Математика как найти частное от деления

Частное чисел в математике: что это такое простыми словами для детей

Частное чисел в математике: что это такое? В школе учат действие деление, где есть делимое, делитель и частное. Что означают эти названия? Давайте разбираться!

Содержание статьи:

Частное чисел в математике: что это такое

Однажды клоун Бим решил выучить математическое действие деление и нашел для себя в интернете вот такое определение:

Определение. Говорят, что a делится на b, если существует натуральное число с, при умножении которого на b получается а: a=b*c. При этом записывают: a:b=с, — и называют а — делимым, b — делителем, с — частным.

Как мне это понять? — задумался Бим. — Но скоро представление, пойду ребят к нам приглашать.

Как найти частное чисел

Частное чисел в математике: что это такое простыми словами для детей

Пришли в цирк трое ребят: Вася, Коля и Оля. На входе их встречал клоун Бим, который дарил детям шарики. У него в руках было 6 шариков, но дарил он их за отгадки. Клоун спросил у ребят:

— Мне надо подарить вам шарики, какое математическое действие я буду применять?

— Деление! — быстро ответил Коля. — Ты же будешь делить шарики между нами.

Клоун хитро прищурился:

— А как называются члены деления?

— Мы недавно это изучали! — воскликнула Оля. — Всё количество шариков, которое ты будешь делить, называется делимое. У тебя сейчас 6 шариков, значит здесь делимое 6!

— А то, на сколько ребят ты их разделишь, называется делитель, — вмешался Вася. — Нас трое ребят, значит делитель 3!

Коля продолжил:

— У каждого из нас будет часть шариков, и результат от деления называется частным.

— Какое же здесь будет частное? — спрашивает Бим.

Два! — не сговариваясь, хором ответили ребята.

— Правильно, каждому из вас достанется по два шарика, это и есть частное.

Ребята ответили на все вопросы Бима, и каждый получил по два шарика — как результат деления:

6 (делимое) : 3 (делитель) = 2 (частное).

Частное чисел в математике: что это такое простыми словами для детей

Запишем цифрами:

6:3=2

В этом выражении 6 (делимое) стоит самым первым, 3 (делитель) — на втором месте. А частное (2) — после знака равенства справа.

Итак, частное — это число, которое получается в результате деления делимого на делитель.

Полное и неполное частное

А потом было замечательное представление.

В антракте дети пошли в буфет. На подносе лежало семь пирожных. Как же их разделить поровну на трёх ребят?

Друзья задумались и взяли по 2 пирожных, а последним, которое было в остатке, угостили клоуна Бима.

Частное чисел в математике: что это такое простыми словами для детей

— Теперь я понял! — воскликнул Бим. — Если нельзя всё число пирожных поделить между ребятами без остатка, то такой результат от деления называется неполным частным. А то, что осталось после деления, так и называется остатком и записывается это вот так:

7:3=2(1)

Здесь 7 (делимое) по-прежнему стоит в начале выражения, 3 (делитель)в середине, 2 (неполное частное)справа. Но после неполного частного ещё пишем в скобках остаток (1).

  • Полное частное — результат деления, когда делимое делится нацело на делитель (остаток равен 0, его и писать незачем).
  • Неполное частное — это результат деления с остатком (когда делимое не делится нацело на делитель).

Как найти делитель

Когда дети ушли занимать свои места, буфетчица подошла к Биму и спросила:

— Я забыла, сколько было ребят. Помню только, что каждый из них съел по два пирожных, а всего им досталось 6 штук. Сколько же посетителей было у меня?

Тут в буфет заглянул дрессировщик Бом и быстренько решил эту задачку. Он разделил 6 (делимое) на 2 (частное) и получил 3 (делитель).

— Всего было трое ребят, — ответил Бом.

— Верно! — вспомнил Бим.

Для того чтобы найти делитель, надо делимое разделить на частное.

6:2=3

Здесь 6 – делимое, 2 – частное, а 3 – делитель.

Как найти делимое

— А сколько ты подарил всего шариков трём ребятам? — спросил Бом.

— Забыл, — ответил Бим. — Помню только, что детей было трое, и каждому досталось по два шарика.

Бом и говорит:

— Тогда надо 3 (делитель) умножить на 2 (частное), получится 6.

Для того чтобы найти делимое, надо делитель умножить на частное.

Запишем это цифрами:

3*2=6.

3 — наш делитель, 2 — частное, а 6 — делимое.

Проверка деления умножением

— Я что-то не пойму. Это уже умножение, а не деление! — говорит Бим. — Выходит, что деление — действие обратное умножению. То есть, мы можем проверить деление умножением?

— Да, — ответил Бом.

Деление — действие, обратное умножению. Для того чтобы проверить деление, надо провести умножение.

Заключение

А клоун для себя сделал плакаты и теперь каждый день может сразу вспомнить, что:

Определение. Говорят, что а делится на b, если существует число с, при умножении которого на b получается а: a= b*c. При этом записывают: a:b=с, — и называют а — делимым, b — делителем, с — частным.

  • Деление — действие, обратное умножению;
  • умножение проверяет правильность математического действия — деления;
  • для того чтобы найти делимое, надо делитель умножить на частное;
  • для того чтобы найти делитель, надо делимое разделить на частное.

Итак, теперь мы знаем, что же такое частное в математике. Оказывается, оно бывает полным и неполным! Кроме того, нетрудно будет найти делитель, делимое и проверить деление умножением. И если учитель спросит в школе: «Частное чисел в математике: что это такое?» — сможем ответить сразу. И пусть любой пример или задача на эту тему будет вам по плечу!

Оригинальная идея подачи материала принадлежит Стуловой Лилии Валериевне (преподаватель математики от 5 лет и старше).

Содержание материала

  1. Определение частного чисел (деление)
  2. Видео
  3. Неполное частное
  4. Как найти частное чисел
  5. Проверка деления умножением
  6. Увеличение или уменьшение делимого
  7. Нахождение значения частного чисел
  8. Деление с остатком

Определение частного чисел (деление)

Частное чисел — это результат получаемый при определении количества содержания одного числа в другом. Проще говоря это обычное деление. При этом общепринятые оперируемые понятия для частного это делимое, делитель и само частное — результат.

 

Пример. Найти частное чисел:

1) 20:2=10;

2) 35:7=5.

Ответ: 20:2=10 и  35:7=5.

Это был самый простой пример. Все самое интересное впереди! Проблемы с делением начинаются тогда, когда числа становятся большими и выходят за рамки таблицы умножения. Здесь приходится делить большое число по определенному правилу. Такое деление еще называется деление в столбик. 

Пример. Найти частное чисел:

1) 894:3=298

-894| 3__ 6    |298-29  27— 24  24    0

Ответ: 894:3=298

Видео

Неполное частное

Неполное частное – результат, который получился после деления с остатком.

Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.

Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.

Например, 17 не делится без остатка на 5.

Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.

Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.

Как найти частное чисел

Пришли в цирк трое ребят: Вася, Коля и Оля. На входе их встречал клоун Бим, который дарил детям шарики. У него в руках было 6 шариков, но дарил он их за отгадки. Клоун спросил у ребят:

— Мне надо подарить вам шарики, какое математическое действие я буду применять?

— Деление! — быстро ответил Коля. — Ты же будешь делить шарики между нами.

Клоун хитро прищурился:

 — А как называются члены деления?

 — Мы недавно это изучали! — воскликнула Оля. — Всё количество шариков, которое ты будешь делить, называется делимое. У тебя сейчас 6 шариков, значит здесь делимое 6!

— А то, на сколько ребят ты их разделишь, называется делитель, — вмешался Вася. — Нас трое ребят, значит делитель 3!

Коля продолжил:

 — У каждого из нас будет часть шариков, и результат от деления называется частным.

— Какое же здесь будет частное? — спрашивает Бим.

Два! — не сговариваясь, хором ответили ребята.

 — Правильно, каждому из вас достанется по два шарика, это и есть частное.

Ребята ответили на все вопросы Бима, и каждый получил по два шарика — как результат деления:

6 (делимое) : 3 (делитель) = 2 (частное).

Запишем цифрами:

6:3=2

Делимое Делитель Частное
6 3 2

В этом выражении 6 (делимое) стоит самым первым, 3 (делитель) — на втором месте. А частное (2) — после знака равенства справа.

Итак, частное — это число, которое получается в результате деления делимого на делитель.

Проверка деления умножением

— Я что-то не пойму. Это уже умножение, а не деление! — говорит Бим. — Выходит, что деление — действие обратное умножению. То есть, мы можем проверить деление умножением?

— Да, — ответил Бом.

Деление — действие, обратное умножению. Для того чтобы проверить деление, надо провести умножение.

Центр образовательных технологий Advance 

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно. 

Изложенное правило имеет такой вид:

Приведём пример:

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

(12∗3) /2 = 6∗3 — увеличили делимое на 3, равенство верное: 36 / 2 = 18;

(12 / 3) / 2 = 6 / 3 — уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Нахождение значения частного чисел

Пример:

12 : 3 = 4 (в числе 12 4 раза содержится по 3)

15 : 5 = 3 (в числе 15 5 раз содержится по 5)

Нужно знать, что правильность определения частного от деления числа всегда можно проверить путем перемножения его на делитель, либо делимое поделить на частное и получить делитель.

Например:

20 : 4 = 5

Перемножим частное двух чисел на делитель и получим делимое:

4 * 5 = 20

Разделим делимое на частное и получим делитель:

20 : 5 = 4

Таким образом, мы доказали правильность определения частного.

Деление с остатком

Деление с остатком есть отыскание наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Искомое число называется неполным частным. Разность между делимым и произведением делителя на неполное частное называется остатком. Он всегда меньше делителя.

19 не делится нацело на 5.Числа 1, 2, 3 в произведение с 5 дают 5, 10, 15,не превосходящие делимое 19,но уже 4 дает в произведении с 5 число 20, большее, чем 19.Поэтому неполное частное есть 3.Разность между 19 и произведением 3 · 5 = 15 есть 1915 = 4;поэтому остаток есть 4.

Теги

Что такое частное чисел

Определение

Частное — это результат процесса деления. Делением называется такая операция, которая обратна умножению, то есть показывает, сколько одинаковых чисел способно содержаться в другом.

Буквенный вид этого действия выглядит следующим образом: a: b = c, где:

  • a – это делимое (число, которое делят)
  • b – это делитель (число, которым делят)
  • с – это частное (результирующее число деления)
  • : — арифметический знак, с помощью которого обозначается деление

Важно! Число 0 никогда не может быть делителем

Нахождение значения частного чисел

Пример:

12 : 3 = 4 (в числе 12 4 раза содержится по 3)

15 : 5 = 3 (в числе 15 5 раз содержится по 5)

Нужно знать, что правильность определения частного от деления числа всегда можно проверить путем перемножения его на делитель, либо делимое поделить на частное и получить делитель.

Например:

20 : 4 = 5

Перемножим частное двух чисел на делитель и получим делимое:

4 * 5 = 20

Разделим делимое на частное и получим делитель:

20 : 5 = 4

Таким образом, мы доказали правильность определения частного.

Что такое частное значение чисел с остатком?

Иногда при делении от делимого остается остаток, который меньше делителя, но более нуля. Приведем выражение частного чисел:

8 : 3 = 2 (ост. 2)

Это значит, что делимое 8 поделилось 2 раза по 3 и остался остаток 2, который меньше трех, но больше нуля.

Таким образом: 0 < ост. <делитель

Основные понятия о частном суммы и разности чисел

Что такое частное суммы чисел? 

Определение

Частное от деления суммы чисел – это когда делимое либо делитель выступает в роли суммы двух слагаемых.

Общий вид: (a+b):(c+d), где сумма чисел (a+b) – делимое, а сумма (c+d) – делитель

Пример: (12+3):(3+2)=3

Важно, в подобных примерах последовательность решения определяется следующим образом: сначала решаются выражения в скобочках, потом выражения со знаками деления или умножения, после – вычитание или сложение.

Нет времени решать самому?

Наши эксперты помогут!

Поговорим о частном разности чисел

Аналогично, как и с частностью суммы, только в роли делимого или делителя выступает значение разности: (a-b):(c-d), где разность чисел (a-b) – делимое, а разность (c-d) – делитель

Пример нахождения разности чисел: (12-3):(5-2)=3, где

3 и 2 — это вычитаемое частное чисел

Также в математике находят сумму частного произведения чисел:

(12+3)*(1+2)=45

И произведение частного чисел:

(12*5):(5*2)=6

Основные правила при делении

  1. При делении одного числа на единицу – получаем в ответ делимое: 6 : 1 = 6
  2. При делении одного числа на само себя – получаем в ответ 1: 7 : 7 = 1
  3. Если произведение поделить на один из множителей, то получится другой множитель:

6*3=18, 18:6=3, 18:3=6.

При делении на десятки (10, 100…) у частной, запятой с левой стороны отделяется столько цифр, сколько нулей в делителе: 34:10=3,4, 34:100=0,34, 34:1000=0,034.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июля 2014 года; проверки требуют 5 правок.

Частное в арифметике — результат операции деления делимого на делитель, который может быть как целым числом, так десятичной или обыкновенной дробью.

Чаще всего записывается как два числа, разделённых горизонтальной чертой:

{displaystyle {dfrac {1}{2}}quad {begin{aligned}&leftarrow {text{делимое}}\&leftarrow {text{делитель}}end{aligned}}{Biggr }}leftarrow {text{частное}}}

Либо с использованием знака деления ÷, либо слэша /.

Иногда частным зовут целочисленную часть результата операции деления, то есть то количество раз, которое делитель может быть извлечён из делимого без того, чтобы остаток ушёл в минус.

Иррациональные числа, например, отношение диагонали к стороне квадрата, не являются частным операции деления 2 целых чисел.

Пример кода для реализации вывода частного на C++:

#include <iostream>
using namespace std;

int main()
{    
    int делимое, делитель, частное, остаток;

    cout << "Введите делимое: ";
    cin >> делимое;

    cout << "Введите делитель: ";
    cin >> делитель;

    частное = делимое / делитель;
    остаток = делимое % делитель;

    cout << "Частное = " << частное << endl;
    cout << "Остаток = " << остаток << endl;

    return 0;
}

Частное чисел

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Частным числа называется результат деления какого-либо числа, называемого делимым, на какое-либо другое число, называемое делителем.

Частное, делимое и делитель. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Частное, делимое и делитель. Автор24 — интернет-биржа студенческих работ

Частное, может быть целым числом, такие числа записываются без каких-либо знаков после запятой, а также без знаков дроби или дробным. Также различают деление с остатком, в котором поимо частного получается ещё некоторый остаток, который дальше на делитель уже не делится. Обычно при делении с остатком сам остаток записывают отдельно.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Для частного, полученного после деления без остатка, характерно следующее свойство: если частное домножить на делитель, получится делимое.

При выполнении деления двух чисел, не являющихся дробями, можно воспользоваться способом получения значения частного в столбик, ниже приведён пример осуществления такого деления:

Частное при делении целого на целое. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Частное при делении целого на целое. Автор24 — интернет-биржа студенческих работ

В случае же если необходимо получить частное от деления дробей с запятой, иначе называемых десятичными, сначала можно домножить делитель и делимое на $10$ в $n$-ой степени чтобы избавиться от запятой в делителе, а затем выполнить деление в столбик как для целых или дробных десятичных чисел.

Пример 1

Чтобы найти частное от деления $0,1232$ на $0,25$ сначала можно оба числа умножить на $100$ и затем разделить в столбик $12,32$ на $25$. Получающееся частное равно частному от деления $0,1232$ на $0,25$.

Частное от деления. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Частное от деления. Автор24 — интернет-биржа студенческих работ

Если необходимо найти частное от деления обыкновенной дроби на другую обыкновенную дробь, нужно перевернуть дробь-делитель «вверх ногами» и домножить перевёрнутую дробь на дробь-делимое:

$frac{a}{b}: frac{c}{d}=frac{a}{b} cdot {d}{c}=frac{a cdot d} {b cdot c}$.

Если одна из дробей-участниц деления имеет целую часть, то сначала эту дробь необходимо перевести в неправильную.

Пример 2

Узнайте, какое частное получится от деления $3frac{1}{2}$ на $frac{5}{7}$.

Решение:

$3frac{1}{2}:frac{5}{7}= frac{7}{2} : frac{5}{7}=frac{7}{2} cdot frac{7}{5}=frac{7 cdot 7}{2 cdot 5}=frac{49}{10}=4frac{9}{10}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 17.04.2023

Добавить комментарий