратные уравнения - определение и вычисление с примерами решения Если обе части любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим равносильное приведённое квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Тогда к нему можно будет применить теорему Виета. Сумма корней Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения Теорема Виета остаётся в силе, если Квадратные уравнения - определение и вычисление с примерами решения (когда квадратное уравнение имеет два равных корня).

    Найдём корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом подбора. По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом корнями уравнения являются числа 4 и 5.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Обратная теорема. Если сумма чисел Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Эту теорему можно записать так: любые числа Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство. На самом деле, если принять, что Квадратные уравнения - определение и вычисление с примерами решения то получим: Квадратные уравнения - определение и вычисление с примерами решения т.е. число Квадратные уравнения - определение и вычисление с примерами решения действительно удовлетворяет уравнению. Таким же образом можно показать, что число Квадратные уравнения - определение и вычисление с примерами решениятакже является корнем уравнения.

    Пример:

    Составим квадратное уравнение, если известно, что числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются его корнями. Так как Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения то уравнение будет выглядеть как Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач при помощи квадратных уравнений

    Задача. Один из катетов прямоугольного треугольника на 2 см больше другого и на 2 см меньше гипотенузы. Найдите периметр треугольника.

    1 этап – составление уравнения

    Обозначим длину одного из катетов через Квадратные уравнения - определение и вычисление с примерами решения тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а гипотенуза будет равна Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    2 этап – решение уравнения. Согласно теореме Пифагора получим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    3 этап – решение уравнения. Преобразуем уравнение Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    4 этап – анализ результата.

    Решению задачи соответствует корень Квадратные уравнения - определение и вычисление с примерами решения т.к. длины сторон выражаются положительными числами. Тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а длина гипотенузы Квадратные уравнения - определение и вычисление с примерами решения Периметр: Квадратные уравнения - определение и вычисление с примерами решения Ответ: периметр треугольника равен 24 см.

    • Заказать решение задач по высшей математике

    Квадратные уравнения

    Квадратные уравнения. Неполные квадратные уравнения

    В математике, физике, экономике, практической деятельности человека встречаются задачи, математическими моделями которых являются уравнения, содержащие переменную во второй степени.

    Пример №256

    Длина земельного участка на 15 м больше ширины, а площадь равна Квадратные уравнения - определение и вычисление с примерами решения Найдите ширину участка.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения м- ширина участка, тогда ее длина – Квадратные уравнения - определение и вычисление с примерами решения м. По условию задачи площадь участка равна Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Такое уравнение называют квадратным.

    Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения —переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, уравнения Квадратные уравнения - определение и вычисление с примерами решения также являются квадратными.

    Числа Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения, число Квадратные уравнения - определение и вычисление с примерами решенияпервым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициенты следующие: Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения а в уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным. Уравнение Квадратные уравнения - определение и вычисление с примерами решения – приведенное, а уравнение Квадратные уравнения - определение и вычисление с примерами решения – не является приведенным.

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Например, неполным квадратным уравнением, в котором Квадратные уравнения - определение и вычисление с примерами решения является уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения -уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения – уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, неполные квадратные уравнения бывают трех видов: Квадратные уравнения - определение и вычисление с примерами решения

    Рассмотрим решение каждого из них.

    1.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения корнем которого является число 0.

    Следовательно, уравнение имеет единственный корень: Квадратные уравнения - определение и вычисление с примерами решения

    2.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Имеем Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение корней не имеет.

    Пример №257

    Решите уравнение:

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения 2) корней нет.

    3. Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Разложим левую часть уравнения на множители и решим полученное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Значит, уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №258

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Систематизируем данные о решениях неполного квадратного уравнения в виде схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Формула корней квадратного уравнения

    Рассмотрим полное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и найдем его решения в общем виде.

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения (так как Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Далее прибавим к обеим частям уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Слово дискриминант происходит от латинского различающий. Дискриминант обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения запишем уравнение в виде:

    Квадратные уравнения - определение и вычисление с примерами решения и продолжим его решать.

    Рассмотрим все возможные случаи в зависимости от значения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    (при делении на Квадратные уравнения - определение и вычисление с примерами решения учли, что Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два различных корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Коротко это можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения

    Получили формулу корней квадратного уравнения.

    2) Квадратные уравнения - определение и вычисление с примерами решенияТогда имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет один корень: Квадратные уравнения - определение и вычисление с примерами решенияЭтот корень можно было бы найти и по формуле корней квадратного уравнения, учитывая, что Квадратные уравнения - определение и вычисление с примерами решения Поэтому можно считать, что уравнение Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения

    3) Квадратные уравнения - определение и вычисление с примерами решения В этом случае уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней, так как не существует такого значения Квадратные уравнения - определение и вычисление с примерами решения при котором значение выражения Квадратные уравнения - определение и вычисление с примерами решения было бы отрицательным.

    Систематизируем данные о решениях квадратного уравнения с помощью схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №259

    Решите уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №260

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения чтобы его коэффициенты стали целыми числами, получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения и некоторые виды полных квадратных уравнений (например, вида Квадратные уравнения - определение и вычисление с примерами решения вавилонские математики умели решать еще 4 тыс. лет назад. В более поздние времена некоторые квадратные уравнения в Древней Греции и Индии математики решали геометрически. Приемы решения некоторых квадратных уравнений без применения геометрии изложил древнегреческий математик Диофант (III в.).

    Много внимания квадратным уравнениям уделял арабский математик Мухаммед ал-Хорезми (IX в.). Он нашел, как решить уравнения вида Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (для положительных Квадратные уравнения - определение и вычисление с примерами решения и получить их положительные корни.

    Формулы, связывающие между собой корни квадратного уравнения и его коэффициенты, были найдены французским математиком Франсуа Виетом в 1591 году. Он пришел к следующему выводу (в современных обозначениях): «Корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    После публикации трудов нидерландского математика А. Жирара (1595-1632), а также француза Р. Декарта (1596-1650) и англичанина И. Ньютона (1643-1727) формула корней квадратного уравнения приобрела современный вид.

    Теорема Виета

    Рассмотрим несколько приведенных квадратных уравнений, имеющих два различных корня. Внесем в таблицу следующие данные о них: само уравнение, его корни Квадратные уравнения - определение и вычисление с примерами решения сумму его корней Квадратные уравнения - определение и вычисление с примерами решения произведение его корней Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Обратим внимание, что сумма корней каждого из уравнений таблицы равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение корней равно свободному члену. Это свойство выполняется для любого приведенного квадратного уравнения, имеющего корни.

    Приведенное квадратное уравнение в общем виде обычно записывают так: Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней – свободному члену.

    Доказательство: Пусть Квадратные уравнения - определение и вычисление с примерами решения – корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения дискриминант которого Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня: Квадратные уравнения - определение и вычисление с примерами решения

    Найдем сумму и произведение корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения Теорема доказана.

    Эту теорему называют теоремой Виета – в честь выдающегося французского математика Франсуа Виета, который открыл это свойство. Его можно сформулировать следующим образом:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Два последних равенства, показывающих связь между корнями и коэффициентами приведенного квадратного уравнения, называют формулами Виста.

    Используя теорему Виета, можно записать соответствующие формулы и для корней любого неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения разделим обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим приведенное квадратное уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения — корни неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример №261

    Не решая уравнения Квадратные уравнения - определение и вычисление с примерами решения найдите сумму и произведение его корней.

    Решение:

    Найдем дискриминант уравнения, чтобы убедиться, что корни существуют: Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что Квадратные уравнения - определение и вычисление с примерами решения следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Если в уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициент Квадратные уравнения - определение и вычисление с примерами решения является целым числом, то из равенства Квадратные уравнения - определение и вычисление с примерами решения следует, что целыми корнями этого уравнения могут быть только делители числа Квадратные уравнения - определение и вычисление с примерами решения

    Пример №262

    Найдите подбором корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения – корни данного уравнения. Тогда Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения – целые числа, то они являются делителями числа -4. Ищем среди этих делителей два таких, сумма которых равна -3. Нетрудно догадаться, что это числа 1 и -4. Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 1; -4.

    Пример №263

    Один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения равен 3. Найдите коэффициент Квадратные уравнения - определение и вычисление с примерами решения и второй корень уравнения.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения– один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения – второй его корень. По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №264

    Пусть Квадратные уравнения - определение и вычисление с примерами решения – корни уравнения Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда: 1) Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Справедливо и утверждение, обратное теореме Виета.

    Теорема (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: По условию Квадратные уравнения - определение и вычисление с примерами решения Поэтому уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать так: Квадратные уравнения - определение и вычисление с примерами решения

    Проверим, является ли число Квадратные уравнения - определение и вычисление с примерами решения корнем этого уравнения, для чего подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения – корень этого уравнения.

    Аналогично подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения – также корень этого уравнения.

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения корни уравнения Квадратные уравнения - определение и вычисление с примерами решения что и требовалось доказать.

    Пример №265

    Составьте приведенное квадратное уравнение, корнями которого являются числа -5 и 2.

    Решение:

    Искомое квадратное уравнение имеет вид Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения – искомое уравнение.

    Ответ, Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение как математическая модель текстовых и прикладных задач

    В 7 классе мы уже знакомились с задачами, которые можно решить с помощью линейных уравнений или систем линейных уравнений. Для решения прикладной задачи сначала создают ее математическую модель, то есть записывают зависимость между известными и неизвестными величинами с помощью математических понятий, отношений, формул, уравнений и т. п. Математической моделью многих задач в математике, физике, технике, практической деятельности человека может быть не только линейное уравнение или система линейных уравнений, но и квадратное уравнение.

    Рассмотрим несколько примеров.

    Пример №266

    Разность кубов двух натуральных чисел равна 279. Найдите эти числа, если одно из них на 3 больше другого.

    Решение:

    Пусть меньшее из этих чисел равно Квадратные уравнения - определение и вычисление с примерами решения тогда большее равно Квадратные уравнения - определение и вычисление с примерами решения По условию задачи имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Упростим левую часть уравнения.

    Получим: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения По условию задачи Квадратные уравнения - определение и вычисление с примерами решения Поэтому условию удовлетворяет только число 4. Следовательно, первое искомое число 4, а второе Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 4; 7.

    Пример №267

    В кинотеатре количество мест в ряду на 6 больше количества рядов. Сколько рядов в кинотеатре, если мест в нем 432?

    Решение:

    Пусть в кинотеатре Квадратные уравнения - определение и вычисление с примерами решения рядов, тогда мест в каждом ряду Квадратные уравнения - определение и вычисление с примерами решения Всего мест в зале Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Перепишем уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    По смыслу задачи значение Квадратные уравнения - определение и вычисление с примерами решения должно быть положительным. Этому условию удовлетворяет только Квадратные уравнения - определение и вычисление с примерами решения Следовательно, в кинотеатре 18 рядов.

    Ответ. 18 рядов.

    Пример №268

    У выпуклого многоугольника 54 диагонали. Найдите, сколько у него вершин.

    Решение:

    Пусть у многоугольника Квадратные уравнения - определение и вычисление с примерами решения вершин. Из каждой его вершины выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Тогда из всех Квадратные уравнения - определение и вычисление с примерами решения его вершин выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Но при этом каждую из его диагоналей посчитали дважды. Следовательно, всего диагоналей будет Квадратные уравнения - определение и вычисление с примерами решения

    Получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решенияОтрицательный корень уравнения не может быть решением задачи.

    Ответ. 12.

    Пример №269

    Тело подбросили вертикально вверх со скоростью Квадратные уравнения - определение и вычисление с примерами решения Высота Квадратные уравнения - определение и вычисление с примерами решения (в м), на которой через Квадратные уравнения - определение и вычисление с примерами решения с будет тело, вычисляется по формуле Квадратные уравнения - определение и вычисление с примерами решения В какой момент времени тело окажется на высоте 15 м?

    Решение:

    По условию: Квадратные уравнения - определение и вычисление с примерами решения, следовательно, после упрощения имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения решив которое, найдем корни: Квадратные уравнения - определение и вычисление с примерами решения

    Оба корня являются решением задачи, так как на высоте 15 м тело окажется дважды: сначала при движении вверх (это произойдет через 1 с), а во второй раз – при падении (это произойдет через 3 с).

    Ответ. 1 с, 3 с.

    Пример №270

    В 9 часов утра из базового лагеря в восточном направлении отправилась группа туристов со скоростью Квадратные уравнения - определение и вычисление с примерами решения Через час из того же лагеря со скоростью Квадратные уравнения - определение и вычисление с примерами решения отправилась другая группа туристов, но в северном направлении. В котором часу расстояние между группами туристов будет 17 км? Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    За первый час первая группа туристов преодолеет 5 км: Квадратные уравнения - определение и вычисление с примерами решения (рис. 19). Дальше будут двигаться обе группы.

    Пусть расстояние в 17 км между группами будет через Квадратные уравнения - определение и вычисление с примерами решения часов после начала движения второй группы. Тогда за это время первая группа преодолеет Квадратные уравнения - определение и вычисление с примерами решения км, а вторая – Квадратные уравнения - определение и вычисление с примерами решения км, Квадратные уравнения - определение и вычисление с примерами решения Всего первая группа преодолеет расстояние Квадратные уравнения - определение и вычисление с примерами решения

    Из Квадратные уравнения - определение и вычисление с примерами решения по теореме Пифагора Квадратные уравнения - определение и вычисление с примерами решения тогда имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения получим Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, расстояние 17 км между группами туристов будет в 12 часов.

    Ответ. В 12 часов.

    В результате хозяйственной деятельности человека возникли прикладные задачи, решением которых люди занимаются уже на протяжении нескольких тысячелетий. Самые древние из известных нам письменных памятников, содержащих правила нахождения площадей и объемов, были составлены в Египте и Вавилоне приблизительно 4 тыс. лет назад. Около 2,5 тыс. лет назад греки переняли геометрические знания египтян и вавилонян и стали развивать теоретическую (чистую) математику.

    Также в древние времена математики использовали математические модели, в частности и для геометрических построений (метод подобия фигур).

    Современное понятие математической модели в качестве описания некоторого реального процесса языком математики стали использовать в середине XX в. в связи с развитием кибернетики – науки об общих законах получения, хранения, передачи и обработки информации. А раздел современной математики, изучающий математическое моделирование реальных процессов, даже выделили в отдельную науку – прикладную математику.

    Существенный вклад в развитие прикладной математики был сделан нашими выдающимися земляками – математиками М.П. Кравчуком и М.В. Остроградским.

    Развитие кибернетики связывают с именем академика Виктора Михайловича Глушкова – выдающегося математика, доктора физико-математических наук, профессора. В 1953 г. он возглавил лабораторию вычислительной техники Института математики, стал ее мозговым и энергетическим центром. На базе этой лаборатории в 1957 г. был создан Вычислительный центр, а в 1962 г. -Институт кибернетики который и возглавил В.М. Глушков. Лаборатория известна тем, что в 1951 г. в ней создали первую в Евразии Малую электронную счетную машину, а уже в Вычислительном центре завершили работу по созданию первой большой электронно-вычислительной машины. Сегодня Институт кибернетики носит имя В.М. Глушкова и является, в частности, разработчиком прикладных информационных технологий для решения неотложных практических задач, возникающих при моделировании экономических процессов, проектировании объектов теплоэнергетики, решении проблем экологии и защиты окружающей среды.

    Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители

    Выражения Квадратные уравнения - определение и вычисление с примерами решения являются многочленами второй степени с одной переменной стандартного вида. Такие многочлены называют квадратными трехчленами.

    Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решения переменная, Квадратные уравнения - определение и вычисление с примерами решения – числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, выражение Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом, у которого Квадратные уравнения - определение и вычисление с примерами решения

    Пример №271

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то его значение равно нулю. Действительно, Квадратные уравнения - определение и вычисление с примерами решения В таком случае число -1 называют корнем этого квадратного трехчлена.

    Корнем квадратного трехчлена называют значение переменной, при котором значение трехчлена обращается в нуль.

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения нужно решить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример №272

    Найдите корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен, как и квадратное уравнение, может иметь два различных корня, один корень (то есть два равных корня) или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения который также называют и дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет два различных корня, если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень (то есть два равных корня), если Квадратные уравнения - определение и вычисление с примерами решениято квадратный трехчлен не имеет корней.

    Если корни квадратного трехчлена известны, то его можно разложить на линейные множители, то есть на множители, являющиеся многочленами первой степени.

    Теорема (о разложении квадратного трехчлена на множители). Если Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения то справедливо равенство

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Если Квадратные уравнения - определение и вычисление с примерами решения – корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения (по теореме Виета).

    Для доказательства теоремы раскроем скобки в правой части равенства:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения что и требовалость доказать.

    Если же квадратный трехчлен не имеет корней, то на линейные множители его разложить нельзя.

    Пример №273

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Корни трехчлена Квадратные уравнения - определение и вычисление с примерами решения – числа -1 и 2,5. Поэтому Квадратные уравнения - определение и вычисление с примерами решения Это можно записать иначе, умножив первый в разложении множитель -2 на двучлен Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    2) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней. Поэтому квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения на множители не разлагается.

    3) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня Квадратные уравнения - определение и вычисление с примерами решения Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Нетрудно заметить, что если квадратный трехчлен имеет два равных корня, то он представляет собой квадрат двучлена или произведение некоторого числа на квадрат двучлена.

    Пример №274

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Числа 1 и -0,5 – корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения Поэтому Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    При решении некоторых задач, связанных с квадратным трехчленом Квадратные уравнения - определение и вычисление с примерами решения бывает удобно представить его в виде Квадратные уравнения - определение и вычисление с примерами решения – некоторые числа. Такое преобразование называют выделением квадрата двучлена из квадратного трехчлена.

    Пример №275

    Выделите из трехчлена Квадратные уравнения - определение и вычисление с примерами решения квадрат двучлена.

    Решение:

    Вынесем за скобки множитель 2: Квадратные уравнения - определение и вычисление с примерами решения

    Воспользовавшись формулой квадрата суммы двух чисел Квадратные уравнения - определение и вычисление с примерами решенияпреобразуем выражение в скобках, считая, что Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения откуда определяем, что число 4 является вторым слагаемым квадрата суммы, то есть Квадратные уравнения - определение и вычисление с примерами решения поэтому добавим и вычтем Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №276

    Дан квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения При каком значении Квадратные уравнения - определение и вычисление с примерами решения он принимает наибольшее значение? Найдите это значение.

    Решение:

    Выделим из трехчлена квадрат двучлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения при любом значении Квадратные уравнения - определение и вычисление с примерами решения принимает не положительное значение, то есть Квадратные уравнения - определение и вычисление с примерами решения причем это выражение равно нулю только при Квадратные уравнения - определение и вычисление с примерами решения Поэтому при Квадратные уравнения - определение и вычисление с примерами решения значение данного в условии трехчлена равно 16 и является для него наибольшим.

    Таким образом, квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения принимает наибольшее значение, равное 16, при Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 16 при Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, сводящихся к квадратным

    Дробные рациональные уравнения

    Решение дробных рациональных уравнений часто сводится к решению квадратных уравнений. Вспомним один из методов решения дробного рационального уравнения

    Пример №277

    Решите уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Чтобы найти область допустимых значений переменной и общий знаменатель, разложим на множители знаменатели дробей в уравнении:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на общий знаменатель дробей – выражение Квадратные уравнения - определение и вычисление с примерами решения учитывая ОДЗ: Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 3.

    Метод разложения многочлена на множители

    Некоторые уравнения, правая часть которых равна нулю, можно решить с помощью разложения левой части на множители.

    Пример №278

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Вынесем в левой части уравнения общий множитель Квадратные уравнения - определение и вычисление с примерами решения за скобки. Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 0; 3; -5.

    Биквадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением. Его можно решить с помощью введения новой переменной, то есть обозначив Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а исходное уравнение принимает вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Такой метод решения называют методом введения новой переменной или методом замены переменной.

    Пример №279

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Сделаем замену Квадратные уравнения - определение и вычисление с примерами решения получим уравнение Квадратные уравнения - определение и вычисление с примерами решения корнями которого являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корни исходного уравнения – числа 2 и -2.

    Ответ. 2; -2.

    Метод замены переменной

    Не только биквадратные, но и некоторые другие виды уравнений можно решить, используя замену переменной.

    Пример №280

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Если мы раскроем скобки в левой части уравнения, получим уравнение четвертой степени, которое не всегда возможно решить методами школьной математики. Поэтому скобки раскрывать не будем. Заметим, что в обеих скобках выражения, содержащие Квадратные уравнения - определение и вычисление с примерами решения одинаковы, поэтому можно воспользоваться заменой Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение Квадратные уравнения - определение и вычисление с примерами решения которое является квадратным относительно переменной Квадратные уравнения - определение и вычисление с примерами решения Перепишем его в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Возвращаемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корнями исходного уравнения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №281

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Раскроем скобки в каждой части уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что выражения, содержащие переменную Квадратные уравнения - определение и вычисление с примерами решения в обеих частях уравнения одинаковы, поэтому сделаем замену Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Найдем его корни: Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, исходное уравнение имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач с помощью дробных рациональных уравнений

    Дробные рациональные уравнения также могут служить математическими моделями текстовых задач.

    Пример №282

    Из одного города в другой, расстояние между которыми 560 км, одновременно выехали легковой и грузовой автомобили. Скорость легкового была на Квадратные уравнения - определение и вычисление с примерами решения больше скорости грузового, поэтому он прибыл в пункт назначения на 1 ч раньше грузового. Найдите скорость каждого автомобиля.

    Решение:

    Пусть скорость грузового автомобиля Квадратные уравнения - определение и вычисление с примерами решения Систематизируем условие задачи в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Так как значение величины Квадратные уравнения - определение и вычисление с примерами решения на 1 ч меньше значения величины Квадратные уравнения - определение и вычисление с примерами решения то можем составить уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    У него два корня: Квадратные уравнения - определение и вычисление с примерами решения Отрицательный корень не соответствует смыслу задачи, поэтому скорость грузового автомобиля 70 Квадратные уравнения - определение и вычисление с примерами решения Тогда скорость легкового автомобиля: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №283

    Мастер и его ученик, работая вместе, могут выполнить задание за 8 ч. За сколько часов может выполнить это задание самостоятельно каждый из них, если мастеру на это нужно на 12 ч меньше, чем его ученику?

    Решение:

    Пусть мастеру для самостоятельного выполнения задания нужно Квадратные уравнения - определение и вычисление с примерами решения ч, тогда ученику Квадратные уравнения - определение и вычисление с примерами решения ч. Если вид и объем работ в задачах на работу не конкретизирован (как в данном случае), его принято обозначать единицей. Напомним, что производительность труда – это объем работы, выполняемый за единицу времени. Тогда за 1 ч мастер выполнит Квадратные уравнения - определение и вычисление с примерами решения — часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения часть, это и есть их производительности труда. По условию задачи мастер и ученик проработали 8 ч, поэтому мастер выполнил Квадратные уравнения - определение и вычисление с примерами решения часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что они выполнили все задание, имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Второй корень не соответствует смыслу задачи, так как является отрицательным.

    Таким образом, мастер, работая отдельно, может выполнить задание за 12 ч, а его ученик – за Квадратные уравнения - определение и вычисление с примерами решения

    Условие этой задачи, как и предыдущей, можно также систематизировать в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 12 ч и 24 ч.

    Обратите внимание, что условия большинства задач на движение или работу можно систематизировать в виде таблицы, что поможет избежать громоздких текстовых записей.

    «Желаю тебе стать вторым Остроградским…»

    Михаил Васильевич Остроградский родился 12 сентября 1801 года в д. Пашенная Полтавской губернии (в настоящее время деревня Пашеновка). Предки Михаила Васильевича служили в казацком войске, участвовали во многих боях, не раз проявляли военную доблесть и героизм. По-видимому, именно поэтому в детстве Михаил Васильевич так мечтал стать военным. Но ему суждено было стать всемирно известным ученым.

    В детстве Михаил обладал исключительной наблюдательностью и увлекался измерениями. Учился он в пансионе при Полтавской гимназии, потом в этой гимназии. Закончив ее, стал свободным слушателем Харьковского университета, а в дальнейшем и его студентом. После окончания университета с отличием в августе 1820 года, менее чем через год (в апреле 1821 года) получил степень кандидата наук за исследования в прикладной математике. В 1822 году Остроградский уезжает в Париж, чтобы усовершенствовать М.В. Остроградский свое математическое образование, и становится слушателем университета в Сорбонне.

    Именно там он публикует свои первые научные труды, становится известным ученым и заслуживает уважение французских математиков. За неимением средств Михаил Васильевич вынужден был покинуть Париж, преодолев пешком зимой 1828 года путь от Парижа до Петербурга.

    Научные круги Петербурга встретили молодого ученого с радостью и надеждой. Его авторитет среди петербургских деятелей науки был высоким и незыблемым. В том же 1828 году Остроградский начинает преподавательскую деятельность в Морском кадетском корпусе Петербурга, его избирают адъюнктом Петербургской академии наук. А с 1830 года преподает еще в четырех высших учебных заведениях Петербурга. В 1834 году Остроградский был избран членом Американской академии наук, в 1841 году – членом Туринской академии, в 1853 – членом Римской академии Линчей и в 1856 году -членом-корреспондентом Парижской академии наук.

    Лекции Остроградского посещали не только студенты, но и преподаватели, профессура, известные математики. Всем нравилась его система преподавания предмета – широта темы, но при этом выразительность и сжатость изложения, а также его остроумие. На лекциях он украшал свою речь словами, пословицами и поговорками. Поэтому студенты вспоминали его лекции с восторгом.

    Любимым писателем Остроградского был Т.Г. Шевченко, с которым он был лично знаком и значительную часть произведений которого, зная наизусть, охотно декламировал. В 1858 году, когда Тарас Григорьевич возвращался из ссылки на родину через Петербург, Михаил Васильевич предложил Кобзарю остановится в его петербургской квартире.

    Вернувшись из ссылки, Шевченко писал в «Дневнике»: «Великий математик принял меня с распростертыми объятиями, как земляка и как надолго выехавшего члена семьи».

    Михаил Васильевич был выдающимся, оригинальным, всесторонне одаренным человеком. Его ценили не только за ум, но и за независимость, демократизм, скромность, искренность и простоту, за уважение к людям труда. Находясь на вершине славы, отмеченный за свои научные труды во всей Европе, Остроградский был прост в общении и не любил говорить о своих заслугах.

    И какие бы проблемы не решал ученый (занимался он алгеброй, прикладной математикой, теорией чисел, теорией вероятностей, механикой и т. п.), все его научные труды отличаются глубиной мысли и оригинальностью, в них неизменно присутствует широта его взглядов, умение углубиться в суть проблемы, систематизировать и обобщить.

    На всю жизнь Михаил Васильевич сохранил любовь к родной Земле и родному языку. Почти ежегодно летом он выезжал с целью погрузиться в полное спокойствие и полюбоваться замечательными пейзажами. Летом 1861 года Остроградский, пребывая на родине, заболел и 1 января 1862 года умер.

    За свою почти 40-летнюю научную деятельность Михаил Васильевич написал свыше 50 трудов из разных отраслей математики: математического анализа, аналитической и небесной механики, математической физики, теории вероятностей. Свои педагогические взгляды М.В. Остроградский изложил в учебниках по элементарной и высшей математике.

    Именем М.В. Остроградского назван Кременчугский национальный университет.

    И хотя почти всю свою жизнь Михаил Остроградский занимался наукой, он был широко известен своим соотечественникам. Авторитет и популярность М.В. Остроградского были настолько значимыми, что родители, отдавая ребенка на учебу, желали ему «стать вторым Остроградским».

    Сведения из курса математики 5-6 классов и алгебры 7 класса

    Десятичные дроби

    Сложение и вычитание десятичных дробей выполняют поразрядно, записывая их одна под другой так, чтобы запятая размещалась под запятой.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы перемножить две десятичные дроби, надо выполнить умножение, не обращая внимания на запятые, а потом в произведении отделить занятой справа налево столько цифр, сколько их после занятой в обоих множителях вместе.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на натуральное число, надо выполнить деление, не обращая внимания на запятую, но после окончания деления целой части делимого нужно в частном поставить занятую.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на десятичную, нужно в делимом и делителе перенести запятую на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Обычные дроби

    Частное от деления числа Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде обычной дроби Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числитель дроби, Квадратные уравнения - определение и вычисление с примерами решения – ее знаменатель.

    Основное свойство дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения (сократили дробь Квадратные уравнения - определение и вычисление с примерами решения на 5);

    Квадратные уравнения - определение и вычисление с примерами решения (привели дробь Квадратные уравнения - определение и вычисление с примерами решения к знаменателю 14).

    Дроби с одинаковыми знаменателями складывают и вычитают по формулам:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить или вычесть дроби с разными знаменателями, их сначала приводят к общему знаменателю, а затем выполняют действие по правилу сложения или вычитания дробей с одинаковыми знаменателями.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    На следующих примерах показано, как выполнить сложение и вычитание смешанных чисел.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы умножить две дроби, нужно перемножить их числители и их знаменатели и первый результат записать числителем произведения, а второй – знаменателем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Положительные и отрицательные числа

    Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.

    Модуль положительного числа и числа нуль – само это число, а модуль отрицательного – противоположное ему число:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Чтобы сложить два отрицательных числа, нужно сложить их модули и перед полученным результатом записать знак Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить два числа с разными знаками, нужно из большего модуля слагаемых вычесть меньший модуль и перед полученным результатом записать знак слагаемого с большим модулем.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число, противоположное вычитаемому:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Произведение двух чисел с одинаковыми знаками равно произведению их модулей. Произведение двух чисел с разными знаками равно произведению их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Частное двух чисел с одинаковыми знаками равно частному от деления их модулей. Частное двух чисел с разными знаками равно частному от деления их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение

    Корнем, или решением, уравнения называют число, обращающее уравнение в правильное числовое равенство.

    Примеры:

    1) Число 3 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    2) Число -2 не является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    Решить уравнение – значит найти все его корни или доказать, что корней нет.

    Два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и уравнения, не имеющие корней.

    Примеры:

    1) Уравнения Квадратные уравнения - определение и вычисление с примерами решения равносильны, так как каждое из них имеет единственный корень, равный 2.

    2) Уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются равносильными, так как корень первого – число 1, а второго – число 2.

    Для решения уравнений используют следующие свойства:

    1) если в любой части уравнения раскрыть скобки или привести подобные слагаемые, получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, получим уравнение, равносильное данному;

    3) если обе части уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числа, Квадратные уравнения - определение и вычисление с примерами решения переменная, называют линейным уравнением с одной переменной.

    Решение линейного уравнения представим в виде схемы:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    В большинстве случаев уравнения последовательными преобразованиями приводят к линейному уравнению, равносильному данному.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Раскроем скобки: Квадратные уравнения - определение и вычисление с примерами решения Перенесем слагаемые, содержащие переменную, в левую часть уравнения, остальные – в правую, изменив знаки переносимых слагаемых на противоположные: Квадратные уравнения - определение и вычисление с примерами решения приведем подобные слагаемые: Квадратные уравнения - определение и вычисление с примерами решения решим полученное линейное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей – число 6:

    Квадратные уравнения - определение и вычисление с примерами решения

    Дальше решаем, как в предыдущем примере:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Любое число.

    Степень с натуральным показателем

    Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с натуральным показателем Квадратные уравнения - определение и вычисление с примерами решения называют произведение Квадратные уравнения - определение и вычисление с примерами решения множителей, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с показателем 1 называют само это число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Свойства степени с натуральным показателем

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Используя свойства степени с натуральным показателем, можем существенно упростить вычисления.

    Квадратные уравнения - определение и вычисление с примерами решения

    Одночлен

    Целые выражения – числа, переменные, их степени и произведения называют одночленами.

    Например Квадратные уравнения - определение и вычисление с примерами решения – одночлены; выражения Квадратные уравнения - определение и вычисление с примерами решения Не одночлены.

    Если одночлен содержит только один числовой множитель, записанный первым, и содержит степени разных переменных, то такой одночлен называют одночленом стандартного вида.

    Например, Квадратные уравнения - определение и вычисление с примерами решения – одночлен стандартного вида, а одночлен Квадратные уравнения - определение и вычисление с примерами решения не является одночленом стандартного вида.

    Этот одночлен можно привести к одночлену стандартного вида:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночленов

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Возведение одночлена в степень

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Многочлен

    Многочленом называют сумму одночленов. Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных слагаемых, называют многочленом стандартного вида.

    Многочлен Квадратные уравнения - определение и вычисление с примерами решения не является многочленом стандартного вида, но его можно привести к стандартному виду:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сложение и вычитание многочленов

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение многочлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Формулы сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Разложение многочленов на множители

    Вынесение общего множителя за скобки

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Способ группировки

    Квадратные уравнения - определение и вычисление с примерами решения

    Использование формул сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Функция

    Если каждому значению независимой переменной соответствует единственное значение зависимой переменной, то такую зависимость называют функциональной зависимостью, или функцией.

    Переменную Квадратные уравнения - определение и вычисление с примерами решения в этом случае называют независимой переменной (или аргументом), а переменную Квадратные уравнения - определение и вычисление с примерами решениязависимой переменной (или функцией от заданного аргумента).

    Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции; все значения, которые принимает зависимая переменная (функция), образуют область значений функции.

    Линейной называют функцию, которую можно задать формулой вида Квадратные уравнения - определение и вычисление с примерами решения независимая переменная, Квадратные уравнения - определение и вычисление с примерами решения -некоторые числа.

    Графиком любой линейной функции является прямая. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения

    Составим таблицу для любых двух значений аргумента: Квадратные уравнения - определение и вычисление с примерами решения

    Отметим на координатной плоскости полученные точки и проведем через них прямую (рис. 20). Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения Любому значению Квадратные уравнения - определение и вычисление с примерами решения соответствует одно и то же значение Квадратные уравнения - определение и вычисление с примерами решения равное числу -2. Графиком функции является прямая, состоящая из точек с координатами Квадратные уравнения - определение и вычисление с примерами решения– любое число. Обозначим две любые такие точки, например Квадратные уравнения - определение и вычисление с примерами решения и проведем через них прямую (рис. 21).

    Квадратные уравнения - определение и вычисление с примерами решения

    Системы линейных уравнений с двумя переменными

    Если нужно найти общее решение двух (или более) уравнений, то говорят, что эти уравнения образуют систему уравнений.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения система уравнений с двумя неизвестными Квадратные уравнения - определение и вычисление с примерами решения

    Решением системы уравнений с двумя переменными называют пару значений переменных, при которых каждое уравнение обращается в верное числовое равенство.

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения является решением данной выше системы, поскольку Квадратные уравнения - определение и вычисление с примерами решения

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения не является решением системы. Для этих значений переменных первое уравнение обращается в верное равенство Квадратные уравнения - определение и вычисление с примерами решения а второе – нет Квадратные уравнения - определение и вычисление с примерами решения

    Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.

    Решение системы двух линейных уравнений с двумя переменными способом подстановки Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Решение системы двух линейных уравнении с двумя переменными способом сложения

    Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    • Неравенства
    • Числовые последовательности
    • Предел числовой последовательности
    • Предел и непрерывность числовой функции одной переменной
    • Разложение многочленов на множители
    • Системы линейных уравнений с двумя переменными
    • Рациональные выражения
    • Квадратные корни

    Добавить комментарий