Касательная к экспоненте как найти

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Определения и понятия

Определение 1

Угол наклона прямой y=kx+b называется  угол α, который отсчитывается от положительного направления оси ох к прямой y=kx+b в положительном направлении.

Определения и понятия

На рисунке направление ох обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Определение 2

Угловой коэффициент прямой y=kx+b называют числовым коэффициентом k.

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k=tg α.

  • Угол наклона прямой равняется 0 только при параллельности ох и  угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0. Значит, вид уравнения будет y=b.
  • Если угол наклона прямой y=kx+b острый, тогда выполняются условия 0<α<π2 или 0°<α<90°. Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию tg α>0, причем имеется возрастание графика.
  • Если α=π2, тогда расположение прямой перпендикулярно ох. Равенство задается при помощи равенства x=c со значением с, являющимся действительным числом.
  • Если угол наклона прямой y=kx+b тупой, то соответствует условиям π2<α<π или 90°<α<180°, значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f(x). Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

Определения и понятия

По рисунку видно, что АВ является секущей, а f(x) – черная кривая, α – красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника АВС можно найти по отношению противолежащего катета к прилежащему.

Определение 4

Получаем формулу для нахождения секущей вида:

k=tg α=BCAC=f(xB)-fxAxB-xA, где абсциссами точек А и В являются значения xA, xB, а f(xA), f(xB) – это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k=f(xB)-f(xA)xB-xA или k=f(xA)-f(xB)xA-xB, причем уравнение необходимо записать как y=f(xB)-f(xA)xB-xA·x-xA+f(xA) или
y=f(xA)-f(xB)xA-xB·x-xB+f(xB).

Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

Определения и понятия

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у=0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Определение 5

Касательная к графику функции f(x) в точке x0; f(x0) называется прямая, проходящая через заданную точку x0; f(x0),  с наличием отрезка, который имеет множество значений х, близких к x0.

Пример 1

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y=x+1, считается касательной к y=2x в точке  с координатами (1; 2). Для наглядности, необходимо рассмотреть графики с приближенными к (1; 2) значениями. Функция y=2x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Определения и понятия

Очевидно, что y=2x сливается с прямой у=х+1.

Для определения касательной следует рассмотреть поведение касательной АВ при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.

Определения и понятия

Секущая АВ, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной αx.

Определение 6

Касательной к графику функции y=f(x) в точке А считается предельное положение секущей АВ при В стремящейся к А, то есть B→A.

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Геометрический смысл производной функции в точке

Перейдем к рассмотрению секущей АВ для функции f(x), где А и В с координатами x0, f(x0) и x0+∆x, f(x0+∆x), а ∆x обозначаем как приращение аргумента. Теперь функция примет вид ∆y=∆f(x)=f(x0+∆x)-f(∆x). Для наглядности приведем в пример рисунок.

Геометрический смысл производной функции в точке

Рассмотрим полученный прямоугольный треугольник АВС. Используем определение тангенса для решения, то есть получим отношение ∆y∆x=tg α. Из определения касательной следует, что lim∆x→0∆y∆x=tg αx. По правилу производной в точке имеем, что производную f(x) в точке x0 называют пределом отношений приращения функции к приращению аргумента, где ∆x→0, тогда обозначим как f(x0)=lim∆x→0∆y∆x.

Отсюда следует, что f'(x0)=lim∆x→0∆y∆x=tg αx=kx, где kx обозначают в качестве углового коэффициента касательной.

То есть получаем, что f’(x) может существовать  в точке x0 причем как и касательная к заданному графику функции в точке касания равной x0, f0(x0), где значение углового коэффициента касательной  в точке равняется производной  в точке x0. Тогда получаем, что kx=f'(x0).

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Уравнение касательной прямой

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x0 при пересечении.

Уравнение касательной к графику функции y=f(x) в точке x0, f0(x0) принимает вид y=f'(x0)·x-x0+f(x0).

Имеется в виду, что конечным значением производной f'(x0) можно определить положение касательной, то есть вертикально при условии limx→x0+0f'(x)=∞ и limx→x0-0f'(x)=∞ или отсутствие вовсе при условии limx→x0+0f'(x)≠limx→x0-0f'(x).

Расположение касательной зависит от значения ее углового коэффициента kx=f'(x0). При параллельности к оси ох получаем, что kk=0, при параллельности к оу – kx=∞, причем вид уравнения касательной x=x0 возрастает при kx>0, убывает при kx<0.

Пример 2

Произвести составление уравнения касательной к графику функции y=ex+1+x33-6-33x-17-33 в точке  с координатами (1; 3) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1; 3) является точкой касания, тогда x0=-1, f(x0)=-3.

Необходимо найти производную в точке со значением -1. Получаем, что

y’=ex+1+x33-6-33x-17-33’==ex+1’+x33′-6-33x’-17-33’=ex+1+x2-6-33y'(x0)=y'(-1)=e-1+1+-12-6-33=33

Значение f’(x) в точке касания является  угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда kx=tg αx=y'(x0)=33

Отсюда следует, что αx=arctg33=π6

Ответ: уравнение касательной приобретает вид

y=f'(x0)·x-x0+f(x0)y=33(x+1)-3y=33x-9-33

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает  в увеличенном виде.

Уравнение касательной прямой

Пример 3

Выяснить наличие существования касательной к графику заданной функции
y=3·x-15+1 в точке с координатами (1;1). Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y’=3·x-15+1’=3·15·(x-1)15-1=35·1(x-1)45

Если x0=1, тогда f’(x) не определена, но пределы записываются как  limx→1+035·1(x-1)45=35·1(+0)45=35·1+0=+∞ и limx→1-035·1(x-1)45=35·1(-0)45=35·1+0=+∞, что означает существование вертикальной касательной в точке (1;1).

Ответ: уравнение примет вид х=1, где угол наклона будет равен π2.

Для наглядности изобразим графически.

Уравнение касательной прямой

Пример 4

Найти точки графика функции y=115x+23-45×2-165x-265+3x+2, где

  1. Касательная не существует;
  2. Касательная располагается параллельно ох;
  3. Касательная параллельна прямой y=85x+4.

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x∈-∞; 2 и [-2; +∞). Получаем, что

y=-115×3+18×2+105x+176, x∈-∞; -2115×3-6×2+9x+12, x∈[-2; +∞)

Необходимо продифференцировать функцию. Имеем, что

y’=-115×3+18×2+105x+176′, x∈-∞; -2115×3-6×2+9x+12′, x∈[-2; +∞)⇔y’=-15(x2+12x+35), x∈-∞; -215×2-4x+3, x∈[-2; +∞)

Когда х=-2, тогда производная не существует, потому что односторонние пределы не равны в этой точке:

limx→-2-0y'(x)=limx→-2-0-15(x2+12x+35=-15(-2)2+12(-2)+35=-3limx→-2+0y'(x)=limx→-2+015(x2-4x+3)=15-22-4-2+3=3

Вычисляем значение функции в точке х=-2, где получаем, что

  1. y(-2)=115-2+23-45(-2)2-165(-2)-265+3-2+2=-2, то есть касательная в точке (-2;-2) не будет существовать.
  2. Касательная параллельна ох, когда угловой коэффициент равняется нулю. Тогда kx=tg αx=f'(x0). То есть необходимо найти значения таких х, когда производная функции  обращает ее в ноль. То есть значения f’(x) и будут являться точками касания, где касательная является параллельной ох.

Когда x∈-∞; -2, тогда -15(x2+12x+35)=0, а при x∈(-2; +∞) получаем 15(x2-4x+3)=0.

Решим:

-15(x2+12x+35)=0D=122-4·35=144-140=4×1=-12+42=-5∈-∞; -2×2=-12-42=-7∈-∞; -2   15(x2-4x+3)=0D=42-4·3=4×3=4-42=1∈-2; +∞x4=4+42=3∈-2; +∞

Вычисляем соответствующие значения функции

y1=y-5=115-5+23-45-52-165-5-265+3-5+2=85y2=y(-7)=115-7+23-45(-7)2-165-7-265+3-7+2=43y3=y(1)=1151+23-45·12-165·1-265+31+2=85y4=y(3)=1153+23-45·32-165·3-265+33+2=43

Отсюда -5; 85, -4; 43, 1; 85, 3; 43 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Уравнение касательной прямой

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 85 . Для этого нужно решить уравнение вида y'(x)=85. Тогда, если x∈-∞; -2, получаем, что -15(x2+12x+35)=85, а если x∈(-2; +∞), тогда 15(x2-4x+3)=85.

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

-15×2+12x+35=85×2+12x+43=0D=122-4·43=-28<0

Другое уравнение имеет два действительных корня, тогда

15(x2-4x+3)=85×2-4x-5=0D=42-4·(-5)=36×1=4-362=-1∈-2; +∞x2=4+362=5∈-2; +∞

Перейдем к нахождению значений функции. Получаем, что

y1=y(-1)=115-1+23-45(-1)2-165(-1)-265+3-1+2=415y2=y(5)=1155+23-45·52-165·5-265+35+2=83

Точки со значениями -1; 415, 5; 83 являются точками, в которых касательные параллельны прямой y=85x+4.

Ответ: черная линия – график функции, красная линия – график y=85x+4, синяя линия – касательные  в точках -1; 415, 5; 83.

Уравнение касательной прямой

Возможно существование бесконечного количества касательных для заданных функций.

Пример 5

Написать уравнения всех имеющихся касательных функции y=3cos32x-π4-13, которые располагаются перпендикулярно прямой y=-2x+12.

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется -1, то есть записывается как kx·k⊥=-1. Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой  и равняется k⊥=-2, тогда kx=-1k⊥=-1-2=12.

Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной  в точке
x0 получаем, что kx=y'(x0).  Из данного равенства найдем значения х для точек касания.

Получаем, что

y'(x0)=3cos32x0-π4-13’=3·-sin32x0-π4·32×0-π4’==-3·sin32x0-π4·32=-92·sin32x0-π4⇒kx=y'(x0)⇔-92·sin32x0-π4=12⇒sin32x0-π4=-19

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

32×0-π4=arcsin-19+2πk или 32×0-π4=π-arcsin-19+2πk

32×0-π4=-arcsin19+2πk или 32×0-π4=π+arcsin19+2πk

x0=23π4-arcsin19+2πk или x0=235π4+arcsin19+2πk, k∈Z

Z- множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у:

y0=3cos32x0-π4-13

y0=3·1-sin232x0-π4-13 или y0=3·-1-sin232x0-π4-13

y0=3·1–192-13 или y0=3·-1–192-13

y0=45-13 или y0=-45+13

Отсюда получаем, что 23π4-arcsin19+2πk; 45-13, 235π4+arcsin19+2πk; -45+13 являются точками касания.

Ответ: необходимы уравнения запишутся как

y=12x-23π4-arcsin19+2πk+45-13,y=12x-235π4+arcsin19+2πk-45+13, k∈Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [-10;10], где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y=-2x+12. Красные точки – это точки касания.

Уравнение касательной прямой

Касательная к окружности, эллипсу, гиперболе, параболе

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности  с центром  в точке xcenter; ycenter и радиусом R применяется формула x-xcenter2+y-ycenter2=R2.

Данное равенство может быть записано как объединение двух функций:

y=R2-x-xcenter2+ycentery=-R2-x-xcenter2+ycenter

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Касательная к окружности, эллипсу, гиперболе, параболе

Для составления уравнения окружности  в точке x0; y0, которая располагается  в верхней или нижней полуокружности, следует найти уравнение графика функции вида y=R2-x-xcenter2+ycenter или y=-R2-x-xcenter2+ycenter в указанной точке.

Когда в точках xcenter; ycenter+R и xcenter; ycenter-R касательные могут быть заданы уравнениями y=ycenter+R и y=ycenter-R, а  в точках xcenter+R; ycenter и
xcenter-R; ycenter будут являться параллельными оу, тогда получим уравнения вида x=xcenter+R и x=xcenter-R.

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к эллипсу

Когда эллипс имеет центр  в точке xcenter; ycenter с полуосями a и b, тогда он может быть задан при помощи уравнения x-xcenter2a2+y-ycenter2b2=1.

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y=ba·a2-(x-xcenter)2+ycentery=-ba·a2-(x-xcenter)2+ycenter

Касательная к окружности, эллипсу, гиперболе, параболе

Если  касательные располагаются на вершинах эллипса, тогда они параллельны ох или оу. Ниже для наглядности рассмотрим рисунок.

Касательная к окружности, эллипсу, гиперболе, параболе

Пример 6

Написать уравнение касательной к эллипсу x-324+y-5225=1 в точках со значениями x равного х=2.

Решение

Необходимо найти точки касания, которые соответствуют значению х=2. Производим подстановку в имеющееся уравнение эллипса и получаем, что

x-324x=2+y-5225=114+y-5225=1⇒y-52=34·25⇒y=±532+5

Тогда 2; 532+5 и 2; -532+5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y. Получим, что

x-324+y-5225=1y-5225=1-x-324(y-5)2=25·1-x-324y-5=±5·1-x-324y=5±524-x-32

Очевидно, что верхний полуэллипс задается с помощью функции вида y=5+524-x-32, а нижний y=5-524-x-32.

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2; 532+5 будет иметь вид

y’=5+524-x-32’=52·124-(x-3)2·4-(x-3)2’==-52·x-34-(x-3)2⇒y'(x0)=y'(2)=-52·2-34-(2-3)2=523⇒y=y'(x0)·x-x0+y0⇔y=523(x-2)+532+5

Получаем, что уравнение второй касательной со значением в точке
2; -532+5 принимает вид

y’=5-524-(x-3)2’=-52·124-(x-3)2·4-(x-3)2’==52·x-34-(x-3)2⇒y'(x0)=y'(2)=52·2-34-(2-3)2=-523⇒y=y'(x0)·x-x0+y0⇔y=-523(x-2)-532+5

Графически касательные обозначаются  так:

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к гиперболе

Когда гипербола имеет центр в точке xcenter; ycenter и вершины xcenter+α; ycenter и xcenter-α; ycenter, имеет место задание неравенства x-xcenter2α2-y-ycenter2b2=1, если с вершинами xcenter; ycenter+b и xcenter; ycenter-b, тогда задается при помощи неравенства x-xcenter2α2-y-ycenter2b2=-1.

Касательная к окружности, эллипсу, гиперболе, параболе

Гипербола может быть представлена в виде двух объединенных функций вида

y=ba·(x-xcenter)2-a2+ycentery=-ba·(x-xcenter)2-a2+ycenter или y=ba·(x-xcenter)2+a2+ycentery=-ba·(x-xcenter)2+a2+ycenter

Касательная к окружности, эллипсу, гиперболе, параболе

В первом случае имеем, что касательные параллельны оу, а во втором параллельны ох.

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Пример 7

Составить уравнение касательной к гиперболе x-324-y+329=1 в точке 7; -33-3.

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x-324-y+329=1⇒y+329=x-324-1⇒y+32=9·x-324-1⇒y+3=32·x-32-4 или y+3=-32·x-32-4⇒y=32·x-32-4-3y=-32·x-32-4-3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7; -33-3.

Очевидно, что для проверки первой функции необходимо y(7)=32·(7-3)2-4-3=33-3≠-33-3, тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y(7)=-32·(7-3)2-4-3=-33-3≠-33-3, значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

Получаем, что

y’=-32·(x-3)2-4-3’=-32·x-3(x-3)2-4⇒kx=y'(x0)=-32·x0-3×0-32-4×0=7=-32·7-37-32-4=-3

Ответ: уравнение касательной можно представить как

y=-3·x-7-33-3=-3·x+43-3

Наглядно изображается так:

Касательная к окружности, эллипсу, гиперболе, параболе

Касательная к параболе

Чтобы составить уравнение касательной к параболе y=ax2+bx+c в точке x0, y(x0), необходимо использовать стандартный алгоритм, тогда уравнение примет вид y=y'(x0)·x-x0+y(x0). Такая касательная в вершине параллельна ох.

Следует задать параболу x=ay2+by+c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что

x=ay2+by+c⇔ay2+by+c-x=0D=b2-4a(c-x)y=-b+b2-4a(c-x)2ay=-b-b2-4a(c-x)2a

Графически изобразим как:

Касательная к окружности, эллипсу, гиперболе, параболе

Для выяснения принадлежности точки x0, y(x0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна оу относительно параболы.

Пример 8

Написать уравнение касательной к графику x-2y2-5y+3, когда имеем угол наклона касательной 150°.

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

-2y2-5y+3-x=0D=(-5)2-4·(-2)·(3-x)=49-8xy=5+49-8x-4y=5-49-8x-4

Значение углового коэффициента равняется значению производной в точке x0 этой функции и равняется тангенсу угла наклона.

Получаем:

kx=y'(x0)=tg αx=tg 150°=-13

Отсюда определим значение х для точек касания.

Первая функция запишется как

y’=5+49-8x-4’=149-8x⇒y'(x0)=149-8×0=-13⇔49-8×0=-3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150° для такой функции не существует.

Вторая функция запишется как

y’=5-49-8x-4’=-149-8x⇒y'(x0)=-149-8×0=-13⇔49-8×0=-3×0=234⇒y(x0)=5-49-8·234-4=-5+34

Имеем, что точки касания – 234; -5+34.

Ответ: уравнение касательной принимает вид

y=-13·x-234+-5+34

Графически изобразим это таким образом:

Касательная к окружности, эллипсу, гиперболе, параболе

Уравнение касательной к графику функции

Чтобы закрепить
предыдущий параграф, рассмотрим задачу
нахождения касательной к графику функции
в данной точке. Это задание встречалось
нам в школе, и оно же встречается в курсе
высшей математики.

Рассмотрим
«демонстрационный» простейший пример.

Составить
уравнение касательной к графику
функции 
 в
точке с абсциссой 
.
Я сразу приведу готовое графическое
решение задачи (на практике этого делать
в большинстве случаев не надо):

Строгое
определение касательной дается с помощью
определения самой производной функции,
и с этим пока повременим. Наверняка
практически всем интуитивно понятно,
что такое касательная. Если объяснять
«на пальцах», то касательная к графику
функции – этопрямая,
которая касается графика функции
в единственной точке.
При этом все близлежащие точки прямой
расположены максимально близко к графику
функции.

Применительно
к нашему случаю: при 
 касательная 
 (стандартное
обозначение) касается графика функции
в единственной точке 
.

И наша
задача состоит в том, чтобы найти
уравнение прямой 
.

Как
составить уравнение касательной в точке
с абсциссой
 
?

Общая формула
знакома нам еще со школы:

Значение 
 нам
уже дано в условии.

Теперь
нужно вычислить, чему равна сама
функция
 в
точке 
:


 

На
следующем этапе находим производную:

Находим
производную в точке (задание, которое
мы недавно рассмотрели):

Подставляем
значения 

 и 
 в
формулу 
:

Таким
образом, уравнение касательной:

Это
«школьный» вид уравнения прямой с
угловым коэффициентом. В высшей математике
уравнение прямой принято записывать в
так называемой общей
форме
 
,
поэтому перепишем найденное уравнение
касательной в соответствии с традицией:  

Очевидно,
что точка 
 должна
удовлетворять данному уравнению:


 –
верное равенство.

Следует
отметить, что такая проверка является
лишь частичной. Если мы неправильно
вычислили производную в точке 
,
то выполненная подстановка нам ничем
не поможет.

Рассмотрим еще
два примера.

Пример 5

Составить
уравнение касательной к графику
функции 
 в
точке с абсциссой 

Уравнение
касательной составим по формуле 

1)
Вычислим значение функции в точке 
:

2)
Найдем производную. Дважды используем
правило дифференцирования сложной
функции:

3)
Вычислим значение производной в
точке 
:

4)
Подставим значения 

 и 
 в
формулу 
:

Готово.

Выполним
частичную проверку:

Подставим
точку 
 в
найденное уравнение:

 –
верное равенство.

Пример 6

Составить
уравнение касательной к графику
функции 
 в
точке с абсциссой 

Полное решение и
образец оформления в конце урока.

В задаче на
нахождение уравнения касательной очень
важно ВНИМАТЕЛЬНО и аккуратно выполнить
вычисления, привести уравнение прямой
к общему виду.

Дифференциал функции одной переменной

Коль скоро я не
объяснил (на данный момент), что такое
производная функции, то не имеет смысла
объяснять, и что такое дифференциал
функции. В самой примитивной формулировке
дифференциал – это «почти то же самое,
что и производная».

Производная
функции чаще всего обозначается через 
.

Дифференциал
функции стандартно обозначается
через 
 (так
и читается – «дэ игрек»)

Дифференциал
функции одной переменной записывается
в следующем виде:

Другой
вариант записи: 

Простейшая
задача: Найти дифференциал функции 

1) Первый этап.
Найдем производную:

2) Второй этап.
Запишем дифференциал:

Готово.

Дифференциал
функции одной или нескольких переменных
чаще всего используют дляприближенных
вычислений
.

Помимо других
задач с дифференциалом время от времени
встречается и «чистое» задание на
нахождение дифференциала функции. Кроме
того, как и для производной, для
дифференциала существует понятие
дифференциала в точке. И такие примеры
мы тоже рассмотрим.

Пример 7

Найти
дифференциал функции 

Перед
тем, как находить производную или
дифференциал, всегда целесообразно
посмотреть, а нельзя ли как-нибудь
упростить функцию (или запись функции)
ещё додифференцирования?
Смотрим на наш пример. Во-первых, можно
преобразовать корень:


 (корень
пятой степени относится именно к синусу).

Во-вторых, замечаем,
что под синусом у нас дробь, которую,
очевидно, предстоит дифференцировать.
Формула дифференцирования дроби очень
громоздка. Нельзя ли избавиться от
дроби? В данном случае – можно, почленно
разделим числитель на знаменатель:

Функция
сложная. В ней два вложения: под степень
вложен синус, а под синус вложено
выражение 
.
Найдем производную, используя правило
дифференцирования сложной функции 
 два
раза:

Запишем
дифференциал, при этом снова представим 
 в
первоначальном «красивом» виде:

Готово.

Когда
производная представляет собой дробь,
значок 
 обычно
«прилепляют» в самом конце числителя
(можно и справа на уровне дробной черты).

Пример 8

Найти
дифференциал функции 

Это пример для
самостоятельного решения.

Следующие два
примера на нахождение дифференциала в
точке.

Пример 9

Вычислить
дифференциал функции 
 в
точке 

Найдем
производную:

Опять, производная
вроде бы найдена. Но в эту бодягу еще
предстоит подставлять число, поэтому
результат максимально упрощаем:

Труды
были не напрасны, записываем дифференциал:

Теперь
вычислим дифференциал в точке 
:

В
значок дифференциала 
 единицу
подставлять не нужно, он немного из
другой оперы.

Ну и
хорошим тоном в математике считается
устранение иррациональности в знаменателе.
Для этого домножим числитель и знаменатель
на 
.
Окончательно:

Пример 10

Вычислить
дифференциал функции 
 в
точке 
.
В ходе решения производную максимально
упростить.

Это пример для
самостоятельного решения. Примерный
образец оформления и ответ в конце
урока.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #

    08.02.20157.31 Mб91.rtf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Число (e) — иррациональное, т. е. представляет собой бесконечную десятичную непериодическую дробь: (e = 2,7182818284590…); на практике обычно полагают, что e≈2,7.

График функции y=ex (называется экспонентой) изображён на рисунке:

eksponent.bmp

Угол между касательной к экспоненте в точке (x = 0) и осью абсцисс равен 45°. Этим график функции y=ex отличается от других графиков экспоненциального вида (показательных функций с другими основаниями).

Свойства функции y=ex:

1) D(f)=(−∞;+∞)′;

2) ни чётная, ни нечётная;

3) возрастающая;

4) ограниченная снизу;

5) у функции нет наибольшего и наименьшего значений;

6) непрерывная;

7) E(f)=(0;+∞);

8) выпукла вниз;

9) дифференцируема.

Формула для отыскания производной функции y=ex: ex′=ex.

Пример:

вычислить значение производной функции y=e4x−12 в точке (x = 3).

Решение. Воспользуемся правилом дифференцирования функции y=f(kx+m), согласно которому y′=kf(kx+m), и тем, что ex′=ex. Получим:

y′=e4x−12′=4e4x−12;y′(3)=4e4⋅3−12=4e12−12=4e0=4.

Ответ: (4).

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 августа 2022 года; проверки требуют 5 правок.

Запрос «EXP» перенаправляется сюда; о классе сложности см. Класс EXPTIME.

Экспоне́нта — показательная функция f(x)=exp(x)=e^{x}, где {displaystyle eapprox 2{,}718} — число Эйлера.

Определение[править | править код]

Экспоненциальная функция может быть определена различными эквивалентными способами. Например, через ряд Тейлора:

e^{x}=1+sum _{{n=1}}^{{infty }}{x^{n} over n!}=1+x+{x^{2} over 2!}+{x^{3} over 3!}+{x^{4} over 4!}+cdots

или через предел:

e^{x}=lim _{{nrightarrow infty }}left(1+{frac  {x}{n}}right)^{n}.

Здесь x — любое комплексное число.

Происхождение понятия[править | править код]

Слово экспонента происходит от лат. “exponere”, что переводится как “выставить вперёд; показать“, которое в свою очередь произошло от лат. приставки “ex-“ (“впереди”) и лат. слова “ponere” (“ставить, расположить”);[1] Смысл использования такого слова для показателя степени заключается в том, что знак экспоненты “ставят вне” привычной линии письма a^{x}(немного выше и правее места, где обычно должна быть поставлена цифра).

Свойства[править | править код]

Комплексная экспонента[править | править код]

График экспоненты в комплексной плоскости.
Легенда

Комплексная экспонента — математическая функция, задаваемая соотношением f(z)=e^{z}, где z есть комплексное число. Комплексная экспонента определяется как аналитическое продолжение экспоненты f(x)=e^{x} вещественного переменного x:

Определим формальное выражение

e^{z}=e^{{x+iy}}=e^{x}cdot e^{{iy}}.

Определённое таким образом выражение на вещественной оси будет совпадать с классической вещественной экспонентой. Для полной корректности построения необходимо доказать аналитичность функции e^{z}, то есть показать, что e^{z} разлагается в некоторый сходящийся к данной функции ряд. Покажем это:

f(z)=e^{z}=e^{x}cdot e^{{iy}}=e^{{iy}}sum _{{n=0}}^{infty }{frac  {x^{n}}{n!}}.

Сходимость данного ряда легко доказывается:

{displaystyle left|e^{iy}sum _{n=0}^{infty }{frac {x^{n}}{n!}}right|leq left|sum _{n=0}^{infty }{frac {x^{n}}{n!}}right|leq sum _{n=0}^{infty }left|{frac {x^{n}}{n!}}right|=sum _{n=0}^{infty }{dfrac {|x|^{n}}{n!}}=e^{|x|}}.

Ряд всюду сходится абсолютно, то есть вообще всюду сходится, таким образом, сумма этого ряда в каждой конкретной точке будет определять значение аналитической функции f(z)=e^{z}. Согласно теореме единственности, полученное продолжение будет единственно, следовательно, на комплексной плоскости функция e^{z} всюду определена и аналитична.

Свойства[править | править код]

Вариации и обобщения[править | править код]

Аналогично экспонента определяется для элемента произвольной ассоциативной алгебры.
В конкретном случае требуется также доказательство того, что указанные пределы существуют.

Матричная экспонента[править | править код]

Экспоненту от квадратной матрицы (или линейного оператора) можно формально определить, подставив матрицу в соответствующий ряд:

exp A=sum _{{k=0}}^{{infty }}{frac  {A^{k}}{k!}}.

Определённый таким образом ряд сходится для любого оператора A с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы {displaystyle Acolon } exp |A|. Следовательно, экспонента от матрицы {displaystyle Ain mathbb {R} ^{ntimes n}} всегда определена и сама является матрицей.

С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами: уравнение {dot  x}=Ax,~~~xin {mathbb  R}^{n} с начальным условием x(0)=x_{0} имеет своим решением x(t)=exp(At)x_{0}.

h-экспонента[править | править код]

Введение h-экспоненты основано на втором замечательном пределе:

e_{{h}}(x)=(1+h)^{{frac  {x}{h}}}.

При hto 0 получается обычная экспонента[2].

Обратная функция[править | править код]

Обратная функция к экспоненциальной функции — натуральный логарифм.
Обозначается ln x:

ln x=log _{{e}}x.

См. также[править | править код]

  • Показательная функция
  • Список интегралов от экспоненциальных функций
  • Экспоненциальный рост

Примечания[править | править код]

  1. exponent (n.) (англ.).
  2. A.I. Olemskoi, S.S. Borysov, a, and I.A. Shuda. Statistical field theories deformed within different calculi

Литература[править | править код]

  • Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — Издание 5-е, исправленное. — М.: Наука, 1987. — 688 с.
  • Хапланов М. Г. Теория функции комплексного переменного (краткий курс). — Издание 2-е, исправленное. — М.: Просвещение, 1965. — 209 с.

Ссылки[править | править код]

  • An Intuitive Guide To Exponential Functions & e | BetterExplained (англ.)

В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.

  • Определение и формула экспоненты

  • График экспоненты

  • Свойства экспоненциальной функции

Определение и формула экспоненты

Экспонента – это показательная функция, формула которой выглядит следующим образом:

f (x) = exp(x) = e x

где e – число Эйлера.

Экспоненциальная функция (так часто называют экспоненту) может быть определена:

Через предел (lim):

Экспонента через предел

Через степенной ряд Тейлора:

Экспонента через степенной ряд Тейлора

График экспоненты

Ниже представлен график экспоненциальной функции y = e x.

График экспоненты

Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y.

Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox, но никогда не пересечет и не коснется ее.

Пересечение с осью ординат Oy – в точке (0, 1), так как e0 = 1.

Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.

Свойства экспоненциальной функции

  1. Экспонента определена для всех x, причем функция везде возрастает, и ее значение всегда больше нуля. То есть:
    • область определения: – ∞ < x + ∞;
    • область значений: 0 < y < + ∞.
  2. Обратная к экспоненте функция – это натуральный логарифм (ln x).
    • ln e x = x;
    • e ln x = x, где x > 0.
  3. Для экспоненты применимы правила операций с показателями, например: e (a + b) = e a ⋅ e b.
  4. Производная экспоненты:
    • (e x) = e x.
    • если вместо x – сложная функция u: (e u) = e u + u‘.
  5. Интеграл экспоненты: ∫ e x dx = e x + C, где C – константа интегрирования.

Добавить комментарий