Квадратные корни как найти сумму 8 класс

Действие с корнями: сложение и вычитание

Извлечение квадрантного корня из числа не единственная операция, которую можно производить с этим математическим явлением. Так же как и обычные числа, квадратные корни складывают и вычитают. 

Правила сложения и вычитания квадратных корней

Определение 1

Такие действия, как сложение и вычитание квадратного корня, возможны только при условии одинакового подкоренного выражения. 

Пример 1

Можно сложить или вычесть выражения 23 и 63, но не 56 и 94. Если есть возможность упростить выражение и привести его к корням с одинаковым подкоренным числом, то упрощайте, а потом складывайте или вычитайте.

Действия с корнями: основы

Пример 2

650-28+512

Алгоритм действия: 

  1. Упростить подкоренное выражение. Для этого необходимо разложить подкоренное выражение на 2 множителя, один из которых, — квадратное число (число, из которого извлекается целый квадратный корень, например, 25 или 9). 
  2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. Обращаем ваше внимание, что второй множитель заносится под знак корня. 
  3.  После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
  4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа! 
Совет 1

Если у вас пример с большим количеством одинаковых подкоренных выражений, то подчеркивайте такие выражения одинарными, двойными и тройными линиями, чтобы облегчить процесс вычисления.

Пример 3

Давайте попробуем решить данный пример:

650=6(25×2)=(6×5)2=302. Для начала необходимо разложить 50 на 2 множителя 25 и 2, затем извлечь корень из 25, который равен 5, а 5 вынести из-под корня. После этого нужно умножить 5 на 6 (множитель у корня) и получить 302.

28=2(4×2)=(2×2)2=42. Сперва необходимо разложить 8 на 2 множителя: 4 и 2. Затем из 4 извлечь корень, который равен 2, а 2 вынести из-под корня. После этого нужно умножить 2 на 2 (множитель у корня) и получить 42.

512=5(4×3)=(5×2)3=103. Сперва необходимо разложить 12 на 2 множителя: 4 и 3. Затем извлечь из 4 корень, который равен 2, и вынести его из-под корня. После этого нужно умножить 2 на 5 (множитель у корня) и получить 103.

Результат упрощения: 302-42+103

302-42+103=(30-4)2+103=262+103.

В итоге мы увидели, сколько одинаковых подкоренных выражений содержится в данном примере. А сейчас попрактикуемся на других примерах.

Пример 4

(45)+45:

  • Упрощаем (45). Раскладываем 45 на множители: (45)=(9×5);
  • Выносим 3 из-под корня (9=3):45=35;
  • Складываем множители у корней: 35+45=75.
Пример 5

640-310+5:

  • Упрощаем 640. Раскладываем 40 на множители: 640=6(4×10);
  • Выносим 2 из-под корня (4=2):640=6(4×10)=(6×2)10;
  • Перемножаем множители, которые стоят перед корнем: 1210;
  • Записываем выражение в упрощенном виде: 1210-310+5;
  • Поскольку у первых двух членов одинаковые подкоренные числа, мы можем их вычесть: (12-3)10=910+5.
Пример 6

95-23-45

Как мы видим, упростить подкоренные числа не представляется возможным, поэтому ищем в примере члены с одинаковыми подкоренными числами, проводим математические действия (складываем, вычитаем и т.д.) и записываем результат:

(9-4)5-23=55-23.

Советы:

  • Перед тем, как складывать или вычитать, необходимо обязательно упростить (если это возможно) подкоренные выражения.
  • Складывать и вычитать корни с разными подкоренными выражениями строго воспрещается.
  • Не следует суммировать или вычитать целое число или корень: 3+(2x)1/2.
  • При выполнении действий с дробями, необходимо найти число, которое делится нацело на каждый знаменатель, потом привести дроби к общему знаменателю, затем сложить числители, а знаменатели оставить без изменений.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Определение

Квадратным корнем или корнем 2-ой степени числа X называется число, которое при умножении само на себя даёт число b, т. е. a*a = b.

В статье мы поговорим о таких действиях с квадратными корнями, как сложение и вычитание.

Свойство 1. 

Корень, взятый от умножения двух корней равен произведению корней от указанных множителей, если они больше нуля:

√(a*b) = √a*√b, где a и b – неотрицательные числа.

Свойство может быть распространено на большее число множителей, т. е. √(a*b*…*d) = √a*√b* …*√d. При этом, если число отрицательных множителей чётное, то их произведение всё равно даст положительное число, а значит свойство останется справедливым.

Свойство 2. 

Корень отношения из отношения членов выражения равен отношению корней:

√(a/b) = √a/√b, где a – неотрицательное, не равное нулю число, число и b – неотрицательные число.

Свойство 3.  

√a2n= an, где a – неотрицательное, натуральное, не равное нулю число.

Правило

Сложение и вычитание корней возможно только если выражение под корнем у них одно и то же. В частности, можно сложить или вычесть один из другого 2√7 и 5√7, а вот такие же действия с 2√7 и 5√8 или с 2√2 и 5√7 провести уже не получится. В частности, невозможно вычисление суммы или разности типа 5 + √X или 5 — √X. Если число целое, значит подкоренным числом является 1. Фактически любое число можно записать как N или как N √1.

Общие правила сложения и вычитания корней

Правила

В общем случае порядок действий при сложении и вычитании квадратных корней следующий:

  1. Соединяем корни посредством знаков, обозначающих соответствующие операции. Допустим нам нужно из корня X вычесть корень Y. Записываем выражение √X — √Y. Если нам требуется сложить, то выражение будет √X + √Y
  2. Приводим выражения к простейшей форме, т. е. если между ними имеются подобные, то делаем приведение. Так называется математическая операция, при которой коэффициенты подобных членов берутся со знаками соответствующих членов, заключаются в скобки, затем общий корень выводится за их пределы. Упрощение полученного коэффициента происходит по общим правилам математики.

Вся сложность заключается в упрощении подкоренного выражения. Когда приступаешь к этому, не известно получится ли его упростить. Окончательно решить вопрос можно лишь попробовав подобное сделать.

Сложение и вычитание квадратных корней, простейшие случаи

Пример 1. Сложить √4 + √64. Казалось бы числа под знаком корня разные, и складываться не должны, но √4 = 2, а √64 = 8. Получаем 2√1 + 8√1 или 2 + 8. Результат равен 10. Ответ: √4 + √64 = 10. Это один из примеров того, как складывать разные корни. К сожалению, так легко получается далеко не всегда.


Пример 2. Сложить 7√3 + 5√3. Выносим √4 за скобки, получаем (7+5) √3 или 12√3.

Ответ: 7√3 + 5√3 = 12√3.


Пример 3. Вычесть √64 — √4.

Т. к. √64 = 8, а √4 = 2, получаем √64 — √4 = 8 – 2 = 6.

Ответ: √64 — √4 = 6.


Пример 4. Вычесть 7√3 — 5√3.

Выносим √3 за скобки, получаем (7-5) √3 = 2√3.

Ответ: 7√3 — 5√3 = 2√3.


Пример 5. Сложить √45 + 4√5.

Число √45 можно представить в виде √(9*5). Как известно √9 = 3, выносим это число из-под знака корня. Получаем 3√5. Нам нужно будет выполнить сложение 3√5 + 4√5. Подкоренное выражение одинаковое, поэтому действие допустимо. Выносим √5 за скобки и получаем (3+4)√5 = 7√5.

Ответ: √45 + 4√5 = 7√5.


Пример.6. Вычислить выражение 6√40 — 3√10 + √5.

Упрощаем число 6√40. Разлагаем √40 на множители: 6√(4*10). Выносим 4 из-под корня: 6*2√10. Перемножаем 6 и 2, в результате имеем 12√10.

Выражение 6√40 — 3√10 + √5 записываем в виде 12√10 — 3√10 + √5. У первых двух членов общее подкоренное число √10, выносим его за скобки и получаем (12-3)√10 + √5 = 9√10 +√5. Больше упрощать некуда.

Ответ: 6√40 — 3√10 + √5 = 9√10 +√5.

Вычитание и сложение квадратных корней с помощью сокращения знаменателя

Это часто бывает нужно, когда требуется избавиться от иррациональности в знаменателе. Нам дано выражение N/(√X +√Y). Умножаем обе части дроби (числитель и знаменатель) на √X -√Y. Вспомните формулу сокращённого умножения. (a+b)*(a-b) = a2 – b2. Применительно к нашему случаю это будет (√X +√Y)*(√X -√Y) = X-Y.

Пример 7. Вычислить 4 / (√3 + √5). Умножаем всё на (√3 — √5). В результате получаем

4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) =

= 4 * (√3 — √5) / (3-5) = 4 * (√3 — √5) / (-2) =

=2 * (√5 — √3).

Далее задача посложнее.


Пример 8. Нужно вычислить выражение 12 / (√2 + √3 + √5). Поступить можно только одним образом – умножить обе части дроби на (√2 + √3 — √5). Обратите внимание, последний знак в выражении минус, а не плюс, как в исходном. В результате мы имеем:

12*(√2 + √3 — √5)/[(√2 + √3 + √5)* (√2 + √3 — √5)].

После последовательного перемножения всех чисел получаем  12 * (√2 + √3 — √5) / (2 * √6). Упрощаем выражение далее и в итоге получаем: 2 * √3 + 3 * √2 — √30.

Ответ: 12 / (√2 + √3 + √5) = 2 * √3 + 3 * √2 — √30.

Теперь вы знаете, как складывать квадратные корни при действиях с дробями.

Нет времени решать самому?

Наши эксперты помогут!

Приближённое вычисление квадратного корня

Приближённое сложение и вычитание корней проводится следующим образом:

Сначала на калькуляторе вычисляем точное значение каждого из корней, округляем их до требуемой степени точности, после чего проводим сложение приближённых чисел.

Иногда это является единственным доступным способом решить задачу, а иногда используется в качестве проверки результата, полученного иным путём.

Пример 9. Сложить √7 + √5.  Сложение этих квадратных корней проводим, используя калькулятор точное значение √7 = 2,645751, и точное значение √5 = 2,236067.

Округляем полученные числа и складываем их 2,65 + 2,24 = 4,89.

Важно. Выражения √(X+Y) = √X +√Y и√(X-Y) = √X — √Y абсолютно не верны. Чтобы убедиться в этом, давайте посчитаем сколько будет √(9+16) = √25 = 5.

Если складывать, числа как отдельные корни, то, √9 +√16 = 3 + 4 = 7.

Посмотрите, сколько будет, если √(16-9) = √7 ≈ 2,65, При вычитании чисел, как отдельных корней √16 — √9 = 4 – 3 = 1.

Дополнительные примеры

Приведём ряд дополнительных примеров по сложению и вычитанию корней.

Пример 10. Вычислить √9 + √4 — 3√2. Из 9 и 4 квадратные корни вычисляются очень легко. √9 = 3, √4 = 2. В результате имеем 3 + 2 — 3√2 = 5 — 3√2. Это выражение дальше уже никак нельзя сделать проще, т. е. окончательным будет результат 5 — 3√2.

Ответ: √9 + √4 — 3√2 = 5 — 3√2.


Пример 11. Вычислить (√2)/4 + (√2)/2. Сначала находим наименьший знаменатель указанных дробей. Не сложно понять, что он равен 4. Чтобы привести к наименьшему знаменателю вторую дробь, умножаем её на 2/2 и получаем (2√2)/4. Теперь нам остаётся сложить лишь числители, знаменатель остаётся прежним. В итоге получаем (√2)/4 + (2√2)/4 = (3√2)/4.

Ответ: (√2)/4 + (√2)/2 = (3√2)/4.


Пример 12. Посчитать выражение (√X+√Y)/ (√X-√Y). Умножаем указанное выражение на дробь (√X+√Y)/(√X+√Y), В результате будем иметь

[(√X+√Y)*(√X+√Y)]/[(√X-√Y)*(√X+√Y)] = (√X+√Y)2/(X-Y).

Далее нужно раскрыть скобки. Тогда мы получим [X + 2√(X*Y) + Y]/(X – Y).

Ответ: (√X+√Y)/(√X-√Y) = [X + 2√(X*Y) + Y]/(X – Y). Проще исходного полученное выражение назвать сложно. Скорее это наглядный пример того, что упрощение возможно далека не всегда. Его попытка имеет смысл лишь для того, чтобы в последнем убедить себя окончательно.


Пример 13. Вычислить выражение (√2 +√3)*(√2-√3)3/(2-2√6+3). Раскладываем второй множитель числителя на два множителя

 (√2-√3)3 = (√2-√3)2*(√2-√3). После этого будем иметь выражение [(√2-√3)2*(√2-√3)*(√2 +√3)]/(2-2√6+3), но ведь (√2-√3)2 = 2 -2√6+3 и оно совпадает со знаменателем дроби, а значит может быть сокращено. Мы имеем (√2-√3)*(√2 +√3), по известной формуле  (a+b)*(a-b) = a2 – b2 в результате мы получаем (√2-√3)*(√2 +√3) = 2 – 3 = -1.

Казалось бы, очень сложное выражение получилось равным (-1). Результат абсолютно точен. Вычисляя выражение через приближённые значения корней, мы пришли бы к тому же самому результату, то в его точности сомнения тогда могли бы остаться. Сейчас же их совершенно нет. Надеемся, что статья была для вас понятной и полезной.


Загрузить PDF


Загрузить PDF

Складывать и вычитать квадратные корни можно только при условии, что у них одинаковое подкоренное выражение, то есть вы можете сложить или вычесть 2√3 и 4√3, но не 2√3 и 2√5. Вы можете упростить подкоренное выражение, чтобы привести их к корням с одинаковыми подкоренными выражениями (а затем сложить или вычесть их).

  1. Изображение с названием Add and Subtract Square Roots Step 1

    1

    Упростите подкоренное выражение (выражение под знаком корня). Для этого разложите подкоренное число на два множителя, один из которых является квадратным числом (число, из которого можно извлечь целый корень, например, 25 или 9). После этого извлеките корень из квадратного числа и запишите найденное значение перед знаком корня (под знаком корня останется второй множитель). Например, 6√50 – 2√8 + 5√12. Числа, стоящее перед знаком корня, являются множителями соответствующих корней, а числа под знаком корня – это подкоренные числа (выражения). Вот как решать данную задачу:[1]

    • 6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Здесь вы раскладываете 50 на множители 25 и 2; затем из 25 извлекаете корень, равный 5, и 5 выносите из-под корня. Затем 5 умножаете на 6 (множитель у корня) и получаете 30√2.
    • 2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. Здесь вы раскладываете 8 на множители 4 и 2; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 2 (множитель у корня) и получаете 4√2.
    • 5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Здесь вы раскладываете 12 на множители 4 и 3; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 5 (множитель у корня) и получаете 10√3.
  2. Изображение с названием Add and Subtract Square Roots Step 2

    2

    Подчеркните корни, подкоренные выражения которых одинаковы. В нашем примере упрощенное выражение имеет вид: 30√2 – 4√2 + 10√3. В нем вы должны подчеркнуть первый и второй члены (30√2 и 4√2), так как у них одинаковое подкоренное число 2. Только такие корни вы можете складывать и вычитать.

  3. Изображение с названием Add and Subtract Square Roots Step 3

    3

    Если вам дано выражение с большим количеством членов, многие из которых имеют одинаковые подкоренные выражения, используйте одинарное, двойное, тройное подчеркивание для обозначения таких членов, чтобы облегчить решение этого выражения.

  4. Изображение с названием Add and Subtract Square Roots Step 4

    4

    У корней, подкоренные выражения которых одинаковы, сложите или вычтите множители, стоящие перед знаком корня, а подкоренное выражение оставьте прежним (не складывайте и не вычитайте подкоренные числа!). Идея в том, чтобы показать, сколько всего корней с определенным подкоренным выражением содержится в данном выражении.

    • 30√2 – 4√2 + 10√3 =
    • (30 – 4)√2 + 10√3 =
    • 26√2 + 10√3

    Реклама

  1. Изображение с названием Add and Subtract Square Roots Step 5

    1

    Пример 1: √(45) + 4√5.

    • Упростите √(45). Разложите 45 на множители: √(45) = √(9 x 5).
    • Вынесите 3 из-под корня (√9 = 3): √(45) = 3√5.
    • Теперь сложите множители у корней: 3√5 + 4√5 = 7√5
  2. Изображение с названием Add and Subtract Square Roots Step 6

    2

    Пример 2: 6√(40) – 3√(10) + √5.

    • Упростите 6√(40). Разложите 40 на множители: 6√(40) = 6√(4 x 10).
    • Вынесите 2 из-под корня (√4 = 2): 6√(40) = 6√(4 x 10) = (6 x 2)√10.
    • Перемножьте множители перед корнем и получите 12√10.
    • Теперь выражение можно записать в виде 12√10 – 3√(10) + √5. Так как у первых двух членов одинаковые подкоренные числа, вы можете вычесть второй член из первого, а первый оставить без изменений.
    • Вы получите: (12-3)√10 + √5 = 9√10 + √5.
  3. Изображение с названием Add and Subtract Square Roots Step 7

    3

    Пример 3. 9√5 -2√3 – 4√5. Здесь ни одно из подкоренных выражений нельзя разложить на множители, поэтому упростить это выражение не получится. Вы можете вычесть третий член из первого (так как у них одинаковые подкоренные числа), а второй член оставить без изменений. Вы получите: (9-4)√5 -2√3 = 5√5 – 2√3.

  4. Изображение с названием Add and Subtract Square Roots Step 8

    4

    Пример 4. √9 + √4 – 3√2.

    • √9 = √(3 х 3) = 3.
    • √4 = √(2 х 2) = 2.
    • Теперь вы можете просто сложить 3 + 2, чтобы получить 5.
    • Окончательный ответ: 5 – 3√2.
  5. Изображение с названием Add and Subtract Square Roots Step 9

    5

    Пример 5. Решите выражение, содержащее корни и дроби. Вы можете складывать и вычислять только те дроби, у которых общий (одинаковый) знаменатель. Дано выражение (√2)/4 + (√2)/2.

    • Найдите наименьший общий знаменатель этих дробей. Это число, которое делится нацело на каждый знаменатель. В нашем примере на 4 и на 2 делится число 4.
    • Теперь вторую дробь умножьте на 2/2 (чтобы привести ее к общему знаменателю; первая дробь уже приведена к нему): (√2)/2 х 2/2 = (2√2)/4.
    • Сложите числители дробей, а знаменатель оставьте прежним: (√2)/4 + (2√2)/4 = (3√2)/4 .

    Реклама

Советы

  • Перед суммированием или вычитанием корней обязательно упростите (если возможно) подкоренные выражения.

Реклама

Предупреждения

  • Никогда не суммируйте и не вычитайте корни с разными подкоренными выражениями.
  • Никогда не суммируйте и не вычитайте целое число и корень, например, 3 + (2x)1/2.
    • Примечание: «х» в одной второй степени и квадратный корень из «х» – это одно и то же (то есть x1/2 = √х).

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 525 104 раза.

Была ли эта статья полезной?

Определение

Действие сложения и вычитания квадратных корней возможно лишь при условии одинаковости подкоренных выражений слагаемых.

Сложение корней, формулы

Складывать подобные квадратные корни, то есть иррациональные выражения с одинаковым основанием, очень просто. Для этого суммируют множители слагаемых, а подкоренное число остается неизменным:

(msqrt a+nsqrt a=left(m+nright)sqrt a)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В случае со сложением корней с разными подкоренными значениями нужно привести их к подобию. Упрощение корневых чисел выполняют по следующему алгоритму:

  1. Раскладывание подкоренного числа на два множителя так, чтобы один из них являлся числом, из которого извлекается целый квадратный корень.
  2. Извлечение корня из квадратного числа, запись ответа перед символом корня. Второй множитель остается под знаком корня.
  3. Упрощенные корни с одинаковым основанием можно складывать как подобные.

Пример

(3sqrt{50}+2sqrt8+sqrt{12})

(3sqrt{50}=3sqrt{25times2}=3times5sqrt2=15sqrt2)

(2sqrt8=2sqrt{4times2}=2times2sqrt2=4sqrt2)

(sqrt{12};=sqrt{4times3}=2times1sqrt2=2sqrt2)

После упрощения исходное выражение приобретает вид:

(15sqrt2+4sqrt2+2sqrt2=21sqrt2)

Примечание

Подкоренные выражения между собой не суммируются и не вычитаются. При этом выражения под одним корнем складываются и вычитаются как обычные числа.

Вычитание корней, формулы

При вычитании подобных корней вычитаются их множители, а подкоренное выражение не меняется:

(msqrt a-nsqrt a=left(m-nright)sqrt a)

Чтобы узнать разность иррациональных чисел с разным основанием, нужно привести уменьшаемое и вычитаемое к единому образцу. Для этого используют тот же алгоритм, что и перед сложением.

Пример

(4sqrt{75}-3sqrt{24})

(4sqrt{75}=4sqrt{25times3}=4times5sqrt3=20sqrt3)

(3sqrt{12}=3sqrt{4times3}=3times2sqrt3=6sqrt3)

Упростив, получаем:

(20sqrt3-6sqrt3=14sqrt3)

Сложение корней со степенями

Складывание и вычитание корней с разными степенями, но одинаковым основанием имеет следующую последовательность:

Допустим, надо решить данное выражение:

(sqrt[3]а+sqrt[4]а)

Для начала проведем процедуру упрощения:

(sqrt[3]а+sqrt[4]а=12timessqrt a^4+12timessqrt a^3)

(12timessqrt a^4+12timessqrt a^3=12timessqrt{a^4+a^3})

При приведении двух подобных членов к общему показателю корневого числа применяется одно из свойств корней. Оно звучит так: при умножении степени основания и показателя корня на одинаковое число вычисление корневого выражения не поменяется.

Примечание

Показатели степени корней складываются только при умножении.

Примеры решения задач

Задача №1

Упростить выражение:

(sqrt{{(2-sqrt5)}^2})

По свойству квадратного корня:

(sqrt{{(2-sqrt5)}^2}=left|2-sqrt5right|)

Для выведения из модуля необходимо узнать знак получившегося выражения:

(2=sqrt4)

(4<5)

Значит, (sqrt4<sqrt5)

Тогда (2-sqrt5<0)

Таким образом:

(sqrt{{(2-sqrt5)}^2}=left|2-sqrt5right|=-(2-sqrt5)=sqrt5-2)

Ответ: (sqrt5-2)

Задача №2

Упростите выражение:

(sqrt{{(а-2)}^2}+sqrt{{(а-4)}^2}) при (2leq аleq4)

Из основного свойства квадратного корня:

(sqrt{{(а-2)}^2}+sqrt{{(а-4)}^2}=left|а-2right|+left|а-4right|)

Раскроем модули в промежутке (2leq аleq4):

(vert а-2vert=а-2,;т.к.;а-2geq0)

(vert а-4vert=4-а,;т.к.;а-4leq0)

Следовательно, (vert а-2vert+vert а-4vert=а-2+4-а=2)

Ответ: 2.

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень – осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень – осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на х: 5 − х ≥ 0

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных – смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

Преобразовать уравнение к виду (ax^2+bx+c=0).

Выписать значения коэффициентов (a), (b) и (c).
Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

Вычислить значение дискриминанта по формуле (D=b^2-4ac).

Решите квадратное уравнение (2x(1+x)=3(x+5))
Решение:

Теперь переносим все слагаемые влево, меняя знак.

Уравнение приняло нужный нам вид. Выпишем коэффициенты.

Найдем дискриминант по формуле (D=b^2-4ac).

Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_2=frac<-b – sqrt><2a>).

Решите квадратное уравнение (x^2+9=6x)
Решение:

Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

Найдем дискриминант по формуле (D=b^2-4ac).

Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_1=frac<-b – sqrt><2a>).

В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

Решите квадратное уравнение (3x^2+x+2=0)
Решение:

Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

Найдем дискриминант по формуле (D=b^2-4ac).

Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_1=frac<-b – sqrt><2a>).

Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

Пример. Решить уравнение (x^2-7x+6=0).
Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
Ответ: (x_1=1), (x_2=6).

Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
– с помощью дискриминанта
– с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x – 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 – 5&6/5z +1/7z^2
Результат: ( 3frac<1> <3>- 5frac<6> <5>z + frac<1><7>z^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+1<,>4=0, quad 8x^2-7x=0, quad x^2-frac<4><9>=0 )
имеет вид
( ax^2+bx+c=0, )
где x – переменная, a, b и c – числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x – переменная, a, b и c – некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 – неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ <1,2>= pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac<2a>+left( frac<2a>right)^2- left( frac<2a>right)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ <1,2>= frac < -b pm sqrt> <2a>), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac <2a>).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

[spoiler title=”источники:”]

http://cos-cos.ru/math/121/

http://www.math-solution.ru/math-task/quadr-eq

[/spoiler]

Добавить комментарий