Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.
Модуль и аргумент комплексного числа
Пусть задано комплексное число $ z = a+bi $.
Формула |
Модуль комплексного числа равен корню квадратному из суммы квадратов мнимой и действительной части и находится по формуле: $$ |z| = sqrt{a^2 + b^2} $$ |
Если комплексное число состоит только из действительной части $ z = a $, то его модуль равен $ |z| = |a| $.
Стоит заметить, что модуль комплексных чисел всегда неотрицательный $ |z| ge 0 $ и равен нулю $ |z| = 0 $, только в случае $ z = 0 $.
Формула |
Аргумент комплексного числа обозначается $ varphi = arg z $ и зависит от полуплоскости, в которой лежат числа $a,b$:
|
Введите комплексное число
Пример 1 Пример 2 Правила ввода
Пример 1 |
Найти модуль и аргумент комплексного числа $ z = 3 – 4i $. |
Решение |
Комплексное число состоит из действительной и мнимой части: $$ a = Re z = 3 $$ $$ b = Im z = -4 $$ Применяя формулу вычисления модуля получаем: $$ |z| = sqrt{a^2 + b^2} = sqrt{3^2 + (-4)^2} = sqrt{9+16} = 5 $$ Теперь вычисляем аргумент. Так как $a = 3 > 0$, то получаем аргумент: $$varphi = arctg frac{b}{a} = arctg frac{-4}{3} = -arctg frac{4}{3}.$$ |
Ответ |
$$ |z| = 5, varphi = -arctg frac{4}{3} $$ |
Пример 2 |
Найти модуль и аргумент комплексного числа $ z = 3i $ |
Решение |
В данном случае отсутствует действительная часть, а вернее она равна нулю: $$ a = Re z = 0 $$ Мнимая часть комплексного числа равна: $$ b = Im z = 3 $$ Вычисляем модуль по уже известной формуле: $$ |z| = sqrt{a^2 + b^2} = sqrt{0^2 + 3^2} = sqrt{9} = 3 $$ А вот аргумент здесь попадает под правило при $a = 0, b>0$ и значит равен $$varphi = frac{pi}{2}.$$ |
Ответ |
$$ |z| = 3, varphi = frac{pi}{2} $$ |
Пример 3 |
Найти модуль и аргумент комплексного числа $$ z = 1+sqrt{3}i $$ |
Решение |
Выписываем действительную и мнимую часть: $$ a = 1 $$ $$ b = sqrt{3} $$ Так как $ a > 0 $, то аргумент равен $$ varphi = arctg frac{sqrt{3}}{1} = arctg sqrt{3} = frac{pi}{3} $$ Находим модуль извлекая квадратный корень из суммы квадратов действительной и мнимой части: $$|z| = sqrt{1^2 + (sqrt{3})^2} = sqrt{1+3}=2.$$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ varphi = frac{pi}{3}, |z| = 2 $$ |
Пример 4 |
Найти аргумент комплексного числа $$ z = -1 + sqrt{3}i $$ |
Решение |
Действительная часть $$ a = Re z = -1 $$ Мнимая часть $$ b = Im z = sqrt{3} $$ Так как $ a < 0 $ и $ b > 0 $, то пользуемся второй формулой: $$ varphi = arg z = pi + arctg frac{sqrt{3}}{-1} = pi + arctg (-sqrt{3}) = $$ $$ = pi – arctg(sqrt{3}) = pi – frac{pi}{3} = frac{2pi}{3}. $$ |
Ответ |
$$ varphi = frac{2pi}{3} $$ |
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение 1
Длина радиус-вектора, который изображает заданное комплексное число $z=a+bi$, называется модулем данного комплексного числа.
Модуль заданного комплексного числа вычисляется по следующей формуле:
[r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } .]
Пример 1
Вычислить модуль заданных комплексных чисел $z_{1} =13,, , z_{2} =4i,, , , z_{3} =4+3i$.
Решение:
Модуль комплексного числа $z=a+bi$ вычислим по формуле: $r=sqrt{a^{2} +b^{2} } $.
Для исходного комплексного числа $z_{1} =13$ получим $r_{1} =|z_{1} |=|13+0i|=sqrt{13^{2} +0^{2} } =sqrt{169} =13$
Для исходного комплексного числа $, z_{2} =4i$ получим $r_{2} =|z_{2} |=|0+4i|=sqrt{0^{2} +4^{2} } =sqrt{16} =4$
Для исходного комплексного числа $, z_{3} =4+3i$ получим $r_{3} =|z_{3} |=|4+3i|=sqrt{4^{2} +3^{2} } =sqrt{16+9} =sqrt{25} =5$
Определение 2
Угол $varphi $, образованный положительным направлением вещественной оси и радиус-вектором $overrightarrow{OM} $, который соответствует заданному комплексному числу $z=a+bi$, называется аргументом данного числа и обозначается $arg z$.
Примечание 1
Модуль и аргумент заданного комплексного числа в явном виде используются при представлении комплексного числа в тригонометрической или показательной форме:
- $z=rcdot (cos varphi +isin varphi )$ – тригонометрическая форма;
- $z=rcdot e^{ivarphi } $ – показательная форма.
Пример 2
Записать комплексное число в тригонометрической и показательной формах, заданное следующими данными: 1) $r=3;varphi =pi $; 2) $r=13;varphi =frac{3pi }{4} $.
«Модуль и аргумент комплексного числа» 👇
Решение:
1) Подставим данные $r=3;varphi =pi $ в соответствующие формулы и получим:
$z=3cdot (cos pi +isin pi )$ – тригонометрическая форма
$z=3cdot e^{ipi } $ – показательная форма.
2) Подставим данные $r=13;varphi =frac{3pi }{4} $ в соответствующие формулы и получим:
$z=13cdot (cos frac{3pi }{4} +isin frac{3pi }{4} )$ – тригонометрическая форма
$z=13cdot e^{ifrac{3pi }{4} } $ – показательная форма.
Пример 3
Определить модуль и аргумент заданных комплексных чисел:
1) $z=sqrt{2} cdot (cos 2pi +isin 2pi )$; 2) $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$; 3) $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $; 4) $z=13cdot e^{ipi } $.
Решение:
Модуль и аргумент найдем, используя формулы записи заданного комплексного числа в тригонометрической и показательной формах соответственно
[z=rcdot (cos varphi +isin varphi );] [z=rcdot e^{ivarphi } .]
1) Для исходного комплексного числа $z=sqrt{2} cdot (cos 2pi +isin 2pi )$ получим $r=sqrt{2} ;varphi =2pi $.
2) Для исходного комплексного числа $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$ получим $r=frac{5}{3} ;varphi =frac{2pi }{3} $.
3) Для исходного комплексного числа $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $ получим $r=sqrt{13} ;varphi =frac{3pi }{4} $.
4) Для исходного комплексного числа $z=13cdot e^{ipi } $ получим $r=13;varphi =pi $.
Аргумент $varphi $ заданного комплексного числа $z=a+bi$ можно вычислить, используя следующие формулы:
[varphi =tgfrac{b}{a} ;cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } ;sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } .]
На практике для вычисления значения аргумента заданного комплексного числа $z=a+bi$ обычно пользуются формулой:
$varphi =arg z=left{begin{array}{c} {arctgfrac{b}{a} ,age 0} \ {arctgfrac{b}{a} +pi ,a
или решают систему уравнений
$left{begin{array}{c} {cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } } \ {sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } } end{array}right. $. (**)
Пример 4
Вычислить аргумент заданных комплексных чисел: 1) $z=3$; 2) $z=4i$; 3) $z=1+i$; 4) $z=-5$; 5) $z=-2i$.
Решение:
1) $z=3$
Так как $z=3$, то $a=3,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{3} =arctg0=0.]
2) $z=4i$
Так как $z=4i$, то $a=0,b=4$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{4}{0} =arctg(infty )=frac{pi }{2} .]
3) $z=1+i$.
Так как $z=1+i$, то $a=1,b=1$. Вычислим аргумент исходного комплексного числа, решая систему (**):
[left{begin{array}{c} {cos varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } \ {sin varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } end{array}right. .]
Из курса тригонометрии известно, что $cos varphi =sin varphi =frac{sqrt{2} }{2} $ для угла, соответствующего первой координатной четверти и равного $varphi =frac{pi }{4} $.
4) $z=-5$
Так как $z=-5$, то $a=-5,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{-5} +pi =arctg0+pi =0+pi =pi .]
5) $z=-2i$
Так как $z=-2i$, то $a=0,b=-2$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{-2}{0} =arctg(-infty )=frac{3pi }{2} .]
Примечание 3
Аргумент чисто мнимых чисел равен соответственно:
- $frac{pi }{2} $ с положительной мнимой частью;
- $frac{3pi }{2} $ с отрицательной мнимой частью.
Решение:
Число $z_{1} $ изображено точкой $(3;0)$, следовательно, длина радиус-вектора равна 3, т.е. $r=3$, а аргумент $varphi =0$ по примечанию 2.
Число $z_{2} $ изображено точкой $(-2;0)$, следовательно, длина соответствующего радиус-вектора равна 2, т.е. $r=2$, а аргумент $varphi =pi $ по примечанию 2.
Число $z_{3} $ изображено точкой $(0;1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{pi }{2} $ по примечанию 3.
Число $z_{4} $ изображено точкой $(0;-1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{3pi }{2} $ по примечанию 3.
Число $z_{5} $ изображено точкой $(2;2)$, следовательно, длина соответствующего радиус-вектора равна $sqrt{2^{2} +2^{2} } =sqrt{4+4} =sqrt{8} =2sqrt{2} $, т.е. $r=2sqrt{2} $, а аргумент $varphi =frac{pi }{4} $ по свойству прямоугольного треугольника.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Запросы «Re», «Im» и «Мнимая величина» перенаправляются сюда; см. также другие значения терминов Re, Im и Мнимая величина.
Ко́мпле́ксные чи́сла (от лат. complexus — связь, сочетание[1]; о двойном ударении см. примечание[K 1]) — числа вида где — вещественные числа, — мнимая единица[2], то есть число, для которого выполняется равенство: Множество комплексных чисел обычно обозначается символом Вещественные числа можно рассматривать как частный случай комплексных, они имеют вид Главное свойство — в нём выполняется основная теорема алгебры, то есть любой многочлен -й степени () имеет корней. Доказано[⇨], что система комплексных чисел логически непротиворечива[K 2].
Так же как и для вещественных чисел, для комплексных чисел определены операции сложения, вычитания[⇨], умножения[⇨] и деления[⇨]. Однако многие свойства комплексных чисел отличаются от свойств вещественных чисел; например, нельзя указать, какое из двух комплексных чисел больше или меньше[⇨]. Удобно представлять комплексные числа точками на комплексной плоскости[⇨]; например, для изображения сопряжённых чисел используется операция отражения относительно горизонтальной оси[⇨]. Альтернативное представление комплексного числа в тригонометрической записи оказалось полезным для вычисления степеней и корней[⇨]. Функции комплексного аргумента изучаются в комплексном анализе[⇨].
Первоначально идея о необходимости использования комплексных чисел возникла в результате формального решения кубических уравнений, при котором в формуле Кардано под знаком квадратного корня получалось отрицательное число[3]. Большой вклад в исследование комплексных чисел внесли такие математики как Эйлер, который ввёл общепризнанное обозначение для мнимой единицы, Декарт, Гаусс[⇨]. Сам термин «комплексное число» ввёл в науку Гаусс в 1831 году[4].
Уникальные свойства комплексных чисел и функций нашли широкое применение для решения многих практических задач в различных областях математики, физики и техники: в обработке сигналов, теории управления, электромагнетизме, теории колебаний, теории упругости и многих других[5][⇨]. Преобразования комплексной плоскости оказались полезны в картографии и гидродинамике. Современная физика полагается на описание мира с помощью квантовой механики, которая опирается на систему комплексных чисел.
Известно также несколько обобщений комплексных чисел — например, кватернионы[⇨].
Комплексная арифметика[править | править код]
Связанные определения[править | править код]
Всякое комплексное число состоит из двух компонентов[6]:
Противоположным для комплексного числа является число Например, для числа противоположным будет число
В отличие от вещественных, комплексные числа нельзя сравнивать на больше/меньше; доказано, что нет способа распространить порядок, заданный для вещественных чисел, на все комплексные так, чтобы порядок был согласован с арифметическими операциями (чтобы из вытекало , а из и вытекало ). Однако, комплексные числа можно сравнивать на равно/не равно[6]:
Четыре арифметические операции для комплексных чисел (определённые ниже) имеют те же свойства, что и аналогичные операции с вещественными числами.
Сложение и вычитание[править | править код]
Определение сложения и вычитания комплексных чисел[6]:
Следующая таблица[6] показывает основные свойства сложения для любых комплексных
Свойство | Алгебраическая запись |
---|---|
Коммутативность (переместительность) | |
Ассоциативность (сочетательность) | |
Свойство нуля | |
Свойство противоположного элемента | |
Выполнение вычитания через сложение |
Умножение[править | править код]
Определение произведения[6] комплексных чисел и
Следующая таблица[6] показывает основные свойства умножения для любых комплексных
Свойство | Алгебраическая запись |
---|---|
Коммутативность (переместительность) | |
Ассоциативность (сочетательность) | |
Свойство единицы | |
Свойство нуля | |
Дистрибутивность (распределительность) умножения относительно сложения |
Правила для степеней мнимой единицы:
- и т. д.
То есть для любого целого числа верна формула , где выражение означает получение остатка от деления на 4.
После определения операций с комплексными числами выражение можно воспринимать не как формальную запись, а как выражение, составленное по приведённым выше правилам сложения и умножения. Чтобы это показать, раскроем все входящие в него переменные, следуя вышеприведённым соглашениям и определению сложения и умножения:
Деление[править | править код]
Комплексное число называется сопряжённым к комплексному числу (подробнее ниже).
Для каждого комплексного числа кроме нуля, можно найти обратное к нему[10] комплексное число Для этого умножим числитель и знаменатель дроби на число комплексно сопряжённое знаменателю
Определим результат деления[6] комплексного числа на ненулевое число
Как и для вещественных чисел, деление можно заменить умножением делимого на число, обратное к делителю.
Другие операции[править | править код]
Для комплексных чисел определены также извлечение корня, возведение в степень и логарифмирование.
Основные отличия комплексных чисел от вещественных[править | править код]
Уже упоминалось, что комплексные числа нельзя сравнивать на больше-меньше (иными словами, на множестве комплексных чисел не задано отношение порядка). Другое отличие: любой многочлен степени с комплексными (в частности, вещественными) коэффициентами имеет, с учётом кратности, ровно комплексных корней (основная теорема алгебры)[11].
В системе вещественных чисел из отрицательного числа нельзя извлечь корень чётной степени. Для комплексных чисел возможно извлечение корня из любого числа любой степени, однако результат неоднозначен — комплексный корень -й степени из ненулевого числа имеет различных комплексных значений[12]. См., например, корни из единицы.
Дополнительные отличия имеют функции комплексного переменного[⇨].
Замечания[править | править код]
Число не является единственным числом, квадрат которого равен Число также обладает этим свойством.
Выражение ранее часто использовавшееся вместо в современных учебниках считается некорректным, и под знаком радикала стали допускаться только неотрицательные выражения (см. «Арифметический корень»). Во избежание ошибок, выражение с квадратными корнями из отрицательных величин в настоящее время принято записывать как а не несмотря на то, что даже в XIX веке второй вариант записи считался допустимым[13][14].
Пример возможной ошибки при неосторожном использовании устаревшей записи:
Эта ошибка связана с тем, что квадратный корень из определён неоднозначно (см. ниже #Формула Муавра и извлечение корней). При использовании современной записи такой ошибки не возникло бы[14]:
Геометрическое представление[править | править код]
Комплексная плоскость[править | править код]
Геометрическое представление комплексного числа
Комплексные числа можно представить на плоскости с прямоугольной системой координат: числу соответствует точка плоскости с координатами (а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней расположены на горизонтальной оси, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями[15].
Модуль и аргумент комплексного числа
Бывает удобно рассматривать на комплексной плоскости также полярную систему координат (см. рисунок справа), в которой координатами точки являются расстояние до начала координат (модуль[⇨]) и угол радиус-вектора точки с горизонтальной осью (аргумент[⇨]).
В этом представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов, а вычитанию чисел соответствует вычитание радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются (последнее несложно вывести из формулы Эйлера или из тригонометрических формул суммы). Если модуль второго сомножителя равен 1, то умножение на него соответствует повороту радиус-вектора первого числа на угол, равный аргументу второго числа[16]. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза»[17].
Пример: умножение на поворачивает радиус-вектор числа на прямой угол в положительном направлении, а после умножения на радиус-вектор поворачивается на прямой угол в отрицательном направлении.
Модуль[править | править код]
Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же самое, расстояние от точки комплексной плоскости до начала координат). Модуль комплексного числа обозначается (иногда или ) и определяется выражением[16]
Если является вещественным числом, то совпадает с абсолютной величиной этого числа в вещественном понимании термина.
Для любых комплексных имеют место следующие свойства модуля[16][18]:
- 1) , причём только при
- 2) (неравенство треугольника);
- 3)
- 4)
- 5) для пары комплексных чисел и модуль их разности равен расстоянию между соответствующими точками комплексной плоскости;
- 6) модуль числа связан с вещественной и мнимой частями этого числа соотношениями:
Аргумент[править | править код]
Аргументом ненулевого комплексного числа называется угол между радиус-вектором соответствующей точки и положительной вещественной полуосью. Аргумент числа измеряется в радианах и обозначается . Из этого определения следует, что[16]
Для комплексного нуля значение аргумента не определено, для ненулевого числа аргумент определяется с точностью до , где — любое целое число. Главным значением аргумента называется такое значение , что Главное значение может обозначаться [19].
Некоторые свойства аргумента[18]:
- 1) аргумент обратного числа отличается знаком от аргумента исходного:
- 2) аргумент произведения равен сумме аргументов сомножителей:
- 3) аргумент частного от деления равен разности аргументов делимого и делителя:
Сопряжённые числа[править | править код]
Геометрическое представление сопряжённых чисел
Если комплексное число равно то число называется сопряжённым (или комплексно-сопряжённым) к (обозначается также ). На комплексной плоскости сопряжённые числа получаются друг из друга зеркальным отражением относительно вещественной оси. Модуль сопряжённого числа такой же, как исходного, а их аргументы различаются знаком[20]:
Переход к сопряжённому числу можно рассматривать как одноместную операцию, которая сохраняет все арифметические и алгебраические свойства. Эта операция имеет следующие свойства[20]:
Произведение комплексно-сопряжённых чисел — неотрицательное вещественное число, равное нулю только для нулевого z[18]:
Сумма комплексно-сопряжённых чисел — вещественное число[18]:
Другие соотношения[18]:
Или, в общем виде: где — произвольный многочлен с вещественными коэффициентами. В частности, если комплексное число является корнем многочлена с вещественными коэффициентами, то сопряжённое число тоже является его корнем. Из этого следует, что существенно комплексные корни такого многочлена (то есть корни, не являющиеся вещественными) разбиваются на комплексно-сопряжённые пары[18].
Пример[править | править код]
Тот факт, что произведение есть вещественное число, можно использовать, чтобы выразить комплексную дробь в канонической форме, то есть избавиться от мнимости в знаменателе. Для этого надо умножить числитель и знаменатель на сопряжённое к знаменателю выражение[21], например:
Формы представления комплексного числа[править | править код]
Алгебраическая форма[править | править код]
Выше использовалась запись комплексного числа в виде такая запись называется алгебраической формой комплексного числа. Две другие основные формы записи связаны с представлением комплексного числа в полярной системе координат.
Тригонометрическая форма[править | править код]
Тригонометрическое представление
Если вещественную и мнимую части комплексного числа выразить через модуль и аргумент (то есть , ), то всякое комплексное число , кроме нуля, можно записать в тригонометрической форме[16]:
Как уже сказано выше, для нуля аргумент не определён; для ненулевого числа определяется с точностью до целого кратного
Показательная форма[править | править код]
Фундаментальное значение в комплексном анализе имеет формула Эйлера[21]:
где — число Эйлера, , — косинус и синус, — комплексная экспонента, продолжающая вещественную на случай общего комплексного показателя степени.
Применяя эту формулу к тригонометрической форме, получим показательную форму комплексного числа[21]:
Следствия
- (1) Модуль выражения где число вещественно, равен 1.
- (2) — при существенно комплексном аргументе эти равенства могут служить определением (комплексного) косинуса и синуса.
Пример[22]. Представим в тригонометрической и показательной форме число
- (поскольку находится в III координатной четверти).
Отсюда:
Формула Муавра и извлечение корней[править | править код]
Эта формула помогает возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид[12]:
где — модуль, а — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведённая формула справедлива при любом целом , не обязательно положительном.
Аналогичная формула применима также и при вычислении корней -й степени из ненулевого комплексного числа[21]:
где k принимает все целые значения от до . Это значит, что корни -й степени из ненулевого комплексного числа существуют для любого натурального и их количество равно . На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного -угольника, вписанного в окружность радиуса с центром в начале координат (см. рисунок).
Главное значение корня[править | править код]
Если в формуле Муавра в качестве аргумента выбрано его главное значение, то значение корня при называется главным значением корня[23]. Например, главное значение числа равно
Квадратный корень[править | править код]
Для извлечения квадратного корня из комплексного числа можно преобразовать это число в тригонометрическую форму и воспользоваться формулой Муавра для Но существует и чисто алгебраическое представление для двух значений корня. При корнями из числа является пара чисел: где[24]:
Здесь — функция «знак», а радикалы обозначают обычный арифметический корень из неотрицательного вещественного числа. Формула легко проверяется возведением в квадрат. Число является главным значением квадратного корня.
Пример: для квадратного корня из формулы дают два значения:
История[править | править код]
Впервые, по-видимому, мнимые величины были упомянуты в труде Кардано «Великое искусство, или об алгебраических правилах» (1545), в рамках формального решения задачи по вычислению двух чисел, сумма которых равна 10, а произведение равно 40. Он получил для этой задачи квадратное уравнение, корни которого: и В комментарии к решению он написал: «эти сложнейшие величины бесполезны, хотя и весьма хитроумны», и «арифметические соображения становятся всё более неуловимыми, достигая предела столь же утончённого, сколь и бесполезного»[25].
Возможность использования мнимых величин при решении кубического уравнения впервые описал Бомбелли (1572), он же дал правила сложения, вычитания, умножения и деления комплексных чисел. Уравнение имеет вещественный корень однако по формулам Кардано получаем: Бомбелли обнаружил, что так что сумма этих величин даёт нужный вещественный корень. Он отметил, что в подобных (неприводимых) случаях комплексные корни уравнения всегда сопряжены, поэтому в сумме и получается вещественное значение. Разъяснения Бомбелли положили начало успешному применению в математике комплексных чисел[26][25].
Выражения, представимые в виде появляющиеся при решении квадратных и кубических уравнений, где стали называть «мнимыми» в XVI—XVII веках с подачи Декарта, который называл их так, отвергая их реальность. Для многих других крупных учёных XVII века природа и право на существование мнимых величин тоже представлялись весьма сомнительными. Лейбниц, например, в 1702 году писал: «Дух божий нашёл тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Несмотря на эти сомнения, математики уверенно применяли к «мнимым» числам привычные для вещественных величин алгебраические правила и получали корректные результаты[25].
Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам или же, например, извлечение корня может привести к открытию ещё какого-то нового типа чисел. Задача о выражении корней степени из данного числа была решена в работах Муавра (1707) и Котса (1722)[27].
Символ для обозначения мнимой единицы предложил Эйлер (1777, опубл. 1794), взявший для этого первую букву латинского слова imaginarius — «мнимый». Он же распространил все стандартные функции, включая логарифм, на комплексную область. Эйлер также высказал в 1751 году мысль, что в системе комплексных чисел любой многочлен имеет корень (основная теорема алгебры, до Эйлера сходные предположения высказывали Альбер Жирар и Рене Декарт)[28]. К такому же выводу пришёл д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799)[26]. Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году (ранее термин использовал в том же смысле французский математик Лазар Карно в 1803 году, но тогда он не получил распространения)[29].
Геометрическое представление комплексных чисел, немало способствовавшее их легализации, предложили в конце XVIII — начале XIX веков сначала Вессель и Арган (их работы не привлекли внимания), а затем Гаусс[30]. Арифметическая (стандартная) модель комплексных чисел как пар вещественных чисел была построена Гамильтоном («Теория алгебраических пар», 1837); это доказало непротиворечивость их свойств. Термины «модуль», «аргумент» и «сопряжённое число» ввёл в начале XIX века Коши, значительно продвинувший комплексный анализ. С XIX века началось бурное и чрезвычайно плодотворное развитие исследований функций комплексного переменного[2][31].
С учётом этого успешного подхода начались поиски способа представления векторов в трёхмерном пространстве, аналогичное комплексной плоскости. В результате пятнадцатилетних поисков Гамильтон предложил в 1843 году обобщение комплексных чисел — кватернионы, которые он был вынужден сделать не трёхмерными, а четырёхмерными (трёхмерные векторы изображала мнимая часть кватернионов); также Гамильтону пришлось отказаться от коммутативности операции умножения[2].
В 1893 году Чарлз Штейнмец предложил использовать комплексные числа для расчётов электрических цепей переменного тока (см. ниже).
Комплексные функции[править | править код]
Аналитические функции[править | править код]
Комплексная функция одной переменной — это функция , которая определена на некоторой области комплексной плоскости и ставит в соответствие точкам этой области комплексные значения [32]. Примеры:
Каждая комплексная функция может рассматриваться как пара вещественных функций от двух переменных: определяющих её вещественную и мнимую часть соответственно. Функции , называются компонентами комплексной функции Аналогично определяется функция нескольких комплексных переменных[32].
Наглядное представление комплексной функции графиком затруднительно, так как даже для функции одной комплексной переменной график требует четырёх измерений (два на область определения и ещё два для области значений). Если вместо значения функции рассматривать её модуль то полученный рельеф функции размещается в трёх измерениях и даёт некоторое представление о поведении функции[33].
Все стандартные функции анализа — многочлен, дробно-линейная функция, степенная функция, экспонента, тригонометрические функции, обратные тригонометрические функции, логарифм — могут быть распространены на комплексную плоскость. При этом для них будут иметь место те же алгебраические, дифференциальные и другие тождества, что и для вещественного оригинала[32], например:
Для комплексных функций определяются понятия предела, непрерывности и производной так же, как в вещественном анализе, с заменой абсолютной величины на комплексный модуль[32].
Дифференцируемые комплексные функции (то есть функции, имеющие производную) обладают рядом особенностей по сравнению с вещественными[34].
- Вещественная и мнимая часть дифференцируемой функции — гармонические функции, связанные условиями Коши — Римана.
- Всякая дифференцируемая в некоторой окрестности точки комплексная функция дифференцируема неограниченное число раз в этой точке (то есть аналитична, или голоморфна).
Определённый интеграл для функций одной комплексной переменной, вообще говоря, зависит от пути интегрирования (то есть выбора кривой от начальной до конечной точки в комплексной плоскости). Однако если интегрируемая функция аналитична в односвязной области, то её интеграл внутри этой области не зависит от пути[35].
Преобразования комплексной плоскости[править | править код]
Всякая комплексная функция может рассматриваться как преобразование комплексной плоскости (или как преобразование одной комплексной плоскости в другую). Примеры:
Поскольку любое движение на плоскости есть комбинация перечисленных трёх преобразований, функции и дают общее выражение для движения на комплексной плоскости[36].
Другие линейные преобразования[36]:
Важную роль в комплексном анализе играют дробно-линейные преобразования[37]:
При этом (иначе функция вырождается в константу). Характеристическое свойство дробно-линейного преобразования: оно переводит окружности и прямые в окружности и прямые (то есть в так называемые обобщённые окружности[38][39], в число которых входят «окружности бесконечного радиуса» — прямые). При этом образом окружности может оказаться прямая, и наоборот[37].
Среди других практически полезных функций преобразования: инверсия функция Жуковского. Инверсия, как и дробно-линейное преобразование, переводит обобщённые окружности в обобщённые окружности.
Аналитическая геометрия на комплексной плоскости[править | править код]
Исследование плоских фигур нередко облегчается, если перенести их на комплексную плоскость. Многие теоремы планиметрии допускают наглядную и компактную запись с помощью комплексных чисел, например[40]:
- Три (различные) точки лежат на одной прямой тогда и только тогда, когда выполняется условие:
-
- является вещественным числом.
- Четыре (различные) точки лежат на одной обобщённой окружности (окружности или прямой) тогда и только тогда, когда выполняется условие:
-
- отношение является вещественным числом.
Параметрическое уравнение прямой на комплексной плоскости имеет вид[42]:
- где — комплексные числа, — произвольный вещественный параметр.
Угол между двумя прямыми и равен В частности, прямые перпендикулярны, только когда — чисто мнимое число. Две прямые параллельны тогда и только тогда, когда есть вещественное число; если при этом также вещественно, то обе прямые совпадают. Каждая прямая рассекает комплексную плоскость на две полуплоскости: на одной из них выражение положительно, на другой — отрицательно[42].
Уравнение окружности с центром и радиусом имеет чрезвычайно простой вид: Неравенство описывает внутренность окружности (открытый круг)[42]. Часто удобна параметрическая форма уравнения окружности[43]:
Место в общей алгебре, топологии и теории множеств[править | править код]
Множество комплексных чисел образует поле, которое является конечным расширением степени 2 поля вещественных чисел Основное алгебраическое свойство — оно алгебраически замкнуто, то есть в нём любой многочлен имеет (комплексные) корни и, следовательно, распадается на линейные множители. Говорят также, что есть алгебраическое замыкание[44] поля
Характеристика комплексного поля равна нулю, мощность как множества та же, что и у поля вещественных чисел, то есть континуум. Теорема Фробениуса установила, что существуют только два тела, являющиеся конечными расширениями — поле комплексных чисел и тело кватернионов[45].
Превратить поле комплексных чисел в упорядоченное поле невозможно, потому что в упорядоченном поле квадрат любого элемента неотрицателен, и мнимая единица в нём не может существовать.
Из свойств модуля следует, что комплексные числа образуют структуру двумерного нормированного пространства над полем
Поле допускает бесконечно много автоморфизмов, но только один из них (не считая тождественного) оставляет вещественные числа на месте[46].
Поля и — единственные связные локально компактные топологические поля[47].
Некоторые практические применения[править | править код]
Те особенности комплексных чисел и функций, которые отличают их от вещественных, оказались полезными, а часто и незаменимыми в математике, в естественных науках и технике.
Математика[править | править код]
Приложения комплексных чисел сами по себе занимают видное место в математике — в частности, понятия алгебраических чисел, нахождение корней многочленов, теория Галуа, комплексный анализ и т. д.
Перенеся геометрическую задачу с обычной плоскости на комплексную, мы нередко получаем возможность значительно упростить её решение[48][49].
Многие сложные задачи теории чисел (например, теория биквадратичных вычетов) и вещественного математического анализа (например, вычисление сложных или несобственных интегралов) удалось решить только с помощью средств комплексного анализа. Мощным инструментом для открытий в теории чисел оказались, например, гауссовы числа вида где — целые числа[50]. Для исследования распределения простых чисел понадобилась комплексная дзета-функция Римана[51].
Нередко проблемы вещественного анализа проясняются при их комплексном обобщении. Классический пример — разложение в ряд Тейлора
Этот ряд сходится только в интервале , хотя точки не являются какими-то особенными для приведённой функции. Положение проясняется при переходе к функции комплексного переменного у которой обнаруживаются две особые точки: полюса Соответственно, эту функцию можно разложить в ряд только в круге единичного радиуса[52].
При решении линейных дифференциальных уравнений важно сначала найти все комплексные корни характеристического многочлена, а затем попытаться решить систему в терминах базовых экспонент[53]. В разностных уравнениях используются для аналогичной цели комплексные корни характеристического уравнения системы разностных уравнений[54]. С помощью теории вычетов, являющейся частью комплексного анализа, вычисляются многие сложные интегралы по замкнутым контурам[55]..
Исследование функции часто связано с анализом её частотного спектра с помощью комплексного преобразования Фурье или Лапласа[56].
О представлении комплексных чисел в информатике и компьютерной поддержке комплексной арифметики изложено в статье Комплексный тип данных.
Конформное отображение[править | править код]
Как уже отмечалось выше, всякая комплексная функция может рассматриваться как преобразование одной комплексной плоскости в другую. Гладкая (аналитическая) функция обладает двумя особенностями: если в заданной точке производная не равна нулю, то коэффициент растяжения/сжатия при этом преобразовании одинаков по всем направлениям, угол поворота также постоянен (конформное отображение)[57]. С этим фактом связано широкое применение комплексных функций в картографии[58][59] и гидродинамике[60].
Квантовая механика[править | править код]
Основой квантовой механики является понятие комплексной волновой функции, Для описания динамики квантовой системы используются дифференциальные уравнения с комплексными коэффициентами типа уравнения Шрёдингера. Решения этих уравнений заданы в комплексном гильбертовом пространстве. Операторы, соответствующие наблюдаемым величинам, эрмитовы. Коммутатор операторов координаты и импульса представляет собой мнимое число:
Здесь — редуцированная постоянная Планка , то есть (постоянная Дирака)[61].
Важную роль в квантовой механике играют матрицы Паули и матрицы Дирака, некоторые из них содержат комплексные значения[61]. Ю. Вигнер уточнял, что «…использование комплексных чисел в квантовой механике не является вычислительным трюком прикладной математики; они входят в самую суть формулировки основных законов квантовой механики.»[62].
Электротехника[править | править код]
Поскольку переменный ток есть колебательный процесс, его удобно описывать и исследовать с применением комплексных чисел. Вводятся также понятия импеданса, или комплексного сопротивления, для реактивных элементов электрической цепи, таких как ёмкость и индуктивность, — это помогает рассчитать токи в цепи[63]. Ввиду того, что традиционно символ в электротехнике обозначает величину тока, мнимую единицу там обозначают буквой [64]. Во многих областях электротехники (в основном радиочастотной и оптической) используется не запись уравнений тока и напряжения для цепи, а напрямую уравнения Максвелла в их спектральном представлении, физические величины которых заданы в комплексной плоскости, и при переходе из – в -пространство (где — время, — угловая частота) посредством преобразования Фурье получаются более простые уравнения без производных[65].
Логические основания[править | править код]
Расширение поля вещественных чисел до комплексных, как и любое другое расширение алгебраической структуры, ставит множество вопросов, основные из которых — это вопросы о том, как определить операции над новым типом чисел, какие свойства будут иметь новые операции и (главный вопрос) допустимо ли такое расширение, не приведёт ли оно к неустранимым противоречиям.
Для анализа подобных вопросов в теории комплексных чисел надо сформировать набор аксиом.
Аксиоматика комплексных чисел[править | править код]
Можно определить аксиоматику множества комплексных чисел , если опираться на аксиоматическую теорию вещественных чисел . А именно, определим как минимальное поле, содержащее множество вещественных чисел и по меньшей мере одно число, вторая степень которого равна −1, — мнимую единицу. Говоря более строго, аксиомы комплексных чисел следующие[66][67].
- С1: Для всяких комплексных чисел определена их сумма
- С2: Сложение коммутативно: Далее в некоторых аксиомах для краткости будем опускать оговорку «для всяких ».
- С3: Сложение ассоциативно:
- С4: Существует элемент 0 (ноль) такой, что
- С5: Для всякого комплексного числа существует противоположный ему элемент такой, что
- С6: Для всяких комплексных чисел определено их произведение
- С7: Умножение коммутативно:
- С8: Умножение ассоциативно:
- С9: Умножение связано со сложением распределительным (дистрибутивным) законом:
- С10: Существует элемент 1 (единица), не равный нулю и такой, что
- С11: Для всякого ненулевого числа существует обратное ему число такое, что
- С12: Множество комплексных чисел содержит подполе, изоморфное полю вещественных чисел Для простоты далее это подполе обозначается той же буквой
- С13: Существует элемент (мнимая единица) такой, что
- С14 (аксиома минимальности): Пусть — подмножество которое: содержит и мнимую единицу и замкнуто относительно сложения и умножения. Тогда совпадает со всем
Из этих аксиом вытекают как следствия все прочие свойства. Первые 11 аксиом означают, что образует поле, а 12-я аксиома устанавливает, что это поле является расширением Приведённая аксиоматика категорична, то есть любые её модели изоморфны[68].
Существуют и другие варианты аксиоматики комплексных чисел. Например, вместо того, чтобы опираться на уже построенное упорядоченное поле вещественных чисел, можно в качестве базы использовать аксиоматику теории множеств[69].
Непротиворечивость и модели[править | править код]
Стандартный способ доказать непротиворечивость новой структуры — смоделировать (интерпретировать) её аксиомы с помощью объектов другой структуры, чья непротиворечивость сомнений не вызывает. В нашем случае мы должны реализовать эти аксиомы на базе вещественных чисел[70].
Стандартная модель[править | править код]
Рассмотрим всевозможные упорядоченные пары вещественных чисел. В данной модели каждая такая пара будет соответствовать комплексному числу [71]
Далее определим[70]:
- пары и считаются равными, если и
- сложение: сумма пар и определяется как пара
- умножение: произведение пар и определяется как пара
Пояснение: сложное, на первый взгляд, определение умножения легко выводится из соотношения
Несложно убедиться, что описанная структура пар образует поле и удовлетворяет всему приведённому перечню аксиом комплексных чисел. Вещественные числа моделируются парами , образующими подполе , причём операции с такими парами согласованы с обычными сложением и умножением вещественных чисел. Пары и соответствуют нулю и единице поля. Такой способ является частным случаем процедуры Кэли — Диксона.
Мнимая единица — это пара Квадрат её равен то есть Любое комплексное число можно записать в виде
Описанная модель доказывает, что приведённая аксиоматика комплексных чисел непротиворечива. Потому что если бы в ней было противоречие, то это означало бы противоречие и в базовой для данной модели арифметике вещественных чисел, которую мы заранее предположили непротиворечивой[70].
Матричная модель[править | править код]
Комплексные числа можно также определить как подкольцо кольца вещественных матриц 2×2 вида
с обычным матричным сложением и умножением[2]. Вещественной единице будет соответствовать
мнимой единице —
- .
Множество таких матриц является двумерным векторным пространством. Умножение на комплексное число является линейным оператором. В базисе линейный оператор умножения на представляется указанной выше матрицей, так как[2]:
Матричная модель позволяет легко продемонстрировать связь между комплексными числами и линейными преобразованиями плоскости определённого типа.
А именно, существует взаимно однозначное соответствие между комплексными числами и поворотными гомотетиями плоскости (комбинациями растяжения относительно точки и поворота): каждая поворотная гомотетия может быть представлена на комплексной плоскости как умножение на комплексное число[72].
Модель факторкольца многочленов[править | править код]
Рассмотрим кольцо многочленов с вещественными коэффициентами и построим его факторкольцо по модулю многочлена (или, что то же, по идеалу, порождённому указанным многочленом). Это значит, что два многочлена из мы будем считать эквивалентными, если при делении на многочлен они дают одинаковые остатки. Например, многочлен будет эквивалентен константе многочлен будет эквивалентен и т. д.[73]
Множество классов эквивалентности образует кольцо с единицей. Так как многочлен неприводим, то это факторкольцо является полем. Роль мнимой единицы играет многочлен поскольку квадрат его (см. выше) эквивалентен Каждый класс эквивалентности содержит остаток вида (от деления на ), который в силу сказанного можно записать как Следовательно, это поле изоморфно полю комплексных чисел[73].
Данный изоморфизм был обнаружен Коши в 1847 году. Этот подход может быть использован для построения обобщений комплексных чисел, таких как алгебры Клиффорда[74].
Расширенное комплексное поле как фактор-поле рациональных дробей полиномов с вещественными коэффициентами[править | править код]
Нетривиальная факторизация поля в поле невозможна, но поля, расширенные бесконечностью, могут нетривиально факторизоваться. Более того, возможны нетривиальные факторизации обычных полей в расширенные. В частности, обычное или расширенное поле рациональных дробей полиномов одной переменной с вещественными коэффициентами факторизуется в расширенное поле комплексных чисел (сферу Римана) путём отождествления полинома с нулём. Каждая дробь при этом заменяется на частное остатков от деления числителя и знаменателя своего несократимого представления на . В силу несократимости, при этом не может образоваться неопределённость , в остальных случаях знаменатель, равный нулю, означает бесконечность, случай знаменателя, не равного нулю, рассматриваются в стандартной технике (домножением на сопряжённый знаменателю). Другим способом получения того же результата является параметризация полиномов числителя и знаменателя несократимого представления дроби мнимой единицей.
Параметризуя рациональные дроби полиномов различными числами, можно получать различные факторизации: при параметризации вещественным числом — расширенное поле вещественных, комплексным (не вещественным) — комплексных чисел. Число, используемое для параметризации, есть корень простого (над вещественным полем) полинома, отождествляемого с нулём, т. е. по модулю которого берутся числители и знаменатели (в случае вещественного числа — первой степени, комплексного — квадратный с отрицательным дискриминантом и, соответственно, двумя сопряжёнными комплексными корнями).
Алгебраическая характеризация[править | править код]
Как уже упоминалось выше, поле комплексных чисел алгебраически замкнуто и имеет характеристику ноль (из последнего свойства вытекает, что оно содержит подполе рациональных чисел ). Кроме того, любой базис трансцендентности над имеет мощность континуум[K 3]. Этих трёх свойств достаточно, чтобы задать поле комплексных чисел с точностью до изоморфизма полей — между любыми двумя алгебраически замкнутыми полями характеристики 0 с континуальным базисом трансцендентности существует некоторое отождествление, согласованное с операциями сложения и умножения этих полей[75][76][K 4].
При этом отождествлении другие структуры, вроде нормы или топологии, могут не сохраняться. Например, алгебраическое замыкание поля -адических чисел также удовлетворяет трём указанным свойствам. Однако -адическая норма не является архимедовой[en] и, следовательно, не эквивалентна обычной норме комплексных чисел при любом выборе изоморфизма[77]. Поэтому они задают различную структуру топологического векторного пространства: множество из любого элемента векторного пространства и его целозначных кратностей дискретно в комплексном случае и компактно — в -адическом[77].
Вариации и обобщения[править | править код]
Ближайшее обобщение комплексных чисел было обнаружено в 1843 году. Им оказалось тело кватернионов, которое, в отличие от поля комплексных чисел, содержит три мнимые единицы, традиционно обозначаемые Согласно теореме Фробениуса, комплексные числа являются одним из трёх возможных случаев конечномерной алгебры с делением над полем вещественных чисел. В 1919 году выяснилось, что и комплексные числа из вещественных, и кватернионы из комплексных чисел могут быть получены единой процедурой удвоения размерности, также известной как «процедура Кэли — Диксона»[78].
Дальнейшим применением этой процедуры образуются числа, описанные Артуром Кэли в 1845 году, до обнаружения этой процедуры, и названные «числами Кэли» (октонионы, октавы). Числа, получаемые следующим применением процедуры, названы седенионами. Несмотря на то, что эту процедуру можно повторять и далее, дальнейшие числа названий пока не имеют[78].
Другие типы расширений комплексных чисел (гиперкомплексные числа):
- Бикватернионы
- Комплексные числа гиперболического типа (двойные)
- Комплексные числа параболического типа (дуальные)
Примечания[править | править код]
- Комментарии
- ↑ Два возможных ударения указаны согласно следующим источникам.
- Большая советская энциклопедия, 3-е изд. (1973), том 12, стр. 588, статья Ко́мпле́ксные числа.
- Советский энциклопедический словарь (1982), стр. 613, статья Ко́мпле́ксное число.
- Последнее издание «Словаря трудностей русского языка» (Розенталь Д. Э., Теленкова М. А., Айрис-пресс, 2005, стр. 273) указывает оба варианта: ко́мплексные (компле́ксные) числа.
- В Большой российской энциклопедии (том 14, 2010 год) приводятся варианты: Компле́ксное число (стр. 691, автор не указан), но Ко́мплексный анализ Архивная копия от 2 июля 2019 на Wayback Machine (стр. 695, автор: член-корр. РАН Е. М. Чирка).
- Орфографический словарь русского языка (изд. 6-е, 2010), Грамматический словарь русского языка, Русский орфографический словарь Российской академии наук под ред. В. В. Лопатина (изд. 4-е, 2013) и ряд других словарей указывают варианты: ко́мплексный и компле́ксный (матем.).
- ↑ При условии непротиворечивости системы вещественных чисел.
- ↑ То есть отличается от (поля рациональных функций для набора переменных мощности континуум) на алгебраическое расширение
- ↑ Поскольку отображение в алгебраически замкнутое поле всегда может быть продлено на алгебраическое расширение, для установления изоморфизма между алгебраическими замкнутыми полями достаточно установить изоморфизм между их простыми подполями и биекцию между базисами трансцендентности.
- Использованная литература
- ↑ Краткий словарь иностранных слов. — 7-е изд. — М.: Русский язык, 1984. — С. 121. — 312 с.
- ↑ 1 2 3 4 5 Комплексное число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1979. — Т. 2. — С. 1007.
- ↑ Энциклопедия элементарной математики, 1951, с. 227.
- ↑ Справочник по элементарной математике, 2006, с. 211, подстрочное примечание.
- ↑ Справочник по элементарной математике, 2006, с. 222.
- ↑ 1 2 3 4 5 6 7 Алгебра и математический анализ, 1998, с. 180—181.
- ↑ Real Part. Дата обращения: 16 января 2018. Архивировано 31 марта 2018 года.
- ↑ Мнимое число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 708.
- ↑ Imaginary Part. Дата обращения: 16 января 2018. Архивировано 31 марта 2018 года.
- ↑ Ahlfors Lars V., 1979, с. 2.
- ↑ История математики, том III, 1972, с. 72.
- ↑ 1 2 Энциклопедия элементарной математики, 1951, с. 237—239.
- ↑ История математики, том III, 1972, с. 61—66.
- ↑ 1 2 Bunch, Bryan. Mathematical Fallacies and Paradoxes. Chapter «Eliminating paradox by definition». — Dover Publications, 1997. — 240 p. — (Dover Books on Mathematics). — ISBN 978-0486296647.
- ↑ Энциклопедия элементарной математики, 1951, с. 233—234.
- ↑ 1 2 3 4 5 Энциклопедия элементарной математики, 1951, с. 234—235, 239—240.
- ↑ ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий Архивная копия от 16 марта 2018 на Wayback Machine. Пункт 152. Комплексная амплитуда (синусоидального электрического) тока — комплексная величина, модуль и аргумент которой равны соответственно амплитуде и начальной фазе данного синусоидального электрического тока.
- ↑ 1 2 3 4 5 6 Ahlfors Lars V., 1979, с. 6—10.
- ↑ Свешников А. Г., Тихонов А. Н., 1967, с. 14—15.
- ↑ 1 2 Алгебра и математический анализ, 1998, с. 183—1851.
- ↑ 1 2 3 4 Ahlfors Lars V., 1979, с. 15—16.
- ↑ Соломенцев Е. Д., 1988, с. 7.
- ↑ Weisstein, Eric W. nth Root (англ.) на сайте Wolfram MathWorld.
- ↑ Ahlfors Lars V., 1979, с. 3—4.
- ↑ 1 2 3 Клайн Моррис. Математика. Утрата определённости. — М.: Мир, 1984. — С. 138—139.
- ↑ 1 2 Стиллвелл Д. Математика и ее история. — Москва-Ижевск: Институт компьютерных исследований, 2004. — С. 258—266. — 530 с.
- ↑ История математики, том III, 1972, с. 57—61.
- ↑ Юшкевич А. П. Леонард Эйлер. Жизнь и творчество // Развитие идей Леонарда Эйлера и современная наука. Сб. статей. — М.: Наука, 1988. — ISBN 5-02-000002-7. — С. 15—47.
- ↑ Острая О. Теория функций комплексного переменного. Дата обращения: 30 ноября 2017.
- ↑ Ренэ Декарт. Геометрия. С приложением избранных работ П. Ферма и переписки Декарта. — М.—Л.: Гостехиздат, 1938. — С. 233. — 297 с. — (Классики естествознания).
- ↑ Глейзер Г. И. История математики в школе. IX—X классы. — М.: Просвещение, 1983. — С. 193. — 351 с.
- ↑ 1 2 3 4 Смирнов В. И., 2010, с. 7—15.
- ↑ Бронштейн, Семендяев, 1985, с. 360.
- ↑ Смирнов В. И., 2010, с. 15—22.
- ↑ Свешников А. Г., Тихонов А. Н., 1967, с. 44.
- ↑ 1 2 Заславский А. А. Геометрические преобразования. — 2-е изд.. — М.: МЦНМО, 2004. — С. 58. — 86 с. — ISBN 5-94057-094-1.
- ↑ 1 2 Евграфов М. А., 1968, с. 180—186.
- ↑ MAXimal :: algo :: Преобразование геометрической инверсии. e-maxx.ru. Дата обращения: 9 мая 2021. Архивировано 7 мая 2021 года.
- ↑ Е. А. Морозов, “Обобщённая задача Аполлония”, Матем. просв., сер. 3, 23, Изд-во МЦНМО, М., 2019, 80–111. www.mathnet.ru. Дата обращения: 9 мая 2021. Архивировано 9 мая 2021 года.
- ↑ Привалов И. И., 1984, с. 43.
- ↑ Соломенцев Е. Д., 1988, с. 10.
- ↑ 1 2 3 Ahlfors Lars V., 1979, с. 17—18.
- ↑ Соломенцев Е. Д., 1988, с. 12.
- ↑ Числовые системы, 1975, с. 165.
- ↑ Энциклопедия элементарной математики, 1951, с. 249—251.
- ↑ Числовые системы, 1975, с. 167.
- ↑ Топологическое поле // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 386.
- ↑ Комплексные числа. 9—11 классы, 2012, Глава 5.
- ↑ Реальные применения мнимых чисел, 1988, с. 78.
- ↑ Реальные применения мнимых чисел, 1988, с. 114—124.
- ↑ Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
- ↑ Привалов И. И., 1984, с. 14.
- ↑ Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — Эдиториал УРСС, 2004. — 240 с. — ISBN 5354004160.
- ↑ Разностное уравнение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 838. Архивировано 21 января 2022 года.
- ↑ Свешников А. Г., Тихонов А. Н., 1967, Глава 5.
- ↑ Свешников А. Г., Тихонов А. Н., 1967, Глава 8.
- ↑ Смирнов В. И., 2010, с. 22—25.
- ↑ Маркушевич А. И. Комплексные числа и конформные отображения. — М.: Гостехиздат, 1954. — 52 с. — (Популярные лекции по математике, выпуск 13). Архивировано 28 января 2018 года.
- ↑ Shao-Feng Bian, Hou-Pu Li. Mathematical Analysis in Cartography by Means of Computer Algebra System. Дата обращения: 28 января 2018. Архивировано 29 января 2018 года.
- ↑ Лаврентьев М. А., Шабат Б. В. Проблемы гидродинамики и их математические модели. — М.: Наука, 1973.
- ↑ 1 2 Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
- ↑ Е. Вигнер. Непостижимая эффективность математики в естественных науках // УФН. — 1968. — Т. 93. — С. 535—546. — doi:10.3367/UFNr.0094.196803f.0535.
- ↑ Реальные применения мнимых чисел, 1988, с. 132—144.
- ↑ Молчанов А. П., Занадворов П. Н. Курс электротехники и радиотехники, глава «Линейные цепи». — BH V. — 608 с. — ISBN 978-5-9775-0544-4.
- ↑ Афонский А. А., Дьяконов В. П. Цифровые анализаторы спектра, сигналов и логики / Под ред. проф. В. П. Дьяконова. — М.: СОЛОН-Пресс, 2009. — С. 248. — ISBN 978-5-913-59049-7.
- ↑ Числовые системы, 1975, с. 164—165.
- ↑ Энциклопедия элементарной математики, 1951, с. 227—233.
- ↑ Числовые системы, 1975, с. 166.
- ↑ Real and Complex Numbers. Дата обращения: 13 февраля 2018. Архивировано 6 февраля 2021 года.
- ↑ 1 2 3 Числовые системы, 1975, с. 167—168.
- ↑ Энциклопедия элементарной математики, 1951, с. 230—233.
- ↑ John Stillwell. The Four Pillars of Geometry. — Springer Science & Business Media, 2005-12-30. — С. 84—86. — 240 с. — ISBN 9780387290522.
- ↑ 1 2 Фаддеев Д. К. Лекции по алгебре. — М.: Наука, 1984. — С. 200—201. — 416 с.
- ↑ F. Brackx, R. Delanghe, H. Serras. Clifford Algebras and their Applications in Mathematical Physics: Proceedings of the Third Conference held at Deinze, Belgium, 1993. — Springer Science & Business Media, 2012-12-06. — С. 33. — 405 с. — ISBN 9789401120067.
- ↑ David Marker. Model Theory: An Introduction, ISBN 978-0-387-22734-4. Proposition 2.2.5. Springer Science & Business Media, 2002. См. также некоторые пояснения Архивная копия от 14 мая 2018 на Wayback Machine.
- ↑ William Weiss and Cherie D’Mello. Fundamentals of Model Theory Архивная копия от 13 апреля 2018 на Wayback Machine. Lemma 7: Any two algebraically closed fields of characteristic 0 and cardinality are isomorphic и комментарий после неё.
- ↑ 1 2 p-адическое число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 1. — С. 100.: «Это расширение есть пополнение поля рациональных чисел относительно неархимедова нормирования… Поле локально компактно».
- ↑ 1 2 Dickson, L. E. (1919), On Quaternions and Their Generalization and the History of the Eight Square Theorem, Annals of Mathematics, Second Series (Annals of Mathematics) . — Т. 20 (3): 155–171, ISSN 0003-486X, DOI 10.2307/1967865
Литература[править | править код]
- Балк М. Б., Балк Г. Д., Полухин А. А. Реальные применения мнимых чисел. — Киев: Радянська школа, 1988. — 255 с. — ISBN 5-330-00379-2.
- Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1985. — 544 с.
- Бурбаки, Н. Очерки по истории математики. — М., 1963.
- Виленкин Н. Я., Ивашов-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 11 класса. Учебное пособие. — Изд. 6-е. — М.: Просвещение, 1998. — 288 с. — ISBN 5-09-008036-4.
- Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
- Глазков Ю. А., Варшавский И. К., Гаиашвили М. Я. Комплексные числа. 9—11 классы. — М.: Экзамен, 2012. — 157 с. — ISBN 978-5-377-03467-4.
- Евграфов М. А. Аналитические функции. — 2-е изд., перераб. и дополн. — М.: Наука, 1968. — 472 с.
- Кириллов А. А. Что такое число?. — М., 1993. — 80 с. — ISBN 5-02-014942-3.
- Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — 4-е изд. — М.: Наука, 1972.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Нечаев В. И. Числовые системы. — М.: Просвещение, 1975. — 199 с.
- Привалов И. И. Введение в теорию функций комплексного переменного. — 13-е изд.. — М.: Физматлит, 1984. — 432 с.
- Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
- Смирнов В. И. Курс высшей математики в трёх томах. — Изд. 10-е. — СПб.: БХВ-Петербург, 2010. — Т. 3, часть 2-я. — 816 с. — ISBN 978-5-9775-0087-6.
- Соломенцев Е. Д. Функции комплексного переменного и их применения. — М.: Высшая школа, 1988. — 167 с. — ISBN 5-06-003145-6.
- Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1951. — Т. 1. — С. 160—168. — 448 с.
- Ahlfors Lars V. Complex analysis. An introduction to the theory of analytic functions of one complex variable. — Third edition. — Harvard University: McGraw-Hill Book Company, 1979. — 317 с. — ISBN 0-07-000657-1.
Ссылки[править | править код]
Содержание:
- Комплексные числа
- Алгебраическая форма комплексного числа
- Действия над комплексными числами в алгебраической форме
- Геометрическая интерпретация комплексного числа
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- Показательная форма комплексного числа
- Что такое комплексное число
- Понятие о комплексном числе
- Арифметические операции над комплексными числами
- Отыскание комплексных корней уравнений
Комплексные числа
Комплексное число — это выражение вида a + bi, где a, b — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число a называется действительной частью, а число b — мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.
Алгебраическая форма комплексного числа
На множестве действительных чисел ряд алгебраических задач, в частности нахождение корней квадратных уравнений с отрицательным дискриминантом, не имеет решения. Введём некоторое навое число, которое будем считать решением уравнения х2 + 1 = 0. Корень уравнения х2 + 1 = 0 или х2 = -1 называется мнимой единицей и обозначается буквой i. Таким образом i2 = -1.
В некоторых технических дисциплинах мнимую единицу обозначают буквой j. В дальнейшем будем использовать оба обозначения.
Мнимая единица позволяет ввести числа нового вида, которые называют комплексными.
Комплексным числом называют выражение вида , где — действительные числа, i — мнимая единица.
Число называют действительной, а число — мнимой частями комплексного числа. Комплексное число, как правило, обозначают буквой . Два комплексных числа называют равными тогда и только тогда, когда , то есть когда равны их действительные части и коэффициенты при мнимой части.
Понятия “больше” и “меньше” для комплексных чисел не определено. Комплексное число называется нулём и обозначается 0; комплексное число отождествляется с действительным числом ; комплексное число называют чисто мнимым и обозначают . Число 0 является единым числом, которое одновременно и является действительным, и чисто мнимое.
Комплексные числа называются сопряжёнными и обозначаются и. Например, в числе , сопряжённым к нему будет число , а для числа сопряжённым будет число .
Множество комплексных чисел принято обозначать буквой С. Запись комплексного числа в виде называется алгебраической формой комплексного числа.
Действия над комплексными числами в алгебраической форме
Сложение, вычитание, умножение комплексных чисел в алгебраической форме по правилам соответствующих действий над многочленами.
Пример 1. Найти сумму и произведение комплексных чисел
Решение: Сумму находим формальным сложением двучленов
произведение находим перемножив двучлены с последующей заменой .
Ответ:
Легко увидеть, что слагаемое двух сопряжённых чисел является действительным числом:
Воспользуемся этим свойством для введения действия деления двух комплексных чисел.
При делении комплексных чисел , где достаточно умножить числитель и знаменатель дроби на число сопряжённое к знаменателю, то есть на
Пример 2. Даны комплексные числа и Найдите разность и частное
Решение:
Находим разность вычитанием двучленов
Чтобы найти частное умножим числитель и знаменатель на число, сопряжённое к знаменателю:
Ответ:
Действия над комплексными числами имеют следующие интересные свойства:
Доказательство выходит из определения сопряжённых чисел. Действительно,
Аналогично доказываются и другие приведённые свойства.
Возведение комплексного числа в степень выполняется по формулам возведения двучлена в степень. При этом следует учитывать, что
Например:
Пример 3. Найти комплексное число
Решение:
Выполнив в знаменателе возведение в степень, получим:
Умножив числитель и знаменатель на число, сопряжённое к знаменателю, то есть на -5-12i, получим:
Ответ: z = i.
Геометрическая интерпретация комплексного числа
Каждому комплексному числу можно поставить в соответствие упорядоченную пару действительных чисел и наоборот. Такая упорядоченная пара действительных чисел определяет точку или вектор на плоскости.
Следовательно, комплексное число вида изображается на координатной плоскости точкой или вектором, начало которого совпадает с началом координат, а конец с т. М.
Сама координата плоскости называется при этом комплексной плоскости, ось абсцисс — действительной осью, ось ординат — мнимой осью.
Например, изобразим числа
Представление комплексного числа как вектора на плоскости позволяет ввести понятие модуля и аргумента комплексного числа.
Модулем комплексного числа называют длину вектора, которая соответствует данному числу (обозначают r либо p).
Аргументом комплексного числа называют величину угла между положительным направлением действительной оси и вектора, который соответствует данному комплексному числу.
Рассмотрим рисунок:
На основе теоремы Пифагора получаем
Например, комплексное число имеет модуль равный 10, так как
Аргумент комплексного числа , в отличии от модуля, вычисляется неоднозначно. Так аргументом числа 5 являются следующие углы Среди бесконечного множества значений аргумента только одно принадлежит промежутку . Эти значения аргумента мы и будем вычислять.
Аргумент легко вычислить, если комплексное число расположено в I четверти. Действительно, согласно тригонометрическим соотношениям в прямоугольном треугольнике (рис. 2) имеем:
Если комплексные числа размещены в других четвертях, то необходимо провести дополнительные рассуждения. Рассмотрим рис. 3. Видим, что для
Таким образом, алгоритм нахождения аргумента комплексного числа следующий:
1.Определить коэффициент заданного комплексного числа.
2. Найти
3. Установить, в какой четверти расположено комплексное число.
4. Вычислить аргумент согласно приведённым формулам.
Возможны и другие способы нахождения аргумента комплексного числа, например:
Пример 4. Найти аргумент комплексного числа
Тригонометрическая форма комплексного числа
Рассмотрим рис. 2. Согласно тригонометрическим соотношениям в прямоугольном треугольнике числа можно выразить через r и таким образом:
Тогда комплексное число запишется в виде:
Запись комплексного числа в таком виде называется тригонометрической формой комплексного числа.
Следовательно, для того, чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической, достаточно найти его модуль и аргумент.
Пример 5. Записать число в тригонометрической форме.
Решение:
Найдём модуль
Найдём острый угол
Вектор, который соответствует данному комплексному числу принадлежит третьей четверти, поэтому аргумент равен следовательно
Ответ:
Для того, чтобы перейти от тригонометрической формы записи комплексного числа к алгебраической, достаточно найти действительные числа из формул
Пример 6. Записать число в алгебраической форме.
Найдём и
Ответ:
Действия над комплексными числами в тригонометрической форме
В тригонометрической форме записи комплексного числа выполняют действия умножения, деления, возведения в степень, извлечения корня n-й степени. Выведение формул, по которым выполняются действия, относительно просты и основываются на основных формулах тригонометрии.
Следовательно, при умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножают, а аргументы складывают; при делении — модули делят, а аргументы вычитают.
Правило умножения комплексных чисел автоматически распространяется на произвольное число множителей. Если взять равные множители
Полученную формулу называют формулой Муавра.
Для извлечении корня n-й степени из комплексного числа используют формулу:
где арифметический корень,
Пример 8. Вычислить Ответ записать в алгебраической форме.
Решение: Находим:
Ответ:
Пример 9. Вычислить
Решение: Запишем число в тригонометрической форме:
Пример 10. Вычислите . Ответ запишите в алгебраической и тригонометрической формах.
Решение: Запишем число -81 в тригонометрической форме:
Тогда:
Показательная форма комплексного числа
Рассматривая функцию для комплексной переменной, известный математик Л. Эйлер установил соотношение
Из заданной формулы следует, что каждое комплексное число можно записать в виде которое называется показательной формой записи.
Над комплексными числами в показательной форме выполняют те же действия что и в тригонометрической форме. Выведение формул, по которым выполняют действия основывается на основных свойствах степени.
Пусть , тогда:
Пример 11. Представить число в алгебраической форме.
Решение: Согласно условию задачи , поэтому
значит
Ответ:
Пример 12. Выполнить действия, результат записать в тригонометрической и показательной формах:
Решение: Сначала выполним действия:
Теперь полученное число запишем в тригонометрической и показательной формах. Для этого найдём модуль и аргумент:
Тогда
Ответ:
Что такое комплексное число
Комплексные числа — это числа вида , где — вещественные числа, — мнимая единица, то есть число, для которого выполняется равенство:
Понятие о комплексном числе
Процесс расширения понятия числа от натуральных к действительным был связан как с потребностями практики, так и с нуждами самой математики. Сначала для счета предметов использовались натуральные числа. Необходимость выполнения деления привела к понятию обыкновенной (и десятичной) дроби, необходимость выполнения вычитания — к понятиям нуля и отрицательного числа, необходимость извлечения корней из положительных чисел — к понятию иррационального числа.
Все перечисленные операции выполнимы на множестве действительных чисел. Однако остались и невыполнимые на этом множестве операции, например извлечение квадратного корня из отрицательного числа. Значит, имеется потребность в дальнейшем расширении понятия числа, в появлении новых чисел, отличных от действительных.
Геометрически действительные числа изображаются точками на координатной прямой: каждому действительному числу соответствует одна точка прямой («образ» действительного числа) и, обратно, каждая точка координатной прямой соответствует одному действительному числу. Координатная прямая сплошь заполнена образами действительных чисел, т. е., выражаясь фигурально, «на ней нет места для новых чисел». Возникает предположение о том, что геометрические образы новых чисел надо искать уже не на прямой, а на плоскости. Однако каждую точку М координатной плоскости ху можно отождествить с координатами этой точки. Поэтому естественно в качестве новых чисел ввести упорядоченные пары действительных чисел (упорядоченные в том смысле, что — разные точки, а значит, и разные числа).
Комплексным числом называют всякую упорядоченную пару действительных чисел
Два комплексных числа называют равными тогда и только тогда, когда
Арифметические операции над комплексными числами
Суммой комплексных чисел называют комплексное число
Например,
Комплексным нулем считают пару (0; 0). Числом, противоположным числу считают число обозначают его
Разностью комплексных чисел называют, как обычно, такое число Разность всегда существует и единственна. В самом деле, пусть Тогда Это значит, что откуда находим
Таким образом, получаем следующее правило вычитания комплексных чисел:
Например, (9; 10) – (8; 12) = (9 – 8; 10 – 12) = (1;-2).
Произведением комплексных чисел называют комплексное число
Например, если то
Арифметические операции над комплексными числами обладают теми же свойствами, что арифметические операции над действительными числами (см. п. 29).
Пусть Существует, и только одно, комплексное число такое, что Это число и называют, как обычно, частным от деления z на w.
Имеем Так как то должны выполняться равенства
Из этой системы двух уравнений с двумя переменными находим (см. п. 164) Итак,
Получили следующее правило деления комплексных чисел: если то
Например,
Алгебраическая форма комплексного числа
Используя введенные в п. 45 определения сложения и умножения комплексных чисел, легко получить следующие равенства:
Условились вместо писать просто , а комплексное число (0; 1) обозначать буквой и называть мнимой единицей. Тогда равенство (1) принимает вид т. е.
а равенство (2) — вид
Запись называют алгебраической формой комплексного числа при этом число называют действительной частью комплексного числа z, a bi — его мнимой частью.
Например,
Если мнимая часть комплексного числа отлична от нуля, то число называют мнимым, если при этом = 0, т. е. число имеет вид bi, то его называют чисто мнимым, наконец, если у комплексного числа мнимая часть равна нулю, то получается действительное число .
Алгебраическая форма существенно облегчает выполнение арифметических операций над комплексными числами.
Сложение. Известно (см. п. 45), что
Выполнив сложение тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Сравнивая равенства (7) и (8), замечаем, что получился верный результат.
Вычитание. Известно (см. п. 45), что
Выполнив вычитание тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Сравнивая равенства (9) и (10), замечаем, что получился верный результат.
Умножение. Известно (см. п. 45), что
Выполнив умножение тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Воспользуемся тем, что (см. равенство (5)); тогда В результате получаем
Сравнивая равенства (11) и (12), замечаем, что получился верный результат.
Деление. Известно (см. п. 45), что если то
Выполним деление тех же чисел в алгебраической форме, считая и с + di обычными двучленами, a — обычной дробью. Умножив числитель и знаменатель этой дроби на с – di (предполагая, что значение дроби от этого не изменится), находим
Итак,
Сравнивая равенства (13) и (14), замечаем, что получился верный результат.
Подводя итоги, приходим к следующему важному практическому выводу: над комплексными числами, записанными в алгебраической форме, можно осуществлять все арифметические операции как над обычными двучленами, учитывая лишь, что Чтобы преобразовать в комплексное число дробь вида нужно числитель и знаменатель дроби умножить на число с — di; числа с + di и с – di называют комплексно-сопряженными.
Пример 1.
Вычислить
Решение:
Применив формулу , получим
Пример 2.
Вычислить
Решение:
Пример 3.
Найти действительные числа х и у такие, что выполняется равенство
Решение:
Имеем Тогда заданное равенство можно переписать в виде
Комплексные числа равны тогда и только тогда, когда равны их действительные части ( = с) и коэффициенты при мнимых частях (Ь = d). Значит, приходим к системе уравнений
из которой находим (см. п. 164)
Пример 4.
Найти комплексные числа z, удовлетворяющие равенству
Решение:
Будем искать комплексное число z в виде х + yi. Имеем
Из последнего равенства следует, что
Эта система имеет два решения (см. п. 164): (2; 3) и (-2; -3). Значит,
Пример 5.
Вычислить
Решение:
Имеем (см. п. 58)
Значит,
Далее, имеем
Значит,
Отыскание комплексных корней уравнений
Пусть > 0. Так как Тем самым мы получаем возможность извлекать квадратные корни из отрицательных действительных чисел. Это позволяет находить не только действительные, но и мнимые корни уравнений.
Пример 1.
Решить уравнение
Решение.
Имеем (см. п. 137) Итак,
Пример 2.
Решить уравнение
Решение.
Имеем Значит, либо х – 2 = 0, откуда находим либо откуда находим Итак,
Эта лекция взята со страницы полного курса лекций по изучению предмета “Математика”:
- Математика решение заданий и задач
Смотрите также дополнительные лекции по предмету “Математика”:
Лекции:
- Производная сложной функции
- Многоугольники
- Арифметические операции над пределами
- Метод Гаусса: пример решения
- Производные показательной и логарифмической функций
- Уравнение окружности и прямой
- Область определения функции примеры решения
- Неопределенный интеграл
- Тригонометрические функции углов прямоугольного треугольника
- Решение треугольников
Определение.
Модулем
комплексного числа
называется длина вектора, изображающего
это число, и обозначается
.
Модуль
числа z
= x
+ iy
определяется однозначно и может быть
найден по формуле
=
.
Нетрудно
видеть, что z
∙
=
и
.
Если
z
= 0 , то
.
Определение.
Аргументом
комплексного числа
z
≠ 0 называется любой угол ,
отсчитываемый от положительного луча
оси ОХ до радиус-вектора z.
Этот угол считается положительным, если
отсчет производится против часовой
стрелки, и отрицательным – в противоположном
случае. Для числа z
= 0 аргумент не определен.
В
отличие от модуля, аргумент комплексного
числа определяется неоднозначно.
Пример
6.1 Найти
аргумент комплексного числа 1 + i.
Решение.
Аргументами
числа 1 + i
являются углы
(рисунок 4),
(рисунок 5),
(рисунок 6) и, вообще, любой из углов.
,
k
Z.
Рисунок
4 Рисунок 5
Рисунок
6
Все
множество аргументов числа z
обозначается Arg
z,
(фр. Ar-gument
– аргумент). Такое значение
Arg
z,
которое принадлежит промежутку –
<
≤
либо 0 ≤
< 2
и называется главным
аргументом.
Он обозначается arg
z
и определяется однозначно
Arg
z = arg z + 2k,
k
Z,
–
< arg z ≤ .
Упражнения
7 Отметить на
плоскости точки, изображающие следующие
комплексные числа:
а)
2i
– 3; б)
;
в)
–6 + 2i;
г)
–2 – 2i; д)
(1 – i)4;
е)
.
8 Найти модуль и
аргумент комплексного числа:
а)
–
;
б)
;
в) 3 – 2;
г)
(i + 1)(i – 2); д)
.
§ 7 Тригонометрическая (полярная) форма
комплексного
числа
Модуль
и аргумент
комплексного числа z
= x
+ iy
≠ 0 – это, по существу, полярные координаты
(r;
)
точки М(х; у) – рису- нок 7.
Используя
связь между декартовыми и полярными
координатами точки М (рисунок 8)
,
можно
любое комплексное число z
≠ 0 представить в виде:
z
= x + iy = r ∙ cos
+ ir ∙ sin
= r(cos
+ i sin ).
Рисунок
7 Рисунок 8
Запись
z
= r(cos
+ i
sin
)
называется тригонометрической
или полярной
формой
комплексного числа.
Чтобы
записать число z
= x
+ iy
≠ 0 в тригонометрической форме, следует
найти его модуль по формуле
и один из аргументов, решив систему
.
Аргумент
комплексного числа можно определить
из соотношения
,
являющегося следствием последней
системы. Откуда
.
Однако
не все решения этого соотношения являются
решением системы. Напомним, что период
функции y
= tg
x равен .
При с
R
одно из решений уравнения tg
= c,
удовлетворяющее условию
,
обозначается arctg
c.
Таким образом, в промежутке (– ;
]
имеются два угла, тангенсы которых равны
.
Для определения четверти, в которой
лежит угол ,
нужно еще учесть знаки х, у – координат
точки z:
-
если
точка z
лежит в I
и IV
четверти, x
> 0, то
=
arg
z
=
(рисунок 9);
2)
если точка z
лежит во II
четверти, т.е. x
< 0, y
> 0, то
и
arg
z
=
(рисунок 10);
3)
Если точка z
лежит в III
четверти, т.е. x
< 0, y
< 0, то
и
(рисунок
11).
Рисунок 9
Рисунок 10
Рисунок 11
Для главного
аргумента справедливы формулы:
Пример
7.1 Записать
числа в тригонометрической форме:
1)
z = 4 + 4i.
Решение.
x
= 4, y
= 4 (I
четверть);
.
Так
как arg
z
=
,
то
z
= 4 + 4i =
2)
z =
–
i.
Решение.
x
=,
y
= –1 (IVчетверть);
Так
как x
> 0,
= arg
z
= arctg
=
Поэтому
– i
= 2
3)
z = – 2 –
i.
Решение.
x
= –2, y = –
(III четверть);
Так
как x
< 0 и y
< 0,
= arg
z
= –
–2
–
i
=
4)
z = –+
i.
Решение.
x
= –,
y
= 1 (II
четверть);
.
Так как x
< 0, y
> 0,
=
arg z =
–+
i =
5)
z = 5.
Решение.
Так
как число z
= 5 действительное и 5 > 0, то
= 0.
6)
z = –.
Решение.
,
=
(так как –<
0).
).
7)
z = 3i.
Решение.
Так
как число z
= 3i
– мнимое (х = 0, у = 3), причем y
= Im
z
=
=
3 > 0, то
,
= arg
z
=.
8)
z = –i.
Решение.
x
= 0, y = –<
0;
,
= arg
z
= –
.
9)
z = cos
– isin
.
Решение.
Данная
запись числа не является тригонометрической.
Это чис-ло записано в алгебраической
форме, где
, у = –
.
Искомая
запись имеет вид z
= cos
+ isin
.
;
;
arg z = –.
–
Данное представление
могло быть получено, учитывая чет-ность
функции y = cos x и нечетность функции y =
sin x.
10)
z = –
Решение.
,
поэтому искомая запись имеет вид: z
= cos
+ i sin .
Так
как
,
то –
– sin
Соседние файлы в папке КЧ
- #
- #