Алмазные месторождения и методы их поисков
В последние два десятилетия кимберлиты привлекли к себе повышенное внимание ученых-геологов всего мира. И дело тут не только в том, что эта порода является единственным источником алмазов. Кимберлит представляет исключительный интерес и сам по себе как редкостная горная порода.
Вспомним, что средний радиус земного шара составляет 6370 км. Тысячи километров! В то же время проходка скважины глубиной даже 4–5 км является весьма трудным и дорогостоящим делом. Рекордсмен в этом отношении — известная Кольская сверхглубокая скважина (собственно, это не привычная буровая вышка, а целый завод), проектная глубина которой составляет 15 км. Таким образом, непосредственному изучению доступна лишь тончайшая «пленка» на поверхности Земли. Но уже установлено наукой, что процессы, вызывающие землетрясения, извержения вулканов, воздымание и опускание громадных территорий, формирование различных пород и месторождений полезных ископаемых, т. е. процессы, формирующие лик нашей Земли как геологического тела, зарождаются на глубинах в сотни километров, в пределах так называемой мантии Земли.
Увидеть непосредственно то, что происходит в мантии, мы не можем. Остается уповать на косвенные методы, на поиск и изучение пород, формирование которых непосредственно связано с глубинными, мантийными, процессами. Ученые установили, что светлые, богатые кварцем граниты (точнее, силикатные расплавы — магмы, при остывании которых вблизи поверхности земли возникали граниты) образовывались на глубинах в первые десятки километров. Еще более глубинными являются плотные темные базальты. Ну, а самая-самая глубинная порода — это кимберлит; его источник расположен ниже отметки 150 км. Кроме того, поднимаясь к поверхности, кимберлитовая магма захватывает по дороге и образцы мантийных пород (так называемые ксенолиты), которые мы потом находим в кимберлитовых трубках. Таким образом, кимберлит является практически уникальным источником информации о наиболее глубинных (а потому и наиболее важных) процессах, протекающих в недрах нашей планеты.
Кимберлитам посвящены тысячи статей и книг, регулярно собираются по их поводу международные научные конференции. Однако до сих пор мы не можем сказать, что знаем все о том, как же образовывались кимберлиты и находящиеся в них алмазы. Некоторые ключевые закономерности все же установлены достаточно твердо (на научном языке это означает, что данные положения разделяются подавляющим большинством исследователей и позволяют делать надежные прогнозы).
С геологической точки зрения вся территория континентов земного шара подразделяется на платформенные и складчатые области. Складчатые области — это горные сооружения, где широко проявлены землетрясения, магматизм, горообразовательные процессы, словом, это области, где геологическая жизнь протекает наиболее бурно. Платформы, наоборот, представляют собой равнинные территории, живущие в геологическом плане намного спокойнее. Для них характерно как бы двухэтажное строение. Нижний этаж называется кристаллическим фундаментом и сложен массивными кристаллическими породами. Верхний этаж мощностью до нескольких километров — это осадочный чехол, он сложен горизонтально залегающими песчаниками, алевролитами, глинами, известняками. Магматические проявления здесь немногочисленны и связаны с крупными трещинами — разломами, проникающими до глубин верхней мантии.
Кимберлиты приурочены только к районам платформ. Большинство ученых сходится на том, что алмазоносная, чрезвычайно богатая летучими компонентами (водой и углекислотой) кимберлитовая магма зарождается в мантии под платформами на глубине свыше 150 км и затем поднимается к поверхности, используя более проницаемые зоны глубинных разломов в качестве каналов. По мере подъема проницаемость земной коры уменьшается, и на глубине около 2 км, вблизи границы кристаллического фундамента и осадочного чехла, магма останавливается, будучи не в силах пробить «крышку» из плотных массивных пород. Но снизу продолжается подток магматического материала и газов. Давление в герметически замкнутой камере постепенно нарастает, и в конце концов происходит то же, что и с паровым котлом, когда давление пара превышает допустимые пределы, — он взрывается. Могучая газовая струя мгновенно пробивает массивную «крышку», просверливая в ней вертикальную трубообразную полость. Затем полость заполняется поднимающейся магмой. Магма застывает, и возникает то, что мы называем кимберлитовой трубкой, или диатремой. Кимберлиты же, заполнившие сначала вертикальные трещины, по которым они поднимались, а затем и некоторые горизонтальные трещины, образуют протяженные плитообразные тела, которые называются соответственно дайками и силлами (рис. 10).
Рис. 10. Схематичная объемная модель кимберлитовой трубки: 1 — кимберлитовые брекчии, 2 — массивные кимберлиты.
В момент взрыва выброшенные из трубки куски пород образуют вокруг нее кольцевой насыпной вал. Понижение в рельефе постепенно заполняется водой — формируется кратерное озеро, в котором накапливаются тонкослоистые озерные отложения, перекрывающие кимберлиты. Вертикальный разрез такой идеализированной кимберлитовой трубки приведен на рис. 11.
Рис. 11. Обобщенный разрез алмазоносной кимберлитовой трубки Южной Африки: 1 — отложения кольцевого вала; 2 — осадки кратерного озера; 3 — обломки различных осадочных и магматических пород, прорываемых трубкой; 4 — различные типы кимберлитов, слагающих трубку. Справа указаны уровни эрозионного среза для некоторых кимберлитовых трубок Южной Африки.
Обнаружение целиком сохранившейся кимберлитовой трубки — большая редкость. Трубки под влиянием таких действующих на поверхности природных агентов, как перепад температур, ветер, вода, подвергаются эрозии, т. е. попросту разрушаются. Их верхние части как бы срезаются, уничтожаются. Величина уничтоженной части трубки (размер эрозионного среза) варьирует в очень широких пределах. Понятно, что чем она больше, тем меньший интерес представляет трубка в качестве коренного месторождения алмазов. Однако при этом возрастает количество алмазов, высвобождаемых из разрушаемых кимберлитов, и увеличивается вероятность образования алмазных россыпей в окрестностях трубки.
Трубки сложены кимберлитом — тонко зернистой породой, окрашенной в самые разнообразные цвета. На сравнительно однородном фоне четко выделяются блестящие крупные (до 1 см и больше) включения так называемых минералов — спутников алмаза: смоляно-черного ильменита, кроваво-красного пиропа, реже светло-зеленого оливина и изумрудно-зеленого хромдиопсида. Часто кимберлиты содержат множество обломков вмещающих пород и в таком случае называются кимберлитовыми брекчиями. В кимберлитах находятся и алмазы. Однако даже в самых богатых кимберлитовых трубках Южной Африки содержание алмазов не превышает 1 карата на 1 т породы. А это означает, что алмазы составляют менее 0,0001 % объема породы. В геологии минералы, входящие в состав породы в количестве менее 1 %, называются акцессорными, т. е. примесными. С этой точки зрения алмаз можно смело называть ультраакцессорием!
Кимберлиты, как уже говорилось, размываются реками, ручьями, временными водотоками, разрушаются ветрами, дождями, при резких перепадах температур, а в былые времена и ледниками. В результате алмазы высвобождаются из кимберлитов, попадают в глинистые, песчаные и валунно-галечные отложения и, скапливаясь где-то, образуют месторождения, которые называются россыпными. В зависимости от того, на какое расстояние и каким образом алмазы переместились из кимберлитов в россыпи, последние разделяют на элювиальные, пролювиальные, аллювиальные, делювиальные, прибрежно-морские, дельтовые, эоловые.
Те алмазы, которые остались непосредственно на поверхности кимберлитовых тел, образуют россыпи, которые называются элювиальными. Алмазы, находящиеся в нижележащих кимберлитах, включены в породу, и их трудно оттуда отобрать, в элювиальной же россыпи они находятся в свободном состоянии и извлекаются без больших усилий. Обычно мощность элювиальной россыпи на кимберлитах составляет несколько метров, хотя есть случаи, когда кимберлиты находятся на плоских равнинах и россыпи достигают мощности 10 м и более.
Элювиальные россыпи характеризуются своеобразным строением и разным содержанием алмазов в определенных горизонтах. Чаще всего верхняя часть разреза представлена глиной желтого цвета, так называемой «желтой землей». В ней сосредоточено наибольшее количество алмазов. Средняя часть россыпи представлена «синей землей», т. е. горизонтом синих глин с редкой щебенкой кимберлитов. Алмазов в этом горизонте меньше в 2–3 раза как за счет присутствия щебенки кимберлитов, так и за счет того, что из этого слоя не происходит выноса глинистого материала, как в верхнем горизонте, иначе говоря, не наблюдается уменьшения объема породы и относительного обогащения алмазами. Третий — нижний — горизонт (структурный элювий) постепенно переходит в неразрушенные кимберлиты. В нем содержание алмазов примерно такое же, как и в кимберлитах.
На склонах возвышенностей формируются делювиальные россыпи. Алмазы в них перемещены от кимберлитов вниз по склону на расстояние до 2–3 км (в зависимости от его крутизны и длины). Обломочный материал слабо отсортирован и по составу соответствует коренному ложу, т. е. неперемещенным породам, в которые «врезано» русло реки и на которых накапливается обломочный материал. Как правило, эти россыпи беднее коренного источника и элювиальных россыпей, поскольку алмазоносный материал разубоживается за счет материала боковых пород. Делювиальные россыпи представляют собой тела плащевидной, конусообразной формы.
Пролювиальные россыпи образуются временно действующими потоками, обусловленными большей частью ливневыми дождями или снеготаянием. Вследствие кратковременности таких потоков отложения этих россыпей плохо отсортированы, алмазы распределены неравномерно.
Аллювиальные россыпи образуются в речных долинах при переносе водой продуктов разрушения алмазоносных пород. Обломочный материал обычно в той или иной степени окатан и относительно хорошо отсортирован. Происходит также некоторая сортировка алмазов как по крупности, так и по приуроченности их к определенным горизонтам аллювия. Основная масса алмазов встречается в грубообломочных отложениях. Содержания алмазов в россыпях весьма различны. Они могут в несколько раз превышать содержания в первоисточниках. Среди аллювиальных россыпей по условиям залегания выделяются русловые, косовые, долинные и террасовые (рис. 12).
Рис. 12. Геоморфологическая схема долины реки в районе россыпи (по А. П. Бобриевичу): Россыпи террасовые: 1 — 5-й террасы, 2 — 4-й террасы. 3 — 3-й террасы. 4 — 2-й террасы, 5 — 1-й террасы; долинные: 6 — пойменные, 7 — береговых отмелей, береговых валов, бечевников, 8 — шлейфовые размытых террасовых останцов, 9 — намывных кос, островов, отмелей, 10 — собственно русловые.
Прибрежно-морские россыпи залегают вдоль береговой линии морей. Образование их связано с привносом алмазов реками с континента либо происходит за счет размыва расположенных на берегу коренных месторождений или древних россыпей. Это довольно редкий вид россыпей. Это связано с тем, что транспортируемые реками алмазы лишь в исключительных случаях достигают побережья. Прибрежно-морские россыпи обычно имеют незначительную ширину (50—300 м), но прослеживаются на значительные расстояния, измеряемые десятками километров. Содержание алмазов и средняя величина кристаллов закономерно убывают по мере удаления от источника размыва или от устья реки, приносившей алмазы. По отношению к уровню воды расположение россыпей бывает различное. Современная россыпь обычно залегает на уровне моря или несколько ниже его.
Более древние россыпи могут быть террасовыми, если уровень моря в последующее время понизился, или погребенными и подводными, если он повысился.
Дельтовые россыпи залегают в дельтах рек при впадении их в моря или лагуны и образованы путем выноса обломочного материала речными потоками. Богатые месторождения этого типа до сих пор не обнаружены. Однако среди дельтовых отложений со слабой алмазоносностью иногда встречаются обогащенные «струи» с промышленными содержаниями алмазов.
Эоловые россыпи развиты в пустынных областях. Они возникают на поверхности «сухих» рек за счет выдувания мелких и легких частиц пород. В результате возникают ложбины выдувания шириной сотни метров, длиной несколько километров и глубиной несколько метров. На дне этих ложбин скапливается крупный и тяжелый материал, а вместе с ним и алмазы. Под влиянием ветров алмазы частично передвигаются вдоль ложбин и концентрируются по их склонам.
Кроме россыпей перечисленных генетических типов, существуют россыпи смешанного происхождения, которые обладают переходными особенностями соответствующих генетических типов.
Теперь мы уже имеем некоторое представление о том, что такое месторождение алмазов, а также знаем, как их искали раньше. Как же ищут их сейчас?
XX век — век науки и техники. И это отразилось, конечно, в геологии. Если раньше поисками алмазов занимались старатели — люди, накопившие практический опыт такой работы или которым передавался опыт по наследству, то сейчас алмазы стали искать на базе научных разработок с помощью высокоточных инструментов на земле, с воздуха, а в последнее время и из космоса. Разработаны целые научно обоснованные поисковые комплексы для районов с различной геологической обстановкой.
Всю премудрость предсказания открытия алмазных месторождений наука вложила в так называемые поисковые критерии и поисковые признаки.
Сначала, как уже отмечалось, выделяют платформенные области. Затем в пределах платформ выбираются локальные площади и регионы, внутри которых прогнозируется наличие кимберлитовых трубок, это прежде всего зоны глубинных разломов в земной коре, достигающих мантии. Такие зоны образуются на стыке участков земли, испытывающих соответственно поднятие и опускание.
Надо сказать, что в пределах зон разломов кимберлитовые трубки располагаются обычно группами, образуя кимберлитовые поля. В каждом поле находится от единиц до нескольких десятков кимберлитовых трубок. Предполагается, что отдельные кимберлитовые поля связаны с обособленными глубинными магматическими очагами.
После выделения перспективных участков наступает пора специализированных геолого-поисковых работ, которые начинаются с маршрутов. Маршруты намечаются после тщательного анализа предыдущих геологоразведочных работ; в ходе маршрута ведется поиск кимберлитов и минералов — спутников алмаза: пиропа, пикроильменита (ильменита с повышенным содержанием Mg) и хромдиопсида, а также, естественно, и самих алмазов. Маршруты прокладываются в первую очередь по долинам рек, где обычно вскрываются породы и где можно увидеть все особенности их строения, есть возможность провести опробование. Поскольку по рекам алмазы концентрируются в гравийногалечных образованиях, поэтому сначала ищут последние, а затем уже опробуют эти образования на алмазы. Как правило, алмазов больше там, где концентрируется наиболее грубообломочный материал.
Для констатации алмазов необходимо отбирать пробы больших размеров — массой от нескольких до десятков тонн. И если в 1 т есть одно-два зерна алмазов, это удача. Но как выделить это зерно среди миллионов других? Для этого существует специальная методика. Установлено, что наиболее часто встречаются алмазы размером от 1 до 4 мм. Поэтому всю породу (гравийно-галечно-песчаный материал) просеивают на ситах с ячейками 1, 2 и 4 мм. Полученные фракции (от 1 до 4 мм) оставляют для дальнейшей обработки, остальные выбрасывают. Таким образом, уже на первой стадии опробования исследуемый материал сокращается более чем наполовину. Затем оставшуюся часть пробы разделяют по плотности. Так как для алмаза она равна 3,5 г/см3, то делят эту часть пробы на две неравные части: в одну попадают минералы с плотностью больше 3,5, в другую — с меньшей. На этой стадии объем пробы сокращается в сотни и тысячи раз. Оставшийся так называемый концентрат пробы имеет массу, измеряемую килограммами. И все же количество зерен минералов и пород, среди которых есть единичные кристаллы алмазов, в концентрате очень велико. Визуально обнаружить эти алмазы очень трудно. Для этого используется специальная аппаратура, основанная на таких свойствах алмазов, как свечение в рентгеновских лучах, а также способность прилипания к определенным видам жиров.
Из описанного выше можно видеть, что по находкам алмазов искать алмазные месторождения — дело очень трудоемкое. Специалисты стараются ускорить и облегчить процесс поисков. Для этого используют шлиховое опробование[2]. Оно предназначено для поисков не самих алмазов, а их минералов-спутников: чтобы по «дорожкам», указанным этими минералами, приходить к месторождениям. В Советском Союзе первые такие дорожки наметили ленинградские ученые Н. Н. Сарсадских и Л. А. Попугаева. Как мы уже писали, в Якутии ими были встречены характерные для кимберлитов минералы пироп и пикроильменит, которые указали им путь к первой открытой в СССР кимберлитовой трубке «Зарница».
Методика отбора шлихов такова. У реки или ручья зачерпывается исходный материал объемом 10–20 л и очень осторожно промывается на лотках или ковшах. Осторожность и тщательность промывки необходимы для того, чтобы избежать потерь минералов-спутников. Шлихи отбираются на тех участках русла рек, которые благоприятны для максимальной концентрации минералов — спутников алмаза. Обычно это окончания плёсовых участков на сопряжении с перекатами. В поперечном сечении русла повышенные содержания этих минералов наблюдаются в пристержневой части потока, где отлагается более крупный аллювий. На галечных косах рекомендуется отбирать шлих в головных частях. Известно также, что маломощный аллювий обогащен минералами — спутниками алмазов больше, чем аллювий значительной мощности. Большое влияние на концентрацию алмазов и их минералов-спутников оказывает характер ложа русла.
Днище с провалами, ребристостью и другими неровностями способствует их «улавливанию». Все это необходимо учитывать при выборе места для отбора шлиховой пробы.
Шлихи отбираются последовательно, обычно снизу вверх по реке. При этом опробуется аллювий как основной реки, так и всех ее притоков. Шлихи тут же на маршруте просматриваются, и в случае, если «пироповая дорожка» ведет по одному из притоков, ее прослеживают до конца.
Детальное изучение минералов-спутников показало, что по характеру их механического износа, в частности степени окатанности, можно примерно определить, на каком расстоянии находится кимберлитовая трубка. Дальность переноса пиропа и пикроильменита может достигать 150–200 км, а оливин и хромдиопсид измельчаются и исчезают в шлихах уже на первом десятке километров переноса. Поэтому присутствие в шлихах оливина и хромдиопсида может быть признаком близости кимберлитовой трубки. Об этом же свидетельствует и сохранность на зернах пиропа специфической так называемой келифитовой каймы. Эта кайма крайне неустойчива и исчезает в процессе переноса очень быстро.
Поиски кимберлитов проводятся также обломочно-речным методом, заключающимся в обнаружении и прослеживании обломков кимберлитов. Дело в том, что кимберлиты являются нестойкими породами, они разрушаются уже на поверхности и склонах самих кимберлитовых трубок. В руслах рек обломки кимберлитов встречаются на расстоянии не более 5—10 км от трубок. Обычно обломки малочисленны и обнаруживаются с большим трудом. Однако если на склоне или в русле реки найден обломок кимберлита, то это значит, что кимберлитовая трубка близко.
В описанном выше виде шлиховой метод поисков кимберлитов по минералам — спутникам алмаза эффективен лишь в районах со сравнительно простым геологическим строением, когда кимберлитовые трубки, размываемые водой, непосредственно выходят на поверхность земли.
Но район исследования может иметь и более сложную историю геологического развития. Например, представим, что возникшие сотни миллионов лет назад на каком-то участке кимберлитовые трубки размывались древними водотоками с образованием россыпей. Затем земная поверхность опустилась и была залита морем. В водном бассейне отложились различные осадочные породы (песчаники, глины, известняки), захоронившие под собой все, что было раньше, в том числе кимберлиты и россыпи. Затем под влиянием внутренних сил Земли море отступило и этот участок снова поднялся и превратился в сушу. Возникает новая речная сеть. Вода размывает все породы и добирается, наконец, до кимберлитов и россыпей. Образуются новые россыпи, в которых присутствуют как минералы-спутники из коренных кимберлитов, так и из древних россыпей, которые в данном случае выступают как бы в качестве промежуточного накопителя минералов-спутников (они и называются промежуточными коллекторами). Такой процесс может повторяться неоднократно, и в результате возникает целый набор разновозрастных россыпей и промежуточных коллекторов.
И вот геолог работает в алмазоносном районе с таким запутанным геологическим прошлым. Здесь уже известно несколько кимберлитовых трубок, ставится задача — отыскать новую. Из речного аллювия отбирается шлих, а в нем обнаруживается множество минералов-спутников. Казалось бы, все ясно: надо мыть шлихи дальше, идти по «дорожке». Однако на самом деле все оказывается гораздо сложнее. Ведь в этот шлих попали минералы и из уже известных кимберлитовых тел, и из целого ряда разновозрастных промежуточных коллекторов. Геологу необходимо точно сказать: эти гранаты и пикроильмениты из такой-то трубки, эти — из такой-то, а вот те, судя по их особенностям, явно привнесены из промежуточного коллектора. И если после такого анализа остаются минералы, которые не увязываются ни с каким известным источником, только тогда можно предположить, что мы обнаружили звено искомой поисковой «дорожки».
Расшифровка результатов шлихового опробования — дело весьма непростое. Минералы-спутники изучаются разнообразными методами с использованием самой современной точной аппаратуры. Здесь геолог превращается в физика, химика, математика. И все это для того, чтобы точно определить, в каком направлении сделать следующий шаг, где лежит и куда ведет заветная «дорожка».
Широко применяются в последнее время геофизические методы поисков кимберлитов. Они основаны на том, что такие физические свойства кимберлитов и вмещающих их пород, как плотность, намагниченность, электропроводность. «прозрачность» для акустических колебаний и радиоволн, несколько различны и это современными приборами можно уловить. Особо ценны геофизические методы при поисках в так называемых закрытых районах, где кимберлиты не выходят на поверхность и перекрыты более молодыми осадочными породами. В этих случаях приборы фиксируют на фоне геофизического поля изометричную аномалию, так называемую аномалию трубочного типа. Затем эти аномалии проверяют наземными исследованиями с помощью бурения.
Геофизические методы обладают еще одним большим преимуществом: они могут быть применены с воздуха в аэроварианте, когда аппаратура монтируется на самолетах или вертолетах. Это позволяет оперативно и качественно проводить геофизическую съемку крупных и труднодоступных территорий.
В настоящее время значительную часть кимберлитовых трубок находят с помощью геофизических методов. Таковы, например, в Якутии трубки «Электра» и «Аэромагнитная», обнаруженные с помощью соответственно электроразведки и аэромагнитной разведки.
С каждым годом все более разрабатываются геохимические методы поисков. Некоторые химические элементы, которыми особенно богата кимберлитовая магма, различными путями мигрируют во вмещающие породы, образуя вокруг кимберлитовых трубок своеобразные зоны — геохимические ореолы, в которых содержания этих элементов заметно повышены. Современные методы анализа позволяют выявлять эти ореолы. Площадь их в несколько раз превышает площадь кимберлитовых тел. Ясно, что найти такой геохимический ореол легче, чем обнаружить саму кимберлитовую трубку.
Большую помощь в поисках алмазных месторождений оказывают аэрофотосъемка, а в последние годы и космическая съемка. На снимках довольно четко выделяются разломы, к которым приурочены кимберлитовые трубки, а иногда и сами трубки. Чаще, однако, на аэро- и космоснимках дешифрируются фотоаномалии трубочного типа — округлые пятна, отличающиеся цветом, густотой и высотой растительности и т. д. Установление природы фотоаномалий проводится геологами непосредственно в поле (в необходимых случаях с привлечением бурения).
Методы прогноза и поиска алмазных месторождений непрерывно совершенствуются, появляются их модификации. Ученые-геологи стремятся овладеть так называемым локальным прогнозом, при котором можно было бы точно указать небольшой (несколько квадратных километров) участок, в пределах которого расположена алмазоносная кимберлитовая трубка (или россыпное месторождение).
Далеко не все вообще слышали такое достаточно редкое словосочетание, как ”кимберлитовая трубка”. Даже те, кто скажет, что эти слова им знакомы, все равно не факт, что смогут ответить на вопрос, что это такое. Тем не менее, это то, что стоит у истоков ювелирной промышленности, и того, что мы называем бриллиантами. Эти минералы добываются из огромных ”дыр” в земле, просто смотря на которые уже перестаешь относиться к слову ”трубка”, как к чему-то маленькому и почти игрушечному. История этого словосочетания берет свое начало в Африке, а такой способ добычи алмазов действительно потрясает своими масштабами и тем, сколько человек обеспечивает работу месторождений. Давайте разберемся с тем, что это такое, и почему вокруг таких месторождений часто строят целые города. Поверьте, масштабы вас впечатлят и вам будет, что обсудить с друзьями. А заодно расскажу, что происходит с этими громадинами, когда копать их больше уже нельзя.
Размеры кимберлитовых трубок огромны.
Содержание
- 1 Что такое кимберлитовая трубка
- 2 Что находится внутри кимберлитовой трубки
- 3 Как разрабатывают кимберлитовую трубку
- 4 Самая большая кимберлитовая трубка в России
Что такое кимберлитовая трубка
Прежде всего надо понимать, что кимберлитовая трубка — это не какой-то небольшой объект, который лежит в земле или является инструментом геолога, а полноценное геологическое тело. Так принято называть образования в земной коре, которые обладают какими-то конкретными свойствами или представляют научный и коммерческий интерес.
Кимберлитовой трубкой принято называть вертикальное или хотя бы близкое к вертикальному геологическое тело, которое образуется при прорыве магмы сквозь земную кору. Сама трубка заполнена кимберлитом. Логично, да?
Кто такой Талли монстр и кому принадлежат таинственные ископаемые останки?
Именно так порода и сама трубка называется из-за исторических особенностей обнаружение таких геологических тел. Впервые это произошло в Южной Африке рядом с городом Кимберли. С тех пор, где бы не находилась такая трубка, она всегда называется кимберлитовой.
Сейчас так выглядит та самая первая кимберлитовая трубка в Кимберли.
Такое геологическое тело называется именно трубкой из-за того, что оно действительно вытянуто и уходит в землю подобно трубе. Учитывая особенности геологических процессов, ее размеры огромны. Кимберлитовая трубка достигает в диаметре 400-1000 метров. Иногда ее размеры даже переваливают за эти значения. По сути, это канал, по которому в древности проходили газы и расплавленная магма.
Что находится внутри кимберлитовой трубки
Внешне порода, которая находится в кимберлитовой трубке, представляет из себя вулканические обломки, туфообразную массу зеленовато-серого цвета и распределенные по ней минералы. Туфообразная масса в своей основе имеет такие вещества, как ксенолиты, флогопит, оливин, карбонаты, пироп и других минералы.
Могут ли микробы заняться добычей полезных ископаемых на Марсе?
Самым главным, что заставляет заниматься разработками кимберлитовых трубок, являются алмазы. Именно эти небольшие камни стоят того, чтобы карьерными грузовиками перетаскивать с места на место миллионы тонн породы. После обработки алмазов получаются бриллианты. Не так давно я уже рассказывал о том, как добывают алмазы, как их обрабатывают и приводил примеры самых крупных и дорогих из них. Тогда статья нашла большой отклик среди участников нашего Telegram-чата и они просили подробнее рассказать о кимберлитовых трубках.
Куда не брось взгляд, везде трубка. Обратите внимание, что на снимке есть стадион и оцените его размер на фоне этого огромного отверстия.
В мире около 1500 кимберлитовых трубок, но далеко не все из них имеет смысл разрабатывать, так как только десятая часть из них алмазоносная. Большая часть из них нерентабельна, а самые полезные с точки зрения ”выхлопа” находятся в ЮАР, Индии и в Якутии на Среднесибирской платформе.
Интересно, что первая в Якутии кимберлитовая трубка была открыта не бородатым геологом, а женщиной - Ларисой Попугаевой. Произошло это 21 августа 1954 года. Она получила название ”Зарница”.
Кимберлитовая трубка — это такой большой столб, который расширяется около поверхности и сужается на глубине. По сути это отголоски древних вулканов. На данный момент их верхняя часть разрушена из-за эрозионных процессов, но основание и кимберлитовые трубки сохранились. То есть много миллионов лет назад в этих местах было не так тихо и мирно. Зато именно тогда Земля поделилась с нами алмазами, которые образуются только на огромной глубине под давлением в тысячи раз превышающим атмосферное. Теперь нам остается только собрать их. Конечно, если слово ”только” применимо к такому титаническому объему работы.
Вот такая объемная модель.
Если у вас дома есть бриллианты, посмотрите на них и осознайте, что они были на глубине десятков километров от поверхности Земли, находились под давлением в тысячи атмосфер и провели в таком состоянии десятки и сотни миллионов лет. Теперь они используются в украшениях. Это настоящие посланцы из прошлого, которые прошли огромный путь до кольца, сережки или ожерелья. Это куда круче, чем метеориты.
Как разрабатывают кимберлитовую трубку
Для разработки кимберлитовой трубки в земле постепенно делается воронкообразное отверстие, глубина которого доходит до 600-700 метров, а диаметр верхней части часто сопоставим с размерами небольшого городка. Когда выработка открытым способом становится невозможной, вокруг ”воронки” бурятся шахты на глубину до километра (а иногда и больше).
Как добывают алмазы и откуда они берутся.
Через эти шахты продолжается добыча до тех пор, пока она остается рентабельной и пока найденные в породе минералы можно продать за бОльшие деньги, чем потратили на добычу. Если тенденция станет обратной, а баланс отрицательным, будут предприняты попытки дополнительного поиска полезных ископаемых в стороне от воронки и постепенно добыча будет прекращена.
Названий шахт и тоннелей вокруг трубки очень много, но они не так важны. Достаточно пространственной структуры, чтобы понимать, что там происходит.
Для обработки породы рядом с местом добычи строится горно-обогатительный комбинат, а для проживания шахтеров строится целый город, в котором будут все объекты инфраструктуры, развлечений и даже аэродром. Часто в такие места можно добраться только по воздуху.
О том, как работают горно-обогатительные комбинаты и как обрабатываются алмазы, я рассказывал в этой статье.
Разработка месторождения часто ведется при помощи взрывов. Это самый надежный, безопасный и недорогой способ, так как даже карьерные экскаваторы не потянут такой объем породы. Взрывчатка закладывается внутрь породы, после чего она обрушивается и вывозится огромными карьерными грузовиками для ”извлечения из нее алмазов”.
На фоне масштаба карьера грузовики кажутся крошечными, а на самом деле они могут раздавить легковой автомобиль или пикап и даже не заметить этого (случаи были)
Самая большая кимберлитовая трубка в России
Самым крупным в России месторождением является Мир, которое находится в Якутии. В нем алмазы добывались с 1957 по 2001 год. Недропользователем является компания Алроса, а объем обработанной за это время руды составил 68 миллионов тонн. Сейчас данная кимберлитовая трубка уже ”не работает” и добыча там прекращена, но именно там еще в советские время были добыты крупнейшие алмазы, которые заслуженно заняли место в рейтинге самых больших.
Кимберлитовая трубка Мир просто огромна.
Несмотря на высокий уровень автоматизации процесса, все равно приходится привлекать к добыче много людей. Возможно, в скором времени для обеспечения работы таких объектов нужна будет пара человек за компьютером, но случится это не скоро, как и едва ли кто-то придумает рабочий способ столь же эффективной добычи, как открытый метод.
Давайте сначала вспомним, что же такое кимберлитовая трубка ?
Кимберлитовая трубка — вертикальное или близкое к вертикальному геологическое тело, образовавшееся при прорыве газов сквозь земную кору.
Это гигантских размеров столб, оканчивающийся в верхней части раздувом конической формы. С глубиной коническое тело сужается, напоминая по форме гигантскую морковь, и в окончании переходит в жилу. Кимберлитовые трубки — своеобразные древние вулканы, наземная часть которых в большой степени разрушена в результате эрозионных процессов.
Кимберлит представляет собой ультраосновную горную породу, которая состоит из оливина, флогопита, пиропа и других минералов. Имеет черный цвет с синеватым и зеленоватым оттенком. В настоящее время известно свыше 1500 тел кимберлита, из которых 8-10% — алмазоносные породы. По оценкам специалистов, около 90% запасов алмазов коренных источников сосредоточены в кимберлитовых трубках, а около 10% — в лампроитовых трубках.
Загадки происхождения алмазов порождали большое количество легенд о том, как рождаются эти удивительные камни.
Несмотря на многолетние исследования коренных месторождений алмазов до сих пор существуют загадки, связанные с особенностями их происхождения и существования. Вот главные из них: почему кимберлитовые трубки расположены только на древних щитах и платформах — самых устойчивых и стабильных блоках земной коры? Какие чудовищные силы могли заставить тяжелые породы мантии Земли, казалось бы, вопреки закону Архимеда, рвануться вверх и пробить слой толщиной в десятки километров более легких пород — базальтов, гранитов, осадочных? И почему кимберлитовые трубки «прокалывают» именно мощную 40-километровую земную кору платформ, а не гораздо более тонкую 10-километровую кору океанического дна или переходной зоны — на границе континентов с океанами — где на глубинных разломах расположились сотни дымящихся вулканов и лава свободно изливается на поверхность? Ответа на эти вопросы у геологов нет.
Следующая загадка — удивительная форма кимберлитовых трубок. Ведь на самом-то деле они похожи не на «трубки», а, скорее, на бокалы для шампанского: конус на тонкой ножке, уходящей на огромную глубину.
Третья загадка касается необычной формы зерен минералов в кимберлитовых породах. Известно, что минералы, которые первыми кристаллизуются из расплавленной магмы, всегда образуют хорошо ограненные кристаллы. Это апатит, гранат, циркон, оливин, ильменит. Они широко распространены и в кимберлитах, но тут у них почему-то нет кристаллических граней, зерна округлены и своей формой напоминают окатанную речную гальку. Попытки геологов объяснить эту загадочную особенность тем, что минералы были оплавлены раскаленной магмой порождают новые вопросы. Плавление, как известно, ведет к превращению кристаллических минералов в аморфное стекло, у которого нет кристаллической структуры. Ноо никаких следов «остеклования» и потери кристаллической структуры в этих округлых зернах никому обнаружить не удалось.
Вместе с тем кристаллы алмаза, которые, по существующим ныне понятиям, возникли в мантии и были вынесены уже в готовом виде вместе с кимберлитовой магмой с глубины от 150 до 600 километров, представлены на обогатительных фабриках целыми горами сверкающих, идеальной формы октаэдров с острыми ребрами, которыми так удобно резать стекло! Эти острые ребра сохранились, несмотря на хрупкость алмазных кристаллов и их способность легко раскалываться по определенным плоскостям.
Кристаллы алмаза, пройдя длинный и тернистый путь вместе с расплавленной магмой, выглядят так, будто только что сошли с заводского конвейера. А кристаллы циркона, апатита и других минералов (считается, что они выделились из расплава непосредственно в трубке) лишились своих граней. В чем разгадка такого парадокса?
Свой взгляд на происхождение алмазов и кимберлитовых трубок излагает доктор геолого-минералогических наук, профессор А. Портнов, подробная статья которого приведена на сайте http://prostonauka.com/lib/almazy-rodoslovnaja-kimberlitovyh-trubok.
Добыча алмазов в мире имеет многовековую историю. И по мере истощения разведанных запасов и открытия новых лидерство переходило от Индии к Бразилии, затем к Южной Африке, которая и по сей день остается первостепенным алмазодобывающим континентом. Лидирующее положение на начало 2006 года по добыче алмазов (по стоимости) занимает Ботсвана, второе – Россия.
Первый алмаз в России был найден на Урале в 1829 году 14-летним промывальщиком Крестовоздвиженского золотого прииска Павлом Поповым. А вот бурное развитие добычи алмазов в России связано с открытием крупных коренных месторождений в Якутии в середине прошлого века. Там первый алмаз был найден в 1949 года в бассейне р. Вилюй, а в августе 1954 года ленинградский геолог Лариса Попугаева открыла первое месторождение коренных алмазов в СССР – трубку «Зарница», размер которой составил 32 га. Через год отряд Амакинской экспедиции Ю.И. Хабардина обнаружил кимберлитовую трубку “Мир”, а группа геологов под руководством В.Н. Щукина – трубку “Удачная”. В этих совершенно диких и необжитых краях, в зоне вечной мерзлоты выросли современные города Мирный и Удачный.
Кимберлитовая трубка «МИР» в России. ТУТ ПОДРОБНЕЕ.
Начало отработки трубки «Удачной» ведет отсчет от 1982 года. Это открытый карьер (один из крупнейших в мире), который уже достиг отметки 530 м. Но такая глубина близка к критической для открытых разработок, и дальнейшая добыча руды возможна преимущественно подземными горными выработками.
Не менее впечатляюще выглядит кимберлитовая трубка алмазного карьера «Мир», рядом с которым вырос город Мирный: глубина — 525 м, верхний диаметр 1200 — 1100 м, нижний 50 — 210 м. На глубину залегания алмазной руды в 1, 2 км ведет спиральный съезд длиной в 7,5 км. После закрытия карьера 1 мая 2001 года добыча продолжается шахтным методом.
Давайте все таки вернемся к вопросу названия и поймем откуда произошло определение – «Кимберлитовая трубка»
Кликабельно 8000рх, панорама.
Первая из таких трубок была обнаружена на юге Африки в провинции Кимберли, по имени этой провинции и стали называть трубки кимберлитовыми, а породу, содержащую драгоценные алмазы – кимберлит.
Большая дыра (англ. Big Hole) — огромный недействующий алмазный рудник в городе Кимберли (ЮАР). Считается, что это наибольший карьер, разработанный людьми без применения техники. В настоящее время является главной достопримечательностью города Кимберли.
Начиная с 1866 по 1914 год около 50 тысяч горняков вырыли карьер с помощью кирок и лопат, добыв при этом 2722 килограмма алмазов (14,5 миллионов карат). В процессе разработки карьера было извлечено 22,5 млн тонн грунта.
Именно здесь были найдены такие знаменитые алмазы, как «Де Бирс» (428,5 карата), голубовато-белый «Портер-Родс» (150 карат), оранжево-жёлтый «Тиффани» (128,5 карата). В настоящее время это месторождение алмазов исчерпано.
Площадь «Большой дыры» составляет 17 гектаров. Её периметр составляет 1,6 км, а ширина — 463 метра. Дыра была вырыта на глубину 240 метров, но затем была засыпана пустой породой до глубины 215 метров, в настоящее время дно дыры заполняет вода, её глубина составляет 40 метров.
На месте карьера раньше (примерно 70 — 130 миллионов лет назад) находилось жерло вулкана.
Размеры кимберлитовых тел по всему миру различны — от 146 га (трубка «Мвадуи», Танзания) до 0,4 га (трубка «Робертс Виктор» в Южной Африке).
Южная Африка славится множеством рудников, на которых добываются самые драгоценные ископаемые. Многие рудники уже давно закрыты, но среди них есть такие, которые до сих пор продолжают привлекать внимание людей. Например, рудник Большая дыра в городе Кимберли – алмазной столице ЮАР. На сегодняшний день Кимберли представляет собой современный город с широкими улицами, великолепными парками и садами, комфортабельными отелями, прекрасным Музеем изобразительных искусств Вильяма Хэмфриса и роскошным Горнорудным музеем, расположенным на краю Биг-холла или Большой дыры.
Название «Большая Дыра» дано руднику неспроста — это величайшая рукотворная дыра на земле. За время ее существования здесь было добыто 14,5 миллионов карат алмазов.
Размеры шахты составляют 1,6 км в окружности, она занимает площадь в 15 гектаров. Сейчас это месторождение уже исчерпало себя. Но Большая дыра все равно вызывает большой интерес. Вдоль края шахты построена платформа, с которой посетители могут заглянуть примерно на 400 м вглубь «дыры» и увидеть ее дно, от которого шахты ведут дальше вниз, до глубины 1,2 км. Кроме того, за отдельную плату каждый желающий может почувствовать себя настоящим рудокопом, защитив голову каской и взяв в руки кирку, попытаться продолбить хоть небольшую дыру в почве.
Добыча алмазов — трудоемкий и затратный процесс: из тонны породы добывается около 1 карата алмазов на коренных месторождениях и 3-5 на россыпных.
На сегодняшний день Африка остается непревзойденным лидером в добыче алмазов. По прогнозу экспертов, центр добычи переместится из Южной Африки в центральную часть континента. Значительными перспективами обладают алмазоносные трубки Австралии, сложенные родственными кимберлитам породами – лампроитами.
«Круговоротом» алмазов в мире управляет, так называемая «Алмазная корпорация» — колоссальное предприятие, контролирующее добычу, производство и торговлю алмазами, в кругах специалистов именуемая «Алмазным синдикатом» с главной конторой в Лондоне, куда поступают все алмазы ювелирного качества. Там они делятся на, так называемые, партии. Выкупать можно только партию целиком. И предоставляется такое право лишь немногим хорошо известным синдикату торговца, число которых не превышает 300. Незначительная часть ювелирных алмазов поступает на «открытый рынок», основными центрами которого являются Антверпен и Гонконг. Благодаря такой строгой «иерархии» цены на алмазы поддерживаются относительно стабильными, а сами алмазы в качестве валютного эквивалента пережили все политические и экономические бури последних десятилетий.
[источники]
источники
http://www.rgo.ru/2010/12/kimberlitovye-trubki/
http://sfw.so/1149019090-kimberlitovaya-trubka-bolshaya-dyra.html
http://ru.wikipedia.org/wiki/%CA%E8%EC%E1%E5%F0%EB%E8%F2%EE%E2%E0%FF_%F2%F0%F3%E1%EA%E0
Добавлю вам немного ссылок на интересный материал по драгоценным камням: Сапфир и рубин — один и тот же камень ! или вот Рынок драгоценных камней Чантабури в Таиланде. Посмотрите еще на Самые крупные драгоценные минералы в мире
Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия – http://infoglaz.ru/?p=35645
Далеко не все вообще слышали такое достаточно редкое словосочетание, как ”кимберлитовая трубка”. Даже те, кто скажет, что эти слова им знакомы, все равно не факт, что смогут ответить на вопрос, что это такое. Тем не менее, это то, что стоит у истоков ювелирной промышленности, и того, что мы называем бриллиантами. Эти минералы добываются из огромных ”дыр” в земле, просто смотря на которые уже перестаешь относиться к слову ”трубка”, как к чему-то маленькому и почти игрушечному. История этого словосочетания берет свое начало в Африке, а такой способ добычи алмазов действительно потрясает своими масштабами и тем, сколько человек обеспечивает работу месторождений. Давайте разберемся с тем, что это такое, и почему вокруг таких месторождений часто строят целые города. Поверьте, масштабы вас впечатлят и вам будет, что обсудить с друзьями. А заодно расскажу, что происходит с этими громадинами, когда копать их больше уже нельзя.
Что такое кимберлитовая трубка
Прежде всего надо понимать, что кимберлитовая трубка — это не какой-то небольшой объект, который лежит в земле или является инструментом геолога, а полноценное геологическое тело. Так принято называть образования в земной коре, которые обладают какими-то конкретными свойствами или представляют научный и коммерческий интерес.
Кимберлитовой трубкой принято называть вертикальное или хотя бы близкое к вертикальному геологическое тело, которое образуется при прорыве магмы сквозь земную кору. Сама трубка заполнена кимберлитом. Логично, да?
Именно так порода и сама трубка называется из-за исторических особенностей обнаружение таких геологических тел. Впервые это произошло в Южной Африке рядом с городом Кимберли. С тех пор, где бы не находилась такая трубка, она всегда называется кимберлитовой.
Сейчас так выглядит та самая первая кимберлитовая трубка в Кимберли.
Такое геологическое тело называется именно трубкой из-за того, что оно действительно вытянуто и уходит в землю подобно трубе. Учитывая особенности геологических процессов, ее размеры огромны. Кимберлитовая трубка достигает в диаметре 400-1000 метров. Иногда ее размеры даже переваливают за эти значения. По сути, это канал, по которому в древности проходили газы и расплавленная магма.
Что находится внутри кимберлитовой трубки
Внешне порода, которая находится в кимберлитовой трубке, представляет из себя вулканические обломки, туфообразную массу зеленовато-серого цвета и распределенные по ней минералы. Туфообразная масса в своей основе имеет такие вещества, как ксенолиты, флогопит, оливин, карбонаты, пироп и других минералы.
Самым главным, что заставляет заниматься разработками кимберлитовых трубок, являются алмазы. Именно эти небольшие камни стоят того, чтобы карьерными грузовиками перетаскивать с места на место миллионы тонн породы. После обработки алмазов получаются бриллианты. Не так давно я уже рассказывал о том, как добывают алмазы, как их обрабатывают и приводил примеры самых крупных и дорогих из них. Тогда статья нашла большой отклик среди участников нашего Telegram-чата и они просили подробнее рассказать о кимберлитовых трубках.
Куда не брось взгляд, везде трубка. Обратите внимание, что на снимке есть стадион и оцените его размер на фоне этого огромного отверстия.
В мире около 1500 кимберлитовых трубок, но далеко не все из них имеет смысл разрабатывать, так как только десятая часть из них алмазоносная. Большая часть из них нерентабельна, а самые полезные с точки зрения ”выхлопа” находятся в ЮАР, Индии и в Якутии на Среднесибирской платформе.
Кимберлитовая трубка — это такой большой столб, который расширяется около поверхности и сужается на глубине. По сути это отголоски древних вулканов. На данный момент их верхняя часть разрушена из-за эрозионных процессов, но основание и кимберлитовые трубки сохранились. То есть много миллионов лет назад в этих местах было не так тихо и мирно. Зато именно тогда Земля поделилась с нами алмазами, которые образуются только на огромной глубине под давлением в тысячи раз превышающим атмосферное. Теперь нам остается только собрать их. Конечно, если слово ”только” применимо к такому титаническому объему работы.
Вот такая объемная модель.
Как разрабатывают кимберлитовую трубку
Для разработки кимберлитовой трубки в земле постепенно делается воронкообразное отверстие, глубина которого доходит до 600-700 метров, а диаметр верхней части часто сопоставим с размерами небольшого городка. Когда выработка открытым способом становится невозможной, вокруг ”воронки” бурятся шахты на глубину до километра (а иногда и больше).
Через эти шахты продолжается добыча до тех пор, пока она остается рентабельной и пока найденные в породе минералы можно продать за бОльшие деньги, чем потратили на добычу. Если тенденция станет обратной, а баланс отрицательным, будут предприняты попытки дополнительного поиска полезных ископаемых в стороне от воронки и постепенно добыча будет прекращена.
Названий шахт и тоннелей вокруг трубки очень много, но они не так важны. Достаточно пространственной структуры, чтобы понимать, что там происходит.
Для обработки породы рядом с местом добычи строится горно-обогатительный комбинат, а для проживания шахтеров строится целый город, в котором будут все объекты инфраструктуры, развлечений и даже аэродром. Часто в такие места можно добраться только по воздуху.
Разработка месторождения часто ведется при помощи взрывов. Это самый надежный, безопасный и недорогой способ, так как даже карьерные экскаваторы не потянут такой объем породы. Взрывчатка закладывается внутрь породы, после чего она обрушивается и вывозится огромными карьерными грузовиками для ”извлечения из нее алмазов”.
На фоне масштаба карьера грузовики кажутся крошечными, а на самом деле они могут раздавить легковой автомобиль или пикап и даже не заметить этого (случаи были)
Самая большая кимберлитовая трубка в России
Самым крупным в России месторождением является Мир, которое находится в Якутии. В нем алмазы добывались с 1957 по 2001 год. Недропользователем является компания Алроса, а объем обработанной за это время руды составил 68 миллионов тонн. Сейчас данная кимберлитовая трубка уже ”не работает” и добыча там прекращена, но именно там еще в советские время были добыты крупнейшие алмазы, которые заслуженно заняли место в рейтинге самых больших.
Кимберлитовая трубка Мир просто огромна.
Несмотря на высокий уровень автоматизации процесса, все равно приходится привлекать к добыче много людей. Возможно, в скором времени для обеспечения работы таких объектов нужна будет пара человек за компьютером, но случится это не скоро, как и едва ли кто-то придумает рабочий способ столь же эффективной добычи, как открытый метод.
Алмаз – один из самых загадочных минералов на Земле. В течение многих веков он привлекает внимание как самый дорогой, самый романтичный и самый желанный драгоценный камень. Если верить старинным преданиям и легендам, то алмазы, подобно людям, живут своей жизнью, а их зарождение и история долгое время оставались загадкой. Лишь на рубеже XX—XXI вв. были разработаны реальные аналитические методы, позволившие изучить состав, структуру и возраст самих алмазов и содержащихся в них микроминеральных включений.
Как зарождаются алмазы в верхней мантии Земли, какие этапы эволюции они проходят, оказавшись в верхних горизонтах земной коры, и, в конце концов, как их искать? На эти вопросы отвечает директор Института геологии и минералогии Сибирского отделения РАН член-корреспондент РАН Н.П. Похиленко, сыгравший ключевую роль в открытии уникального месторождения алмазов на озере Снэп Лейк (Канада)
Если Вы хотите найти месторождение алмазов, то начать стоит с геологической карты, на которой показаны типы и возраст горных пород, особенности геологической эволюции региона. Наиболее привлекательны с точки зрения поиска алмазов участки самой древней земной коры, которые содержат магматические породы типа базальтов. На подобных территориях стоит искать так называемые трубки взрыва; в слагающие их породы обычно входят магнитные минералы, и поэтому, используя аэромагнитную съемку, участки размещения трубок можно «увидеть» как зоны с магнитными аномалиями. Древние платформы, в пределах которых стабилизация земной коры произошла в архейский период, известны на териториях практически всех континентов: в Сибири и в Африке, в Северной и в Южной Америке, в Австралии и в Китае, а также в Северной Европе и в Индии.
Для того чтобы искать алмазы, надо хорошо себе представлять, во-первых, как их кристаллы растут в глубинах Земли, а во-вторых, как они выносятся на земную поверхность.
Практически все коренные месторождения алмазов связаны с трубками взрыва, сформированными кимберлитовыми брекчиями*, поэтому они и называются «кимберлитовыми трубками». Кимберлиты относятся к породам мантийного происхождения и образуются на огромных глубинах в результате сложного процесса частичного плавления пород, слагающих различные уровни мантии Земли. Значительная часть кимберлитовых расплавов формируется на уровнях ниже границы перехода графит-алмаз. Для начала кристаллизации алмаза в природных условиях требуются давления порядка 40 тыс. атм., что отвечает глубинам около 140 км. С учетом достаточно низких величин тепловых потоков для литосферы древних платформ (40 мВт/(м2 • сек), а иногда даже ниже) температура на таких глубинах составляет порядка 900 °С.
Кроме давления и температуры, для образования алмаза системе свободного углерода (ведь алмаз — это кристаллизованный углерод) требуется и наличие кислорода в небольших количествах, иначе углерод будет окисляться и переходить в СО (закись углерода) или даже в СО2 (окись углерода).
Растущий кристалл алмаза захватывает фрагменты окружающей его среды. Это могут быть кристаллические включения минералов, включения расплавов или флюидов. В кристаллическую решетку алмаза может встраиваться азот (который затем может быть обнаружен в алмазе в качестве примеси). Сначала алмаз захватывает азот в виде отдельных атомарных центров, называемых «С-центрами». Потом в результате диффузии два атома азота приближаются друг к другу и соединяются, образуя пару, которая называется «А-центром». Затем А-центры объединяются и образуют плоскости из атомов азота, которые уже называются «В-центрами». Если в кристалле преобладают С-центры и азота достаточно много, то алмаз становится желтым. При переходе С-центров азота в более сложные А- и В-центры алмаз становится бесцветным.
В процессе выращивания кристалл искусственного алмаза также может захватывать фрагменты среды, из которой его выращивают, например из железо-никелевого сплава, если речь идет о железо-никелевом расплаве. Металлические включения попадают в объем кристалла, и по мере их увеличения качество алмаза ухудшается. Однако, если отжигать этот алмаз при высоких Р—Т-параметрах, он стремится освободиться от включений и выталкивает их.
Абсолютное большинство алмазов образовалось на ранних стадиях геологической истории нашей планеты, около 3 млрд лет назад. Однако кимберлитовые трубки, из которых добывают эти кристаллы, обычно гораздо моложе. В Южной Африке их возраст определен в пределах от 2,4 млрд лет до 30 млн лет; в Бразилии – от 1,7 млрд лет до 180 млн лет; в Канаде – 560—52 млн лет, в Якутии – 450—140 млн лет. Обычно в одной алмазоносной провинции присутствуют кимберлитовые трубки разного возраста (так, в Южной Африке выявлено 14 эпизодов кимберлитового магматизма)
Судьбы алмазов складываются по-разному, поскольку условия их формирования тоже различны.
Рассмотрим ситуацию, когда имеется «зародыш» алмаза и на него нарастает кристалл алмаза (то есть кристаллизуется углерод). В процессе роста кристалла внешние причины приводят к тому, что он разбивается. На разбитый кристалл опять нарастают новые слои алмаза, и кристалл опять стремится принять классическую для алмаза форму октаэдра.
В ряде месторождений довольно часто встречаются высококачественные кристаллы алмаза, на которые сверху нарастает оболочка, содержащая много азота в атомарной форме. Она выглядит грязной и тем самым резко снижает качество и, соответственно, стоимость такого алмаза. Однако эту пленку легко можно снять при огранке.
Чтобы алмаз заиграл в бриллианте, не достаточно только очень аккуратно его огранить. Вещество самого алмаза должно быть изотропно, то есть однородно по физическим свойствам, и позволять лучу света идти, не отклоняясь из-за оптических дефектов кристалла.
Ценность бриллианта зависит от его чистоты, цвета, размера и огранки. Чистым считается бриллиант, в котором при десятикратном увеличении не заметны никакие включения.
На сегодняшний день промышленные месторождения алмазов обнаружены практически на всех континентах, где известны древние платформы (исключая разве что Антарктиду, которая исследована очень слабо). Алмазные россыпи Индии, копи Африки и Австралии известны еще с позапрошлого века, позже были открыты месторождения в Азии (Якутская алмазоносная провинция), в Европе (Архангельская провинция), в Северной и Южной Америке (Канада, Бразилия, Венесуэла). Таким образом, есть все основания утверждать, что слой пород, обогащенных алмазами, существует (или существовал на определенных этапах геологической истории) под всеми древними платформами, а следовательно, алмазов на Земле не так уж мало
Для алмазов, которым при рождении «не повезло», разработан ряд методов, позволяющих улучшить качество бриллианта, получаемого из алмаза. Так, если в алмазе есть трещина, то применяется метод заполнения: трещина заполняется другим материалом (правда, со временем его свойства могут измениться). Если в алмазе имеются темные включения, то лазерным лучом высверливается канал и по нему на пятно направляется вещество, которое удаляет или изменяет это включение. Такие камни называются «облагороженными».
Как алмазы поднимаются к поверхности Земли
Допустим, что на глубине 150—200 км в литосфере (верхней части «твердой» Земли) в архейский период сформировался 50-километровый слой алмазоносных пород. А спустя примерно 2 млрд лет у границы земного ядра и нижней мантии образовался плюм (сверхглубинная магма, которая поднимается до подошвы (нижней границы) литосферы). Расплавы, из которых состоит плюм, поднимаются по спирали вертикально к поверхности Земли и даже могут на нее выйти. Плюм, достигший подошвы холодной стабильной литосферы, вызывает частичное плавление вещества в ее нижних уровнях и, как правило, приносит с собой больше кислорода, чем хотелось бы «охотникам за алмазами». Кимберлитовые расплавы образуются при крайне низких степенях частичного плавления (1,5—3,0 объем. %) истощенных ультраосновных пород литосферной мантии, которые незадолго до плавления были в различной степени обогащены легкоплавкими компонентами. Эти расплавы имеют низкую вязкость, образуют тонкую пленку межзернового пространства, могут просачиваться и формировать сравнительно небольшие очаги кимберлитовой магмы. В период тектонической активизации определенные глубинные разломы кимберлитогенерирующих зон древних платформ, соединяющие такие очаги с земной поверхностью, служат каналами для исключительно быстрого подъема (первые часы) кимберлитовых расплавов на земную поверхность.
Слой пород, обогащенных алмазами, находится на глубине более 150 км. В то же время образование магматических расплавов под континентами в большинстве случаев происходит на меньших глубинах (100 км и менее). Исключение составляют магмы, связанные с мантийными плюмами и суперплюмами, которые поднимаются с огромных глубин, зарождаясь на границе ядра и мантии. Именно с этими явлениям связаны наиболее масштабные вспышки магматизма в истории Земли. Прежде всего, это формирование трапповых провинций – гигантских лавовых плато, – где в течение 1—2 млн лет на земную поверхность изливались миллионы кубометров мантийных лав (чтобы понять масштабы этого явления, скажем лишь, что общий объем всех зданий и сооружений, созданных человечеством за всю историю его существования, не достигает 100 (!) м3)
Большинство (95 %) алмазных месторождений связано с кимберлитовыми расплавами, которые поднимаются по трещинам и «по пути» дробят алмазоносные породы, вынося из мантийных глубин алмазы и обломки пород древней литосферной мантии.
Можно сказать, что кимберлитовые трубки – это древние вулканы, которые играют роль транспортеров, выносящих мантийные породы и минералы, в том числе алмазы, на земную поверхность. Вспомните, как вода несет различные обломки, мелкие чешуйки золота, которые вымываются из берегов. В рассматриваемой нами ситуации «ручей» течет не по поверхности, а из земных глубин субвертикально к поверхности Земли. Это магма, которая стремительно поднимается под большим давлением. Вязкость кимберлитового расплава сравнима с вязкостью масла, которое заливается в двигатель автомобиля. И скорость ее подъема вверх под давлением также сравнима со скоростью движения автомобиля (примерно 60—70 км/ч). За два-три часа она проходит всю дистанцию от места образования расплава до земной поверхности. В этом случае алмаз не успевает графитизироваться.
Если расплав будет двигаться медленно, с остановками на мантийных глубинах, но уже в области термодинамической стабильности графита (т. е. на глубинах менее 140 км), то алмаз сможет перестроить свою кристаллическую решетку и превратится в графит, а в случае сравнительно высокого потенциала кислорода в расплаве – попросту сгорит.
На глубине 4—5 км от поверхности земли кимберлитовая магма, содержащая много летучих компонентов (СО2 и Н2О), начинает вскипать. Для примера обратимся к принципу работы скороварки. В ней большое давление, и поэтому температура, при которой в закрытой скороварке кипит вода, может быть не 100 °С, а 120—140 °С, и даже выше. Однако, если открыть крышку, то пар резко уйдет (это будет похоже на взрыв) и температура очень быстро упадет до 100 °С (это температура кипения воды при 1 атм.).
При вскипании кимберлитовой магмы (и не только кимберлитовой) тоже происходит взрыв и образуются трубки взрыва, которые моментально заполняются магмой; температура при этом очень быстро падает. На Севере в брекчиях жерловых частей кимберлитовых трубок можно обнаружить обломки мезозойской древесины, которая не сгорела, потому что температура понизилась очень быстро; этой мезозойской древесиной можно топить костер.
Итак, если быстро поднимающийся поток кимберлитовой магмы пересечет слой алмазоносных пород, то образуется алмазоносная трубка.
Если же поток магмы пересечет сравнительно малоглубинные уровни мантии, где давления отвечают области стабильности графита, то сформируется трубка, вообще не содержащая алмазов.
Для того чтобы понять, как находят алмазы, необходимо «снаружи» посмотреть на процесс выноса алмазов на поверхность. По каким признакам геологи, выбравшие потенциально алмазоносный район, определяют, что поиски стоит продолжать? Как именно осуществляется поиск алмазов ?
После того как карта показала предположительно перспективную площадь и аэромагнитная съемка выявила структуры с магнитными аномалиями, начинается этап более детальных поисков. Геологи проводят шлиховое опробование русловых отложений речной системы, если таковая имеется. Для поисковых районов севера Канады чаще опробованию подвергаются ледниковые отложения. На этом этапе важно обнаружить в пробах индикаторные минералы кимберлитов: пиропы, пикроильмениты, хромиты, хромдиопсиды и, если сильно повезет, алмазы. Присутствие этих минералов в пробах является прямым свидетельством наличия в регионе кимберлитов и, если в пробах есть алмазы, – алмазоносных кимберлитов. Для поиска индикаторных минералов в Сибири традиционно используется лоток. Если на дне лотка геологи увидят индикаторные минералы, а возможно, и кристаллики алмазов, значит, начальная стадия работы увенчалась успехом. После этого начинается этап уже более детальных, трудоемких и на порядок более дорогостоящих поисков с использованием комплекса геофизических методов, включающих проведение как воздушных, так и наземных съемок, заверку полученных геофизических аномалий плотным шлиховым опробованием с последующим разбуриванием наиболее перспективных из них.
Предположим, что кимберлит найден. Цель следующего этапа поисков – очертить контуры трубки. Для этого потребуется пройти еще несколько шурфов либо пробурить по телу трубки несколько скважин и сопоставить полученные данные с конфигурацией геофизических аномалий. Затем надо ответить на главный вопрос: является ли обнаруженная трубка алмазоносной? Этот вопрос далеко не праздный, если учесть, что почти из тысячи кимберлитовых трубок Якутской алмазоносной провинции менее пятидесяти имеют повышенную алмазоносность и лишь пятнадцать из них – промышленные содержания алмазов.
В конце 60-х — начале 70-х гг. XX в. выдающийся российский минералог (ныне академик РАН) Николай Владимирович Соболев, проведя сравнительный анализ результатов выполненного им исследования состава кристаллических включений в природных алмазах, впервые в мировой практике разработал минералогические критерии алмазоносности кимберлитов. На основе этих критериев возглавляемый им коллектив сибирских геологов создал комплекс принципиально новых минералогических методов, которые на ранних стадиях поисковых работ позволяют оценивать потенциальную алмазоносность еще не обнаруженных кимберлитов по особенностям состава индикаторных минералов, в первую очередь пиропов и хромитов.
Далеко не всегда можно добыть представительное количество (первые сотни зерен) индикаторных минералов и по их составу оценить потенциальную алмазоносность прогнозируемой трубки, поскольку кимберлиты бывают совершенно разными.
Например, в трубке Мир в 1 т кимберлита содержится около 20 кг индикаторных минералов, в том числе более 5 кг хромсодержащих пиропов. Подобные кимберлитовые трубки дают мощный шлейф, позволяющий обнаружить саму трубку. Двигаясь вдоль реки, геолог может все время видеть «под ногами» пиропы и, «идя по следу», выйти к трубке. В отличие от этой ситуации, в аномальных кимберлитах трубок Накынского поля (Якутия) и дайкового комплекса Снэп Лейк (Канада) содержание индикаторных минералов на 1 т вещества почти в 100 раз меньше (то есть составляет 200—300 г/т), хотя эти кимберлиты отличаются очень высокой алмазоносностью.
При поиске трубки можно столкнуться и с другими проблемами. Трубки, кимберлиты которых содержат повышенное количество магнитных минералов (магнетит, титаномагнетит и др.), фиксируются геофизическими методами, потому что дают магнитную аномалию. Однако существуют кимберлиты, которые содержат очень мало магнитных минералов, и для их обнаружения одной магнитной съемки недостаточно.
Загадка озера Снэп Лейк, или Как искать алмазы
О том, как сибирский геолог и его интернациональная группа открыли на севере Канады крупное алмазное месторождение, уникальное по своим характеристикам. Канадцы назвали это событие «открытием мирового класса»
Кимберлиты с очень низкими содержаниями как индикаторных, так и магнитных минералов мы обнаружили в Канаде: они слагали там комплекс пологопадающих даек, формирующих месторождение озера Снэп Лейк. Впоследствии было установлено, что на поверхность выходил лишь небольшой фрагмент главной дайки. Геологи компании Де Бирс, а также двух канадских компаний, работавшие ранее на этой территории, пропустили не только признаки этого дайкового комплекса, но и шлейфы от двух классических кимберлитовых трубок, обнаруженных нами в 20 км восточнее месторождения Снэп Лейк еще за три года до его (месторождения) открытия. Более чем трехлетние поисково-оценочные работы наших предшественников на этой территории дали полностью отрицательные результаты, признаков наличия кимберлитов в ее пределах не было установлено, и эта площадь была списана в разряд бесперспективных. У пригласившей нас в конце сезона 1994 г. (в середине августа) компании Winspear Resources Ltd. было шесть других лицензионных участков в центральной части провинции Слейв, на флангах открытого канадским геологом Чаком Фипке в 1991—1992 гг. кимберлитового поля вблизи озера Лак де Гра. Геологи компании считали их перспективными, однако после пары недель работы мы заскучали от весьма блеклых геологических характеристик этих площадей: признаков чего-либо стоящего там не нашли и стали проситься поработать в том самом «безнадежном» районе. Этот район площадью 2,5 тыс. км2 расположен в 120 км южнее ранее открытого поля Лак де Гра, и ни полевого лагеря, ни вертолетного горючего там у компании не было. С учетом того, что результаты предыдущих поисковых работ на этой территории были полностью отрицательными, нам стоило больших трудов получить разрешение поработать там, и то всего лишь три дня.
К сведению, для того чтобы относительно надежно опоисковать такую территорию, требуются полевой сезон продолжительностью в три-четыре месяца, поисковая партия с группой геофизиков и бригадой горняков, а также мобильные буровые установки. Всего должны трудиться более сотни человек.
У меня же были два помощника и вертолет, правда, без достаточного запаса горючего. Такие условия работы можно назвать совершенно неестественными. С учетом реальной ситуации, проанализировав (за четыре ночи) очень скудный геологический материал по этой «бросовой» территории (днем надо было продолжать работы на других лицензионных площадях), выбрали три участка (по количеству рабочих дней) площадью 15 км2 каждый. Первый день мы потратили впустую, потому что получили приказ руководства компании обследовать участок на территории, где канадские геофизики вдруг увидели перспективную аномалию. Ничего мы там не нашли, но день и часть горючего сожгли.
Полтора часа второго дня потратили, изучая с вертолета ситуацию по трем выбранным участкам: надо было определиться, на которых из них мы будем работать в оставшиеся два дня. Быстро поняли, что самый западный участок нам с нашим лимитом времени и горючего не по зубам. Сели на центральный; через полтора часа стало ясно, что и там ловить особо нечего. Тогда приняли решение потратить остаток времени на последний, третий, участок. Он нам очень понравился своими структурными особенностями: рядом, в 5 км к северу, проходила мощная разломная структура длиной более 600 км, ее пересекал оперяющий разлом, секущий озеро размером около 2 км, и уже этот оперяющий разлом секли три локальных разлома, сходящихся в озере и образующих так называемую разломную звезду. В вертолете находился мой канадский помощник Уолтер Мельник (ныне президент канадской компании Nordic Diamonds Ltd.), которому сказал, что, будь я кимберлитом, непременно бы «внедрился в это место». Внимательно посмотрев на схему движения последнего ледника для всего региона и приняв во внимание показанное на ней направление движения льда для этого конкретного участка, выбрали место посадки и место отбора пробы. В первой же промытой в лотке пробе я увидел пару зерен пикроильменита и роскошное зерно лилового пиропа. Однако с учетом близости центра «разломной звезды» (~1,5 км), в котором я лелеял мечту найти кимберлит, такое количество индикаторных минералов не радовало, хотя сам по себе это был очень важный результат: обнаруженные минералы прямо указывали на наличие кимберлитов в этом регионе, а это означало, что открыт новый кимберлитовый район на севере Канады. Воспаленное от систематического недосыпания сознание плюс опыт работы в Якутии и в Архангельской провинции (26 полевых сезонов) быстро подсказали: что-то не так с движением ледника. При посадке я боковым зрением заметил метрах в трехстах (при такой работе надо замечать все, или почти все, и быстро прокручивать замеченное в «котелке», если хочешь найти что-нибудь стоящее) отполированный ледником выход гранита («гранитный лоб»). Дал команду помощникам и пилоту «ланчевать», а сам понесся к этому «лбу», замерил азимут ледниковых царапин – и точно: реальное направление движения ледника для этого места расходилось с указанным на схеме на 16°. Вернулся. Тут уже было не до ланча – определили на карте новое место для взятия «правильной» пробы: скорректированную проекцию центра разломной «звезды» на место проявления тиллов (ледниковых отложений) – и вместе с помощником вперед! Через полчаса увидел в своем лотке сотни крупных индикаторных минералов: пиропов, пикроильменитов и несколько обломков кимберлита. Дальнейшее уже было делом техники. Через три часа мы знали, что на три четверти трубка находится под озером; сообщили о результатах руководству компании: там – эйфория; сразу нашлись и горючее, и люди, и деньги… Забросили буровое оборудование, задали точку для первой скважины: она через 14 м вошла в кимберлит и прошла по нему более 150 м. Открытие нового кимберлитового района состоялось! Поднялся шум в компании, в прессе, на бирже…
Через две недели мы обнаружили ореол еще одной трубки, целиком находящейся под озером; ее разбурили со льда уже в марте, когда лед был достаточно прочным. Обе трубки оказались алмазоносными, однако содержание алмазов было много ниже промышленного уровня.
В самом конце полевого сезона 1994 г. было решено взять пробы с участка, расположенного западнее найденных трубок. Там субпараллельно главной разломной структуре шел мощный разлом, секущий северную часть довольно крупного озера Снэп Лейк. И опять, как и в предыдущий раз, в районе озера прослеживалась система оперяющих разломов, соединенных с главной разломной структурой. Лабораторными исследованиями в ряде проб, взятых западнее озера, были установлены единичные зерна индикаторных минералов кимберлитов – хромистых пиропов и хромитов.
В сезон 1995 г. в Канаду поехали три российских геолога: в команду были приглашены доктор геолого-минералогических наук, один из ведущих в мире специалистов по минералогическим методам поисков алмазных месторождений Валентин Петрович Афанасьев и моя жена Люся, за плечами которой было восемь полевых сезонов прогнозно-поисковой работы на алмазы на севере Якутии. Предстояло оценить перспективы западной части лицензионной территории, до которой в предыдущем сезоне у нас не дошли руки, а ее площадь составляла более половины всей территории. Полтора месяца мы там плотно работали, проследили на 25 км шлейф от двух открытых в предыдущем сезоне трубок, но признаков наличия новых тел на западе так и не обнаружили. Шлейф предыдущих трубок проходил километров на семь южнее положительных проб, взятых западнее озера Снэп Лейк, значит, открытые ранее трубки не могли быть коренными источниками индикаторных минералов, обнаруженных в районе озера. А если так, то здесь должны быть какие-то другие кимберлиты. Такое заключение послужило основанием для обращения к руководству компании сместить работы до конца сезона в район озера Снэп Лейк. И в течение двух оставшихся недель (очень холодных: 16 августа пошел снег) мы взяли по шести профилям около сотни проб, причем индикаторные минералы увидели прямо в лотках (самой первой отличный пироп в своем лотке увидела Люся).
Мы установили, что ширина ореола к западу от озера Снэп Лейк составляла примерно 3 км, а протяженность не более 1,5 км; далее индикаторные минералы практически отсутствовали. В начале ореола максимальное количество зерен таких минералов не превышало 15—20 знаков, но, тем не менее, я предположил, что здесь находится совершенно уникальный объект: среди обнаруженных минералов были необычно высокохромистые пиропы и хромиты, но полностью отсутствовали пикроильмениты, которые доминировали в ранее открытых нами в регионе трубках. Самым важным было то, что вместе с редкими индикаторными минералами в пробах систематически встречались алмазы: до этого никто в Канаде алмазы в пробах тиллов (ледниковых отложений) не встречал.
Когда меня спросили напрямую, присутствуют ли здесь признаки классической высокоалмазоносной трубки, я ответил «нет», но добавил, что, скорее всего, здесь имеется «нечто нестандартное», и оно может представлять значительный экономический интерес.
К моменту нашего приезда в Канаду в 1996 г. средства, выделенные на разведку территории, практически закончились, а 70 скважин, пробуренных моими зарубежными коллегами-геологами весной на акватории озера, дали близкий к нулевому результат. Мои канадские коллеги, основываясь на данных геофизической съемки, решили, что под озером находится серия кимберлитовых тел, которые можно разбурить. Прилетев в начале марта в Канаду, я резко возражал против массированного бурения, считая, что территория еще не готова к нему, и рекомендовал для заверки лишь три из 136 выделенных для разбуривания аномалий, но меня не послушали: очень уж хотелось быстрых результатов. Кстати, на двух из трех выделенных аномалий скважинами были пересечены две маломощные (20 и 50 см) кимберлитовые дайки, и это были единственные положительные результаты всей программы бурения… Дальше предстоял сезон очень нервной работы: кончались деньги, а кроме того, сложилась очень непростая ситуация в компании, – но, в конце-концов, мы все же нашли этот чертов кимберлит с очень качественными алмазами и хорошим их содержанием, однако сам кимберлит оказался аномальным как по внешнему виду, так и по петролого-геохимическим характеристикам. Необычной была и геометрия рудного тела.
Сначала мы предположили, что обнаружили вертикальную дайку, но затем выяснилось, что она расположена необычно: под наклоном 10—11° – и при средней мощности около 3,5 м ее ширина составляла более 3,5 км.
Благодаря такой геометрии рудного тела прогнозные запасы ценных алмазоносных пород до глубины 1 км в обнаруженном нами месторождении составили 53 млн т, а стоимость содержащихся в них алмазов достигала 18 млрд долл. Месторождений подобного типа до сих пор в мире обнаружено не было.
Теперь стоит обратиться к математике. Представьте себе, что вы купили такое месторождение. При условии, что будет добываться 2 млн т руды в год, и оборудование будет работать 25 лет, на разработку 53 млн т потребуется 26 лет. Все затраты на оборудование, строительство фабрики, аэропорта, а также на энергоснабжение, зарплату занятого на предприятии персонала и на другие сопутствующие расходы надо сопоставить с запасами руды, и тогда они составят всего около 50 долл. на тонну, но при этом тонна руды содержит алмазов на 360 долл. Таким образом, чистая прибыль составит более 300 долл. с каждой тонны. Вы будете платить 17-процентный налог с прибыли правительству Канады, а остальная прибыль будет принадлежать вам.
Согласно прогнозам аналитиков, в 2008 г. по добыче алмазов в мире будет лидировать Ботсвана (Южная Африка), дающая примерно 26 % мировых алмазов (в стоимостном выражении, т. е. не в каратах, а в долларах), на втором месте будет стоять Россия, добывающая около 25 %, на третьем – Канада, которая добудет около 12 % алмазов.
Ситуация с добычей алмазов похожа на ситуацию с добычей нефти и газа: наиболее простые месторождения исследованы и разрабатываются, остальные же не разведаны, так как имеют более сложную геологию.
Раньше поиски алмазов велись в районах с простыми условиями, где в глубоких долинах текут реки (глубина долины может быть 300 м, а ширина – 20 км). На склонах по четким ореолам индикаторных минералов обнаруживали кимберлитовые трубки, которые были вовлечены в процессы современной эрозии. Сейчас ситуация резко усложнились. Поисковые работы на алмазы ведутся в условиях слабо развитых речных систем с узкими и мелкими долинами. Площадь долин временами составляет менее 10 % от общей площади поисковых территорий, а потенциально кимберлитовмещающие древние породы перекрыты слоем более молодых осадочных или, что на порядок хуже, магматических пород, толщина которого достигает десятков и даже сотен метров. Все это требует принципиально новых, более сложных комплексов прогнозно-поисковых методов, адаптированных к поисковым условиям каждой конкретной территории. Со старыми методиками и массированным бурением можно «сжигать» сотни миллионов долларов без каких-либо серьезных успехов.
Подобные поисковые ситуации наблюдаются и в Якутии, и в других регионах Сибирской платформы, и на северо-западе нашей страны, и в Канаде, и в Африке, и в Южной Америке – неоткрытые, надежно запрятанные природой месторождения алмазов ждут своего часа и своих первооткрывателей!
* Брекчия (итал. breccia) — горная порода, состоящая из сцементированных обломков разных пород
Литература
1. Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд-во СО РАН, филиал «Гео», 2001. — 409 с.— 2-е изд.
2. Соболев Н. В. О минералогических критериях алмазоносности // Геология и геофизика. 1971. № 3. С. 70—80.
3. Mitchell R. H. Kimberlites: Mineralogy, Geochemistry and Petrology. New York: Plenum Press, 1986. 442 p.
4. Pokhilenko N. P., Sobolev N. V., Reutsky V. N., Hall A. E., Taylor L. A. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle // Lithos. 2004. V. 77. P. 57—67.
Автор и редакция благодарят к. г.-м. н. Н. Н. Крука (Объединенный ученый совет ННЦ СО РАН) за помощь в подготовке статьи, к. г.-м. н. А. Д. Павлушина (Институт геологии алмаза и благородных металлов СО РАН, Якутск) за предоставленные иллюстративные материалы