Компоненты при вычитании как найти вычитаемое

Балакирева Татьяна Евгеньевна

Памятка по нахождению неизвестных компонентов действий.

Скачать:

Предварительный просмотр:

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  1. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  1. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  1. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

Выучи названия компонентов действий и правила нахождения неизвестных компонентов:

  1. Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  1. Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
  1. Умножение: множитель, множитель, произведение. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  1. Деление: делимое, делитель, частное. Чтобы найти делимое, нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить на частное.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 
 

КОМПОНЕНТЫ МАТЕМАТИЧЕСКИХ ДЕЙСТВИЙ

Названия компонентов при сложении:

1 слагаемое, 2 слагаемое, сумма.

Суммой называют не только результат,
но и само выражение . 

2 + 3 = 5

2 –  первое слагаемое

3 –  второе слагаемое

5 –  сумма

2 + 3 –  сумма

Чтобы
найти неизвестное слагаемое надо из суммы вычесть известное слагаемое.

Названия компонентов при вычитании:

уменьшаемое, вычитаемое, разность.

Разностью называют не только
результат действия, но и само выражение.

8 – 3 = 5

8 –  уменьшаемое

3 –  вычитаемое

5 –  разность

8 – 3 –  разность

Чтобы
найти уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы
найти вычитаемое, надо из уменьшаемого вычесть разность.

Названия компонентов при умножении:

множитель, множитель, произведение.

Произведением  называют не
только результат действия, но и само выражение.

8 х 3 = 24

8 –  множитель

3 –  множитель

24 –  произведение

8 х 3 –  произведение

Чтобы
найти неизвестный множитель, надо произведение разделить на известный множитель
(24:8=3)

Названия компонентов при делении:

делимое, делитель, частное.

Частным  называют не только
результат действия, но и само выражение.

8 : 2 = 4

8 –  делимое

2 –  делитель

4 – частное

8 : 4 –  частное

Чтобы
найти делимое, надо частное  умножить на делитель (4х2=8)

Чтобы
найти делитель, надо делимое разделить на частное  (8:4=2)

http://tajmtatyana.ucoz.net/pamjatki/matem-7_1.jpg

Компоненты
арифметических действий и их взаимосвязь.

1.              

Компоненты
при сложении:

1 слагаемое, 2 слагаемое, сумма.

2.             

Компоненты
при вычитании:

уменьшаемое, вычитаемое, разность.

3.             

Компоненты
при умножении:

1 множитель, 2 множитель, произведение.

4.              

Компоненты
при делении:

делимое, делитель , частное.

5.             

Назвать
результаты всех действий:

при сложении – сумма

при вычитании – разность

при умножении – произведение

при делении – частное

6.             

Как найти
неизвестное слагаемое?

Чтобы найти неизвестное слагаемое, нужно
из суммы вычесть известное слагаемое.

Х+4=12                      или              4+х=12

Х=12-4                                           х=12-4                                               

Х=8                                                     х=8____

8+4=12                                          4+8=12

  12=12                                          12=12

7.             

Как найти
неизвестное уменьшаемое?

Чтобы найти неизвестное уменьшаемое, надо
к разности прибавить вычитаемое.

Х-7=3

Х=3+7

Х=10

10-7=3

     3=3

8.             

Как найти
неизвестное вычитаемое?

Чтобы найти неизвестное вычитаемое, надо
из уменьшаемого вычесть разность.

8-х =5

х=8-5

х=3

8-3=5

  
5=5

9.         Как
найти неизвестный множитель?

Чтобы найти неизвестный множитель, надо
произведение разделить на известный множитель.

х·3=6                                   4·х=8

х=6:3                                   х=8:4

х=2                                      х=2   

2·3=6                                   4·2=8

  
6=6                                      8=8

10.          Как найти неизвестное делимое?

Чтобы найти неизвестное делимое, надо
частное умножить на делитель.

х:5=3

х=3·5

х=15

15:5=3

    
3=3

11.                 

Как найти
неизвестный делитель?

Чтобы найти неизвестный делитель, надо
делимое разделить на частное.

6:х=2

х =6:2

х=3

6:3=2

  
2=2

Геометрический материал.

Квадрат – это прямоугольник, у которого
все стороны равны.

13.                 

Что такое
прямоугольник?

Прямоугольник – это четырёхугольник, у
которого все углы прямые. Противоположные стороны прямоугольника равны.

14.                 

Что такое
треугольник?

Треугольник – многоугольник, у которого
три угла и три стороны.

15.     Что такое четырёхугольник?

Четырёхугольник – геометрическая фигура,
у которой четыре угла и четыре стороны.

Периметр ( Ρ) – это сумма длин сторон
какой-нибудь геометрической фигуры.

Площадь (S) – это внутренняя часть
какой-нибудь геометрической  фигуры

(прямоугольника, квадрата и т.д)

17.                 

Как найти
периметр квадрата?

У квадрата 4 стороны, равные между
собой. Чтобы найти
периметр (Р) квадрата, нужно длину одной стороны (а) умножить на 4.

Р
a · 4

18.                 

Как найти
периметр прямоугольника?

Чтобы найти периметр
прямоугольника
, нужно сложить все 4 стороны   прямоугольника

 Или

сложить длину и ширину
прямоугольника и
умножить на 2.

          Ρ=a+b+a+b

или

    Ρ=(a+b)·2

19.                 

Как найти
периметр треугольника?

Чтобы найти периметр
треугольника
, нужно сложить все 3 стороны.

20.                 

Как найти
сторону квадрата, если известен периметр?
 

У квадрата 4 стороны, равные между
собой. Чтобы найти
сторону квадрата, нужно Ρ разделить на 4.

a=Ρ:4

21.                 

       Как найти сторону прямоугольника, если известен
периметр и другая сторона?

Чтобы найти сторону
прямоугольника,
нужно

 Ρ разделить на 2 
и  вычесть
другую сторону.

a=Ρ:2 – b

b=Ρ:2 – a

22.         В каких единицах измеряется периметр?

    Периметр
измеряется в
мм, см, дм, метрах.

23.      
  Как найти площадь квадрата?

Площадь квадрата равна произведению двух
его сторон.

S□ = a · a

24.          Как найти площадь прямоугольника?

Чтобы найти площадь прямоугольника, надо
длину прямоугольника умножить на его ширину.

S = a · b

25.          Как найти сторону прямоугольника,
если известна площадь и другая его сторона?

Чтобы найти одну из сторон
прямоугольника, нужно площадь прямоугольника разделить на известную сторону.

a=S :  b

b= S  : a

  
26.   
    В каких
единицах измеряется площадь?

  
Площадь измеряется в квадратных единицах:
мм², см², дм², м².

27.      Назвать единицы длины.

Единицы длины
мм,
см
,
дм, м, км.

28.          Рассказать таблицу мер длины.

1см 
=  10мм

1дм 
=  10см

1дм 
=  100мм

1м 
=    10 дм

1м 
=  100 см

1км = 1000м

29.       Сколько 
квадратных сантиметров

в
1квадратном метре?

1м² 
=  10 000см² 

30.      Сколько 
квадратных  дециметров 

в
1 квадратном  метре?

1м² 
=  100дм² 

31.            Рассказать  таблицу мер площади.

1м² 
=  100дм²  = 10 000см² 

1дм² 
= 100см²  =  10 000мм²

1см² 
=  100мм²

Масса.

32.            Назвать единицы массы.

Масса измеряется в граммах, килограммах,
центнерах, тоннах.

33.           Рассказать таблицу мер массы.

1кг 
= 1000г

1ц 
=  100кг

1т 
=  10ц

1т 
=  1000кг

Время.

34.        Назвать 
единицы измерения времени.

Время 
измеряется секундами, минутами, часами, сутками, неделями, месяцами,
годами, веками.

35.           Рассказать таблицу мер времени.

1мин 
=  60сек.

1час 
=  60мин

1час 
=  3600сек.

1сут. 
=  24часа

1год 
=  12мес.  = 
365сут.  или  366сут.

1век 
=  100лет

Взаимосвязь скорости, времени и расстояния.

36.     Как 
найти  скорость?

Чтобы найти скорость ( v ), надо расстояние ( S ) разделить на время ( t ), затраченное в пути.

v = S : t

37.    Как найти время?

Чтобы найти время ( t ), надо расстояние ( S ) разделить на скорость
( v ).

t = S : v

38.    Как найти расстояние?

Чтобы найти расстояние ( S ),  нужно скорость ( v ) умножить на время ( t ).

S = v · t

Взаимосвязь цены, количества, стоимости.

39.    Что такое цена?

Цена – стоимость одного предмета,
единицы товара.

40.     Как найти стоимость?

Чтобы найти стоимость, нужно цену
умножить на количество.

Ст = Ц · К

41.     Как найти цену?

Чтобы найти цену, нужно стоимость
разделить на количество.

Ц 
=  Ст : К

42.   Как найти 
количество?

Чтобы найти количество, нужно стоимость
разделить на цену.

К = Ст : Ц

43. Задачи на дроби.

Дробь  –

2
– числитель

3
– знаменатель

44.  Как найти дробь числа?

Чтобы найти дробь числа, нужно число
разделить на знаменатель, а потом умножить на числитель.

45.      Как найти число по дроби?

Чтобы 
найти число по дроби, нужно число разделить на числитель и умножить на
знаменатель.

Взаимосвязь
работы, времени и производительности.

46.    Что такое производительность?

         Как найти производительность?

Производительностью
(
v )
называют работу, выполненную за единицу времени.

Чтобы
найти производительность (
v ), надо всю
выполненную работу разделить на время.

v  =  A  :  t

47.    Как найти выполненную работу?

Выполненная работа равна
производительности, умноженной на время работы.

A  =  v  · t

48.   Как найти время работы?

Чтобы узнать время работы, надо работу
разделить на производительность.

t  =  A  :  v

49.   Как 
найти среднее арифметическое?

Чтобы найти среднее арифметическое надо
сумму разделить на число слагаемых.

Выучи названия компонентов действий и правила
нахождения неизвестных компонентов:

1.   
Сложение: слагаемое, слагаемое, сумма. Чтобы найти неизвестное
слагаемое, нужно из суммы вычесть известное слагаемое.

2.   
Вычитание: уменьшаемое, вычитаемое, разность. Чтобы найти
уменьшаемое, нужно к вычитаемому прибавить разность. Чтобы найти
вычитаемое, нужно из уменьшаемого вычесть разность.

3.   
Умножение: множитель, множитель, произведение. Чтобы найти
неизвестный множитель, нужно произведение разделить на известный множитель.

4.   
Деление: делимое, делитель, частное. Чтобы найти делимое,
нужно делитель умножить на частное. Чтобы найти делитель, нужно делимое разделить
на частное.

        Памятка по
математике

Название и правила
нахождения компонентов при

               сложении
и вычитании.

                        
Сложение

 
       х              
    +             2  
      =         
7                                                                                                               
 первое слагаемое    второе
слагаемое        сумма

 
       5             
    +             х  
      =         
7                                                                                                               
 первое слагаемое    второе
слагаемое        сумма

Правило:  Чтобы найти неизвестное слагаемое,

 нужно из суммы
вычесть известное слагаемое.

                       
Вычитание

       х      
       –              3
             =        
      5

уменьшаемое       вычитаемое  
          разность

Правило: Чтобы найти неизвестное
уменьшаемое,

нужно к разности
прибавить вычитаемое
.

      8       
     –              х  
           =          
    5

уменьшаемое       вычитаемое  
          разность

Правило: Чтобы найти неизвестное вычитаемое,

 нужно из
уменьшаемого вычесть разность.



Содержание:
Действие вычитание и компоненты вычитания
Связь вычитания и сложения
Свойства разности
Как вычесть сумму из числа и число из суммы
Изменение разности при изменении вычитаемого и/или уменьшаемого
Правила вычитания разности
Вычитание однозначного числа
Вычитание в столбик многозначных чисел
Проверка действий сложение и вычитание

Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!

Мы можем не только собирать в группы различные предметы, то есть, складывать их, но и забирать из существующей группы определенное их количество.

Например, в кошельке было 1850 рублей. В магазине было потрачено 780 рублей. Чтобы узнать, сколько осталось денег, можно вытащить кошелек и пересчитать их. Но можно поступить по-другому: из той суммы, которая была в кошельке, отнять ту сумму, что была потрачена в магазине. Разница этих чисел, то есть, на сколько единиц изначальная сумма денег больше той суммы, которую потратили, и будет остатком денег.

Разность (или остаток) – это такое число, которое получится, если от одного числа отнять другое, то есть, от всех единиц одного числа отнять все единицы, которые содержатся в другом числе.

Уменьшаемое – это то число, от которого мы отнимаем единицы другого числа.

Вычитаемое – это число, которое мы вычитаем из другого числа. То есть, то число, на количество единиц которого мы уменьшаем другое число.

Вычитание – это арифметическое действие, которое выполняется для получения разности двух или нескольких чисел.
то есть, совершить действие вычитания – это найти такое число, которое получится, если от данного числа отнять определенное количество единиц другого числа.

Компоненты вычитания:

как научиться вычитать

Про действие вычитание также говорят, что нужно из одного числа вычесть другое, или одно число уменьшить на другое.

Совершая вычитание натуральных чисел, вы должны помнить, что из одного натурального числа можно вычесть только равное ему или меньшее натуральное число. Действительно, мы никак не можем отобрать единиц предметов больше, чем их есть в наличии.

Поэтому, уменьшаемое натуральное число всегда больше или равное вычитаемому. Другими словами, мы всегда вычитаем из большего меньшее или из равного равное.

Связь вычитания и сложения

Действие вычитание непосредственно связано с действием сложение.

Действительно, когда мы ищем сумму, мы складываем все единицы, из которых состоят числа, вместе. То есть, получаем число, которое складывается из разных чисел.

А когда мы ищем разность, мы из одного числа (уменьшаемое) отнимаем некоторое количество единиц (вычитаемое), которые входят в его состав, и получаем другое количество единиц. То есть, получаем число (разность), которое также составляло уменьшаемое, пока от него не отняли вычитаемое. Поэтому разность и имеет второе название – остаток – то, что осталось от числа, после вычитания его части.

Из этого мы можем сделать вывод, что, если сложить обратно обе части одного числа (разность и вычитаемое), то мы получим уменьшаемое.

Поэтому, вычитание и сложение – это взаимно обратные действия. Если нам известна сумма двух слагаемых, мы можем превратить ее в разность двух чисел, и наоборот, разность можно перевести в сумму.

Уменьшаемое – это сумма вычитаемого и разности. То есть, разность и вычитаемое – это слагаемые.

Когда мы складываем числа, слагаемые нам известны, и нужно вычислить их сумму. А когда мы вычитаем, нам даются сумма (уменьшаемое) и одно из слагаемых (вычитаемое) этой суммы, а второе слагаемое (разность) нам нужно вычислить.

Рассмотрим это на примере. Мы нашли разность 8-5=3. Это означает, что мы разложили одно данное нам число 8 на два: 5 (данное нам уменьшаемое) и 3 (найденная нами разность). Но мы знаем, что состав числа – это слагаемые, которые в сумме дают нам это самое число. Поэтому, найденную нами разность чисел мы можем превратить в сумму чисел, сложив остаток с вычитаемым: 3+5=8.

Свойства разности натуральных чисел

Свойства разности натуральных чисел состоят из:

  • Правила вычитания суммы из числа и числа из суммы;
  • Зависимость разности от изменения уменьшаемого или вычитаемого.
  • Правило вычитания разности из числа;

Рассмотрим каждый пункт подробнее.

Правила вычитания суммы из числа и числа из суммы

Как вычесть сумму из числа

Чтобы найти разность числа и суммы чисел нужно из данного числа вычесть последовательно каждое слагаемое суммы.
То есть, сначала мы находим разность между данным числом и первым слагаемым, потом от этой полученной разности отнимаем второе слагаемое, третье, и так далее до последнего слагаемого суммы.

Действительно, так как сумма – это объединение всех слагаемых, то очевидно, что, отнимая последовательно каждое слагаемое, каждое ее составляющее число, мы в конце концов отнимем всю сумму.

Рассмотрим это на примере из урока сложение чисел.

325+(12+64+5) = 325+81 = 406

Я запишу это в виде разности:

406-(12+64+5) = 325

и покажу, что результат будет равен первому слагаемому:

40612 = 394;
394-64 = 330;
330-5 = 325.

Как видите, все верно.

Как вычесть число из суммы

Чтобы найти разность суммы чисел и некоторого числа, нужно отнять это число от какого-нибудь подходящего слагаемого этой суммы.
То есть, мы сначала находим разность одного из слагаемых и данного числа, а потом складываем получившийся результат последовательно с остальными слагаемыми.

Действительно, вы знаете, что, если уменьшить одно из слагаемых на какое-то число, то и сумма уменьшится на это же самое число. Следовательно, если нам нужно сумму чисел уменьшить на какое-то число, то для этого достаточно уменьшить на это число одно из слагаемых суммы.

Для рассмотрения я возьму тот же пример, только сумму расчленю на слагаемые, а слагаемое в скобках заменю суммой:

325+81 = (191+65+150)

Превращаю выражение в разность:

(191+65+150)-81 = 325

и покажу, что результат также будет равен первому слагаемому:

191-81 = 110;
110+65 = 175;
175+150 = 325

или
150-81 = 69;
69+191 = 260;
260+65 = 325.

Я недаром написал в правиле, что нужно отнимать от подходящего слагаемого суммы, потому что, если оно будет меньше вычитаемого, то оно нам не подходит. Так, в нашем примере 65<81.

Отсюда следует, что это правило применимо не к любой сумме натуральных чисел, а только к той, в которой хотя бы одно из слагаемых больше, чем вычитаемое.

Как меняется разность при изменении вычитаемого или уменьшаемого

Изменение разности при изменении вычитаемого и уменьшаемого является следствием описанных в уроке изменений суммы чисел с изменением ее слагаемых.

Если уменьшаемое увеличить на некоторое количество единиц, то и разность увеличится на такое же количество единиц.

Если уменьшаемое уменьшить на некоторое количество единиц, то и разность уменьшится на такое же количество единиц.

Если вычитаемое увеличить на некоторое количество единиц, то разность уменьшится на такое же количество единиц.

Если вычитаемое уменьшить на некоторое количество единиц, то разность увеличится на такое же количество единиц.

Если сразу оба числа, и уменьшаемое, и вычитаемое, увеличить или уменьшить на одно и то же количество единиц, то разность не изменится.

Правила вычитания разности

Если нужно вычесть из числа разность других чисел, можно воспользоваться одним из двух способов:
1. Прибавить к данному числу вычитаемое, и из получившейся суммы вычесть уменьшаемое;
2. Вычесть из данного числа уменьшаемое, а потом результат этого действия сложить с вычитаемым.

Это свойство выводится из предыдущих, рассмотренных нами.

Рассмотрим на примере 22-(173).

Для начала вычислим обычным способом: сперва узнаем разность в скобках (это будет 17-3=14), а потом вычтем 14 из 22. Получится 22-14=8.

22-(173) = 8

Теперь вернемся к исходному примеру и отнимем от 22 не разность 17-3, то есть, не 17 без 3 единиц, а все число 17.

2217 = 5

Но мы ведь отняли больше, чем нужно было, поэтому нам нужно вернуть лишне взятые 3 единицы обратно, а именно, прибавить их к полученному результату.

5+3 = 8

Попробуем решить другим путем: увеличим и уменьшаемое (данное число), и вычитаемое (разность в скобках) на одно и то же число 3. Получим:

22+3-(17+3-3)

Так как 22+3=25, а 3-3=0, то в итоге получается:

25-17+0 = 8

Как видите, оба способа показали верный результат.

Вычитание однозначного числа

Вы сможете без каких-либо трудностей совершать вычитание любых чисел, если сперва хорошо натренируете себя вычитать однозначные числа в уме из однозначных и двухзначных.

А поскольку вычитание – это действие обратное сложению, тогда необходимо просто выучить на память все суммы однозначных чисел. Пользуясь ими, мы легко сможем получить необходимые вам разности.

Например, нам нужно найти разность чисел 17 и 8. Для этого нам необходимо вспомнить, какое число при сложении с числом 8 дает сумму 17? Это число 9, потому что 8+9=17. Значит, если от 17 отнять 8, мы получим: 17-8=9.

Хорошо натренировавшись в нахождении разности чисел из суммы однозначных чисел, можно переходить к более сложным случаям вычитания. Подробно эти приемы рассмотрены в разделе рубрики «Устный счет».

Вычитание в столбик многозначных чисел

Так же, как и сложение, разность многозначных чисел удобно находить, используя вычитание в столбик.

Вычитание в столбик – это способ нахождения разности чисел при помощи их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим), и последующего вычисления.

Давайте найдем разность чисел 52063-4825.

Запишем их друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел, т.е. единицы под единицами, десятки под десятками и т.д. После этого, под вторым слагаемым проводим горизонтальную черту, а между слагаемыми ставим знак действия, т.е. минус. У нас получилась такая запись:

Школьная математика

Вычитание в столбик выполняется подобным способом, как и при сложении, только теперь мы отнимаем единицы от единиц, десятки от десятков и так далее.

От 3 единиц в уменьшаемом мы не можем отнять 5 единиц вычитаемого, поскольку 3<5. Поэтому, мы раскладываем соседние 6 десятков на 5 десятков и 1 десяток. Этот десяток содержит 10 единиц, которые мы складываем с 3 имеющимися в уменьшаемом единицами. Теперь у нас есть 13 единиц, и мы можем отнять от них 5, получим 8 единиц. Записываем их под чертой в разряде простых единиц, а над цифрой разряда десятков в уменьшаемом ставим одну точку, чтобы не забыть, что 1 десяток единиц мы оттуда уже забрали.

уроки математики

Переходим к десяткам. У уменьшаемого в разряде десятков мы уже забрали 1 десяток, о чем нам напоминает поставленная точка. Поэтому, мы отнимаем 2 десятка вычитаемого не от 6, а от 5 десятков, потому что 6-1=5.

5>2, значит, действие вычитания возможно: 5-2=3. Пишем цифру 3 под чертой в разряде десятков, и переходим к сотням.

математика 5 класс

Сотен в уменьшаемом у нас нет, поэтому мы смотрим, сколько в числе содержится тысяч? Их тоже 0. Смотрим следующий разряд. Здесь у нас 5 десятков тысяч. Из них мы берем 1 десяток тысяч (ставим точку над цифрой 5 в уменьшаемом), что составляет 10 тысяч единиц. Из них (из взятых в десятках тысячах) мы занимаем 1 тысячу для того, чтобы закончить вычитание в разряде сотен (ставим точку над цифрой 0 в разряде тысяч уменьшаемого).

1 тысяча единиц – это 10 сотен. Кроме этих занятых, больше в уменьшаемом сотен нет. В вычитаемом 8 сотен, поэтому находим разность сотен уменьшаемого и вычитаемого: 10-8=2. Пишем результат под чертой в разряде сотен.

Вычитание чисел

В разряде тысяч уменьшаемого у нас осталось 9 тысяч единиц (потому что 1 тысячу мы отдали для разряда сотен в качестве 10 сотен). Отнимаем от нее 4 тысячи вычитаемого, получаем: 9-4=5, которые записываем под чертой в разряде тысяч.

Школьная математика

Десятков тысяч в уменьшаемом осталось 5-1=4 (помните, мы для разряда сотен занимали?), в вычитаемом их нет совсем, то есть, 0. Поэтому мы просто сносим цифру 4 в результат под черту в разряд десятков тысяч.

математические уроки

После нахождения разности чисел способом вычитания в столбик записываем ответ в строчном примере:

50063-4825 = 45238.

Как проверить действия сложение и вычитание?

После того, как вы закончили арифметическое действие, нужно проверить правильность ответа, то есть, удостовериться, что вычисление было сделано без ошибок.

Проверить сложение можно двумя способами: обратным сложением и вычитанием.

Обратное сложение означает, что мы меняем слагаемые местами, и складываем их еще раз. Если результат будет такой же, как и после первого сложения, значит, вычисление было верным.

Например, в уроке сложение чисел мы находили сумму: 5728+803 = 6531. Проверим правильность результата способом обратного сложения:

математика 5 класс

Как видите, сложив слагаемые в другом порядке, мы получили тот же самый результат, а значит, вычисление было правильным.

Проверка сложения вычитанием – это способ, при котором нужно из суммы, которую получили после выполнения действия сложение, отнять одно из слагаемых. Если результат этого вычитания будет равен второму слагаемому (или сумме остальных слагаемых, если их больше двух), значит сложение было выполнено верно.

Проверим эту же сумму вычитанием: отнимем от результата 6531 слагаемое 5728.

уроки математики

И этот способ проверки показал правильность нашего решения.

Проверить вычитание также возможно и сложением, и другим вычитанием.

Проверка вычитания сложением основана на взаимосвязи вычитания и сложения. Зная, что уменьшаемое – это сумма, а остаток и вычитаемое – это слагаемые, мы можем сложить между собой вычитаемое и остаток, и, если получим в результате уменьшаемое, значит, мы правильно сделали действие.

Вот так выглядит проверка вычитания сложением на примере вычисленной на этом уроке разницы 50063-4825 = 45238:

Вычитание чисел

Проверка вычитания вычитанием также основывается на взаимосвязи вычитания и сложения, а также на переместительном законе сложения. Так как уменьшаемое – это сумма двух слагаемых: вычитаемого и остатка, и сумма не зависит от порядка сложения слагаемых, то очевидно, что мы можем отнять от уменьшаемого остаток. Если результат этого действия будет равен вычитаемому, значит наша первая разность вычислена верно.

Проверка той же самой разницы вычитанием:

Школьная математика

Добавить комментарий