mosthoneso424
Вопрос по математике:
1.Найти log(3)39,log(27)13,log(27)39,log(9)117,если log(3)13=m
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
thindrevele967
Решение смотри в приложении
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.
1. Найти log(3)39, log(27)13, log(27)39, log(9)117, если log(3)13 = m.
На этой странице сайта размещен вопрос 1. Найти log(3)39, log(27)13, log(27)39, log(9)117, если log(3)13 = m? из категории
Математика с правильным ответом на него. Уровень сложности вопроса
соответствует знаниям учеников 10 – 11 классов. Здесь же находятся ответы по
заданному поиску, которые вы найдете с помощью автоматической системы.
Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по
заданной теме. На этой странице можно обсудить все варианты ответов с другими
пользователями сайта и получить от них наиболее полную подсказку.
Посчитать логарифм
- Главная
- /
- Математика
- /
- Арифметика
- /
- Посчитать логарифм
Для того чтобы посчитать логарифм (log) любого числа по любому основанию просто воспользуйтесь нашим удобным онлайн калькулятором:
Онлайн калькулятор
Чему равен
log?
Ответ:
0
Округление ответа:
Просто введите число и основание логарифма, и получите ответ.
Логарифм числа b по основанию a определяется как степень, в которую нужно возвести основание a, чтобы получилось число b.
Формула
x = logab, при этом ax = b
Пример
К примеру, определим: 2 в какой степени будет 8? То есть посчитаем логарифм 8-ми по основанию 2:
log28 = 3, теперь проверим: 23 = 8
Посчитать натуральный логарифм
Чему равен
ln?
Ответ:
0
Округление ответа:
Натуральный логарифм – это логарифм с основанием e.
Формула
lnx = logex, где число e ≈ 2,718
Посчитать десятичный логарифм
Чему равен
lg?
Ответ:
0
Округление ответа:
Десятичный логарифм – это логарифм с основанием 10.
Формула
lgx = log10x
Посчитать двоичный логарифм
Чему равен
lb?
Ответ:
0
Округление ответа:
Двоичный логарифм – это логарифм с основанием 2.
Формула
lbx = log2x
См. также
How to find what is Log Base 27 of 13? The logarithm of a number to a given base is the exponent to which the base must be raised to produce the number. In mathematical terms, if “b” is the base and “x” is the number, then the logarithm of “x” to the base “b” is written as logb(x) and is defined as the exponent “y” such that b^y = x.
The logarithm of a number to a given base is a useful tool in many areas of mathematics and science, including finance, engineering, and physics. It’s also used in solving exponential equations and in graphing logarithmic functions.
In mathematics, the most common logarithms are logarithms to the base 10, which are called common logarithms, and logarithms to the base e, which are called natural logarithms. The natural logarithm is denoted by the symbol ln, and has special properties in calculus and other areas of mathematics.
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
e^{2ln(x)}
-
ln(e)
-
log_{3}(81)
-
log_2(30)-log_2(15)
- Показать больше
Описание
Пошаговое упрощение логарифмических выражений с помощью алгебраических правил
logarithms-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
High School Math Solutions – Inequalities Calculator, Exponential Inequalities
Last post, we talked about how to solve logarithmic inequalities. This post, we will learn how to solve exponential…
Read More
Введите Задачу
Сохранить в блокнот!
Войти