Математика как найти cosa

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) – это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) – это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) – это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг – вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором – теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 Угол поворота

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Синус, косинус, тангенс и котангенс: основные формулы​​​​​​​

Определение косинуса угла

Косинусом угла в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе.

Для простоты запоминания можно дать такое определение: косинус угла — это отношение ближнего от рассматриваемого угла катета к гипотенузе.

1.png

В случае с рисунком, описанным выше: cos⁡α=bccosalpha=frac{b}{c}

Задача 1

Гипотенуза прямоугольного треугольника равна 10 см10text{ см}. Один из катетов равен 6 см6text{ см}. Найдите косинус угла, прилежащего к наибольшему катету.

Решение

Пользуясь теоремой Пифагора вычислим длину неизвестного нам катета.

a2+b2=c2a^2+b^2=c^2

62+b2=1026^2+b^2=10^2

36+b2=10036+b^2=100

b2=64b^2=64

b=8b=8

Катет bb длиннее катета aa. Нам нужно найти косинус угла, прилежащего к наибольшему катету, то есть, к катету bb:

cos⁡α=bc=810=0.8cosalpha=frac{b}{c}=frac{8}{10}=0.8

Ответ

0.8

Задача 2

Две стороны треугольника равны 4 см4text{ см} и 9 см9text{ см}. Периметр его равен 25 см25text{ см}.
Найдите косинус угла, прилежащего к неизвестной стороне и стороне с длиной 4 см4text{ см}.

Решение

Найдем третью сторону треугольника. Так как известен периметр, это будет легко сделать:

P=a+b+cP=a+b+c

25=9+4+c25=9+4+c

c=12c=12

При нахождении косинуса угла нам поможет следствие из теоремы косинусов, которое выглядит так:

cos⁡α=b2+c2−a22⋅b⋅c=42+122−922⋅4⋅12=16+144−8196=7996≈0.82cosalpha=frac{b^2+c^2-a^2}{2cdot bcdot c}=frac{4^2+12^2-9^2}{2cdot 4cdot 12}=frac{16+144-81}{96}=frac{79}{96}approx0.82

Ответ

0.820.82

Решение задач по математике от экспертов сайта Студворк!

Тест по теме “Вычисление косинуса”

Косинус угла cos(A)

Косинус угла cos(A) — есть отношение прилежащего катета b к гипотенузе c

[ cos(A) = frac{b}{c} ]

Косинус угла — cos(A), таблица

0°
Косинус угла 0 градусов

$ cos(0°) = cos(0) = 1 $
1.000
30°
Косинус угла 30 градусов

$ cos(30°) = cosBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{sqrt{3}}{2}normalsize $
0.866
45°
Косинус угла 45 градусов

$ cos(45°) = cosBig(Largefrac{pi}{4}normalsizeBig) = Largefrac{sqrt{2}}{2}normalsize $
0.707
60°
Косинус угла 60 градусов

$ cos(60°) = cosBig(Largefrac{pi}{3}normalsizeBig) = Largefrac{1}{2}normalsize $
0.500
90°
Косинус угла 90 градусов

$ cos(90°) = cosBig(Largefrac{pi}{2}normalsizeBig) = 0 $
0.000

Вычислить, найти косинус угла cos(A) и угол, в прямоугольном треугольнике

Вычислить, найти косинус угла cos(A) по углу A в градусах

Вычислить, найти косинус угла cos(A) по углу A в радианах

Косинус угла — cos(A)

стр. 218

Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция – arccos(y)=x

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 – 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α – c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α – 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) – 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 – a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 – a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 – a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 – (b × cos α) 2
  • h 2 = a 2 – (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 – (b × cos α) 2 = a 2 – (c – b × cos α) 2
  • a 2 = b 2 + c 2 – 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 – 2ac × cos β;
  • c 2 = a 2 + b 2 – 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 – 2bc cos α

b 2 = c 2 + a 2 – 2ca cos β

c 2 = a 2 + b 2 – 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.


Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

h 2 = a 2 – (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2

a 2 = b 2 + c 2 – 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/teorema-kosinusov-i-sinusov

http://www.calc.ru/Teorema-Kosinusov-Dokazatelstvo-Teoremy-Kosinusov.html

[/spoiler]

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус (sin x);
  • косинус (cos x);
производные тригонометрические функции:
  • тангенс {displaystyle left(mathrm {tg} ,x={frac {sin x}{cos x}}right)};
  • котангенс {displaystyle left(mathrm {ctg} ,x={frac {cos x}{sin x}}right)};
  • секанс {displaystyle left(sec x={frac {1}{cos x}}right)};
  • косеканс {displaystyle left(mathrm {cosec} ,x={frac {1}{sin x}}right)};
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются {displaystyle tan x}, {displaystyle cot x}, csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках pm pi n + frac{pi}{2}, а у котангенса и косеканса — в точках pm pi n.
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса (R=1) с центром в начале координат O. Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча OB (точку B выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки B обозначим x_B, а ординату — y_B (см. рисунок 2).

Синусом угла alpha называется ордината точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Косинусом угла alpha называется абсцисса точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Тангенсом угла alpha называется отношение ординаты точки {displaystyle M_{alpha }} единичной окружности к её абсциссе, причём точка {displaystyle M_{alpha }} не принадлежит оси ординат.

Котангенсом угла alpha называется отношение абсциссы точки {displaystyle M_{alpha }} единичной окружности к её ординате, причём точка {displaystyle M_{alpha }} не принадлежит оси абсцисс.[4]

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (pm 1). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса R, однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в {displaystyle 360^{circ }} запишется длиной единичной окружности 2pi . Угол в 180^{circ } равен, соответственно pi и так далее. Заметим, что угол на 2pi отличающийся от alpha по рисунку эквивалентен alpha , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа x тригонометрическими функциями угла, радианная мера которого равна x.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть {displaystyle triangle AOB} — прямоугольный (угол {displaystyle angle A} прямой), с острым углом {displaystyle angle AOB=alpha } и гипотенузой OB. Тогда:

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

 left(cos xright)'' = - cos x,
 left(sin  xright)'' = - sin x.

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

frac{d^2}{dvarphi^2}R(varphi) = - R(varphi),

с дополнительными условиями:
R(0)=1 для косинуса и R'(0)=1 для синуса.

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[7]
как решения (f и g соответственно) системы функциональных уравнений:

left{
begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\
g(x+y)&=&g(x)f(y)+f(x)g(y)
end{array}
right.

при дополнительных условиях:

f(x)^{2}+g(x)^{2}=1, g(pi /2)=1, и {displaystyle 0<g(x)<1} при 0<x<pi /2.

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+frac{x^9}{9!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n+1}}{(2n+1)!},
cos x=1-frac{x^2}{2!}+frac{x^4}{4!}-frac{x^6}{6!}+frac{x^8}{8!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также равенствами operatorname{tg},x=frac{sin x}{cos x}, operatorname{ctg},x=frac{cos x}{sin x}, sec x=frac{1}{cos x} и operatorname{cosec},x=frac{1}{sin x}, можно найти разложения в ряд и других тригонометрических функций:

{operatorname{tg},x=x+frac{1}{3},x^3 + frac{2}{15},x^5 + frac{17}{315},x^7 + frac{62}{2835},x^9 + cdots = sum_{n=1}^inftyfrac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} quad left(-frac{pi}{2}<x<frac{pi}{2}right),}
{operatorname{ctg},x = frac{1}{x} - frac{x}{3} - frac{x^3}{45} - frac{2x^5}{945} - frac{x^7}{4725} - cdots = frac{1}{x} - sum_{n=1}^infty frac{2^{2n}|B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),}
{sec x=1+frac{1}{2},x^2+frac{5}{24},x^4+frac{61}{720},x^6+frac{277}{8064},x^8+cdots = sum_{n=0}^inftyfrac{|E_{n}|}{(2n)!},x^{2n}, quad left(-frac{pi}{2} < x < frac{pi}{2}right),}
operatorname{cosec} x = frac{1}{x} + frac{1}{6},x + frac{7}{360},x^3 + frac{31}{15120},x^5 + frac{127}{604800},x^7 + cdots = frac{1}{x} + sum_{n=1}^infty frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),

где

B_{n} — числа Бернулли,
E_{n} — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («infty » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Радианы {displaystyle 0} {displaystyle {frac {pi }{6}}} {displaystyle {frac {pi }{4}}} {displaystyle {frac {pi }{3}}} {displaystyle {frac {pi }{2}}} pi {displaystyle {frac {3pi }{2}}} 2pi
Градусы {displaystyle 0^{circ }} {displaystyle 30^{circ }} {displaystyle 45^{circ }} {displaystyle 60^{circ }} {displaystyle 90^{circ }} {displaystyle 180^{circ }} {displaystyle 270^{circ }} {displaystyle 360^{circ }}
{displaystyle sin alpha } {displaystyle 0} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 {displaystyle 0} -1 {displaystyle 0}
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} {displaystyle 0} -1 {displaystyle 0} 1
operatorname{tg},alpha {displaystyle 0} {displaystyle {frac {1}{sqrt {3}}}} 1 sqrt{3} infty {displaystyle 0} infty {displaystyle 0}
operatorname{ctg},alpha infty sqrt{3} 1 frac{sqrt{3}}{3} {displaystyle 0} infty {displaystyle 0} infty
{displaystyle sec alpha } 1 {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 infty -1 infty 1
{displaystyle operatorname {cosec} ,alpha } infty 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}} 1 infty -1 infty

Значения тригонометрических функций нестандартных углов[править | править код]

Радианы {displaystyle {frac {2pi }{3}}} {displaystyle {frac {3pi }{4}}} {displaystyle {frac {5pi }{6}}} {displaystyle {frac {7pi }{6}}} {displaystyle {frac {5pi }{4}}} {displaystyle {frac {4pi }{3}}} {displaystyle {frac {5pi }{3}}} {displaystyle {frac {7pi }{4}}} {displaystyle {frac {11pi }{6}}}
Градусы {displaystyle 120^{circ }} {displaystyle 135^{circ }} {displaystyle 150^{circ }} {displaystyle 210^{circ }} {displaystyle 225^{circ }} {displaystyle 240^{circ }} {displaystyle 300^{circ }} {displaystyle 315^{circ }} {displaystyle 330^{circ }}
{displaystyle sin alpha } frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2}
cos alpha -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2}
operatorname{tg},alpha -sqrt{3} -1 -frac{sqrt{3}}{3} frac{sqrt{3}}{3} 1 sqrt{3} -sqrt{3} -1 -frac{sqrt{3}}{3}
operatorname{ctg},alpha -frac{sqrt{3}}{3} -1 -sqrt{3} sqrt{3} 1 frac{sqrt{3}}{3} -frac{sqrt{3}}{3} -1 -sqrt{3}
{displaystyle sec alpha } -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2
Радианы {displaystyle {frac {pi }{12}}} {displaystyle {frac {pi }{10}}} {displaystyle {frac {pi }{8}}} {displaystyle {frac {pi }{5}}} {displaystyle {frac {3pi }{10}}} {displaystyle {frac {3pi }{8}}} {displaystyle {frac {2pi }{5}}} {displaystyle {frac {5pi }{12}}}
Градусы {displaystyle 15^{circ }} {displaystyle 18^{circ }} {displaystyle 22{,}5^{circ }} {displaystyle 36^{circ }} {displaystyle 54^{circ }} {displaystyle 67{,}5^{circ }} {displaystyle 72^{circ }} {displaystyle 75^{circ }}
{displaystyle sin alpha } {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}} frac{sqrt{5}-1}{4} frac{sqrt{2-sqrt{2}}}{2} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{5}+1}{4} frac{sqrt{2+sqrt{2}}}{2} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}}
cos alpha {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} frac{sqrt{2+sqrt{2}}}{2} frac{sqrt{5}+1}{4} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{2-sqrt{2}}}{2} frac{sqrt{5}-1}{4} {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}}
operatorname{tg},alpha 2-sqrt{3} {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} sqrt{2}-1 {displaystyle {sqrt {5-2{sqrt {5}}}}} {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} sqrt{2}+1 {displaystyle {sqrt {5+2{sqrt {5}}}}} {displaystyle 2+{sqrt {3}}}
operatorname{ctg},alpha {displaystyle 2+{sqrt {3}}} {displaystyle {sqrt {5+2{sqrt {5}}}}} sqrt{2}+1 {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5-2{sqrt {5}}}}} sqrt{2}-1 {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} 2-sqrt{3}
{displaystyle sec alpha } {displaystyle {sqrt {2}}({sqrt {3}}-1)} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {sqrt {5}}-1} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {2}}({sqrt {3}}+1)}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {sqrt {2}}({sqrt {3}}+1)} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5}}-1} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {2}}({sqrt {3}}-1)}

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности (x^{2}+y^{2}=1) или теореме Пифагора, имеем:

{displaystyle sin ^{2}alpha +cos ^{2}alpha =1.}

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

{displaystyle 1+mathop {mathrm {tg} } ,^{2}alpha =mathop {mathrm {sec} } ,^{2}alpha ,}
{displaystyle 1+mathop {mathrm {ctg} } ,^{2}alpha =mathop {mathrm {cosec} } ,^{2}alpha .}

Из определения тангенса и котангенса следует, что

 mathop{mathrm{tg}},alpha  cdot mathop{mathrm{ctg}},alpha=1.

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для {displaystyle 0<x<pi /2}:

  sin cos tg ctg sec cosec
{displaystyle ,sin x=} {displaystyle ,sin x} {displaystyle {sqrt {1-cos ^{2}x}}} {displaystyle {frac {operatorname {tg} x}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle {frac {1}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle {frac {sqrt {sec ^{2}x-1}}{sec x}}} {displaystyle {frac {1}{operatorname {cosec} x}}}
{displaystyle ,cos x=} {displaystyle ,{sqrt {1-sin ^{2}x}}} {displaystyle ,cos x} {displaystyle ,{frac {1}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle ,{frac {operatorname {ctg} x}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle ,{frac {1}{sec x}}} {displaystyle ,{frac {sqrt {operatorname {cosec} ^{2}x-1}}{operatorname {cosec} x}}}
{displaystyle ,operatorname {tg} x=} {displaystyle ,{frac {sin x}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {sqrt {1-cos ^{2}x}}{cos x}}} {displaystyle ,operatorname {tg} x} {displaystyle ,{frac {1}{operatorname {ctg} x}}} {displaystyle ,{sqrt {sec ^{2}x-1}}} {displaystyle ,{frac {1}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {ctg} x=} {displaystyle ,{frac {sqrt {1-sin ^{2}x}}{sin x}}} {displaystyle ,{frac {cos x}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {1}{operatorname {tg} x}}} {displaystyle ,operatorname {ctg} x} {displaystyle ,{frac {1}{sqrt {sec ^{2}x-1}}}} {displaystyle ,{sqrt {operatorname {cosec} ^{2}x-1}}}
{displaystyle ,sec x=} {displaystyle ,{frac {1}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {1}{cos x}}} {displaystyle ,{sqrt {1+operatorname {tg} ^{2}x}}} {displaystyle ,{frac {sqrt {operatorname {ctg} ^{2}x+1}}{operatorname {ctg} x}}} {displaystyle ,sec x} {displaystyle ,{frac {operatorname {cosec} x}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {cosec} x=} {displaystyle ,{frac {1}{sin x}}} {displaystyle ,{frac {1}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {sqrt {1+operatorname {tg} ^{2}x}}{operatorname {tg} x}}} {displaystyle ,{sqrt {operatorname {ctg} ^{2}x+1}}} {displaystyle ,{frac {sec x}{sqrt {sec ^{2}x-1}}}} {displaystyle ,operatorname {cosec} x}

Непрерывность[править | править код]

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 sin left( - alpha right)  =  - sin alpha ,,
 cos left( - alpha right)  =  cos alpha ,,
 mathop{mathrm{tg}}, left( - alpha right)  = - mathop{mathrm{tg}}, alpha ,,
 mathop{mathrm{ctg}}, left( - alpha right)  = - mathop{mathrm{ctg}}, alpha ,,
 sec left( - alpha right)  =  sec alpha ,,
 mathop{mathrm{cosec}}, left( - alpha right)  = - mathop{mathrm{cosec}}, alpha ,.

Периодичность[править | править код]

Функции {displaystyle sin x,;cos x,;sec x,;mathrm {cosec} ,x} — периодические с периодом 2pi , функции {displaystyle mathrm {tg} ,x} и {displaystyle mathrm {ctg} ,x} — c периодом pi .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

{displaystyle f(npi +alpha )=pm f(alpha ),}
{displaystyle f(npi -alpha )=pm f(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}+alpha right)=pm g(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}-alpha right)=pm g(alpha ).}

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол alpha острый, например:

 cos left(  frac{ pi}{2} - alpha right)  =   sin alpha,, или что то же самое:  cos left( 90^circ - alpha right)  =   sin alpha,.

Некоторые формулы приведения:

alpha frac{pi}{2} - alpha frac{pi}{2} + alpha {displaystyle pi -alpha } {displaystyle pi +alpha } frac{3,pi}{2} - alpha frac{3,pi}{2} + alpha 2,pi - alpha
sinalpha cosalpha cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha }
cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha } sinalpha cosalpha
operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha
operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

 sinleft( alpha pm beta right)= sinalpha , cosbeta pm cosalpha , sinbeta,
 cosleft( alpha pm beta right)= cosalpha , cosbeta mp sinalpha , sinbeta,
 operatorname{tg}left( alpha pm beta right) = frac{operatorname{tg},alpha pm operatorname{tg},beta}{1 mp operatorname{tg},alpha , operatorname{tg},beta},
 operatorname{ctg}left( alpha pm beta right) = frac{operatorname{ctg},alpha,operatorname{ctg},beta mp 1}{operatorname{ctg},beta pm operatorname{ctg},alpha}.

Аналогичные формулы для суммы трёх углов:

sin left( alpha + beta + gamma right) = sin alpha cos beta cos gamma + cos alpha sin beta cos gamma + cos alpha cos beta sin gamma - sin alpha sin beta sin gamma,
cos left( alpha + beta + gamma right) = cos alpha cos beta cos gamma - sin alpha sin beta cos gamma - sin alpha cos beta sin gamma - cos alpha sin beta sin gamma.

Формулы для кратных углов[править | править код]

Формулы двойного угла:

sin 2alpha = 2 sin alpha cos alpha = frac{2,operatorname{tg},alpha }{1 + operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha }{1 + operatorname{ctg}^2alpha} = frac{2}{operatorname{tg},alpha + operatorname{ctg},alpha},
cos 2alpha = cos^2 alpha,-,sin^2 alpha = 2 cos^2 alpha,-,1 = 1,-,2 sin^2 alpha = frac{1 - operatorname{tg}^2 alpha}{1 + operatorname{tg}^2alpha} = frac{operatorname{ctg}^2 alpha - 1}{operatorname{ctg}^2alpha + 1} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{operatorname{ctg},alpha + operatorname{tg},alpha},
operatorname{tg},2 alpha = frac{2,operatorname{tg},alpha}{1 - operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha}{operatorname{ctg}^2alpha - 1} = frac{2}{operatorname{ctg},alpha - operatorname{tg},alpha},
operatorname{ctg},2 alpha = frac{operatorname{ctg}^2 alpha - 1}{2,operatorname{ctg},alpha} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{2}.

Формулы тройного угла:

sin,3alpha=3sinalpha - 4sin^3alpha,
cos,3alpha=4cos^3alpha -3cosalpha,
operatorname{tg},3alpha=frac{3,operatorname{tg},alpha - operatorname{tg}^3,alpha}{1 - 3,operatorname{tg}^2,alpha},
operatorname{ctg},3alpha=frac{operatorname{ctg}^3,alpha - 3,operatorname{ctg},alpha}{3,operatorname{ctg}^2,alpha - 1}.

Прочие формулы для кратных углов:

sin,4alpha=cosalpha left(4sinalpha - 8sin^3alpharight),
cos,4alpha=8cos^4alpha - 8cos^2alpha + 1,
operatorname{tg},4alpha=frac{4,operatorname{tg},alpha - 4,operatorname{tg}^3,alpha}{1 - 6,operatorname{tg}^2,alpha + operatorname{tg}^4,alpha},
operatorname{ctg},4alpha=frac{operatorname{ctg}^4,alpha - 6,operatorname{ctg}^2,alpha + 1}{4,operatorname{ctg}^3,alpha - 4,operatorname{ctg},alpha},
sin,5alpha=16sin^5alpha-20sin^3alpha +5sinalpha,
cos,5alpha=16cos^5alpha-20cos^3alpha +5cosalpha,
operatorname{tg},5alpha=operatorname{tg}alphafrac{operatorname{tg}^4alpha-10operatorname{tg}^2alpha+5}{5operatorname{tg}^4alpha-10operatorname{tg}^2alpha+1},
operatorname{ctg},5alpha=operatorname{ctg}alphafrac{operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+5}{5operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+1},
 sin (nalpha)=2^{n-1}prod^{n-1}_{k=0}sinleft( alpha+frac{pi k}{n}right) следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

sin(nalpha)=sum_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}cos^{n-2k-1}alpha,sin^{2k+1}alpha,
cos(nalpha)=sum_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}cos^{n-2k}alpha,sin^{2k}alpha,
mathrm{tg}(nalpha)=frac{sin(nalpha)}{cos(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{tg}^{2k+1}alpha}}{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{tg}^{2k}alpha}},
mathrm{ctg}(nalpha)=frac{cos(nalpha)}{sin(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{ctg}^{n-2k}alpha}}{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{ctg}^{n-2k-1}alpha}},

где [n] — целая часть числа n, binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

sinfrac{alpha}{2}=sqrt{frac{1-cosalpha}{2}},quad 0 leqslant alpha leqslant 2pi,
cosfrac{alpha}{2}=sqrt{frac{1+cosalpha}{2}},quad -pi leqslant alpha leqslant pi,
operatorname{tg},frac{alpha}{2}=frac{1-cosalpha}{sinalpha}=frac{sinalpha}{1+cosalpha},
operatorname{ctg},frac{alpha}{2}=frac{sinalpha}{1-cosalpha}=frac{1+cosalpha}{sinalpha},
operatorname{tg},frac{alpha}{2}=sqrt{frac{1-cosalpha}{1+cosalpha}},quad 0 leqslant alpha < pi,
operatorname{ctg},frac{alpha}{2}=sqrt{frac{1+cosalpha}{1-cosalpha}},quad 0 < alpha leqslant pi.

Произведения[править | править код]

Формулы для произведений функций двух углов:

sin alpha sin beta ={frac {cos(alpha -beta )-cos(alpha +beta )}{2}},
sinalpha cosbeta = frac{sin(alpha-beta) + sin(alpha+beta)}{2},
cosalpha cosbeta = frac{cos(alpha-beta) + cos(alpha+beta)}{2},
operatorname{tg},alpha,operatorname{tg},beta = frac{cos(alpha-beta) - cos(alpha+beta)}{cos(alpha-beta) + cos(alpha+beta)},
operatorname{tg},alpha,operatorname{ctg},beta = frac{sin(alpha-beta) + sin(alpha+beta)}{sin(alpha+beta) -sin(alpha-beta)},
operatorname{ctg},alpha,operatorname{ctg},beta = frac{cos(alpha-beta) + cos(alpha+beta)}{cos(alpha-beta) - cos(alpha+beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

sinalpha sinbeta singamma = frac{sin(alpha+beta-gamma) + sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
sinalpha sinbeta cosgamma = frac{-cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) - cos(alpha+beta+gamma)}{4},
sinalpha cosbeta cosgamma = frac{sin(alpha+beta-gamma) - sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
cosalpha cosbeta cosgamma = frac{cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) + cos(alpha+beta+gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

{displaystyle sin ^{2}alpha ={frac {1-cos 2,alpha }{2}}={frac {operatorname {tg} ^{2},alpha }{1+operatorname {tg} ^{2},alpha }},}
cos ^{2}alpha ={frac  {1+cos 2,alpha }{2}}={frac  {operatorname {ctg}^{2},alpha }{1+operatorname {ctg}^{2},alpha }},
operatorname {tg}^{2},alpha ={frac  {1-cos 2,alpha }{1+cos 2,alpha }}={frac  {operatorname {sin}^{2},alpha }{1-operatorname {sin}^{2},alpha }},
{displaystyle operatorname {ctg} ^{2},alpha ={frac {1+cos 2,alpha }{1-cos 2,alpha }}={frac {operatorname {cos} ^{2},alpha }{1-operatorname {cos} ^{2},alpha }},}
sin^3alpha = frac{3sinalpha - sin 3,alpha}{4},
cos^3alpha = frac{3cosalpha + cos 3,alpha}{4},
operatorname{tg}^3,alpha = frac{3sinalpha - sin 3,alpha}{3cosalpha + cos 3,alpha},
operatorname{ctg}^3,alpha = frac{3cosalpha + cos 3,alpha}{3sinalpha - sin 3,alpha},
sin^4alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{8},
cos^4alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{8},
operatorname{tg}^4,alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{cos 4alpha + 4cos 2,alpha + 3},
operatorname{ctg}^4,alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{cos 4alpha - 4cos 2,alpha + 3}.

Иллюстрация равенства {displaystyle sin x-cos x={sqrt {2}}cdot sin left(x-{pi  over 4}right)}

Суммы[править | править код]

{displaystyle sin alpha pm sin beta =2sin {frac {alpha pm beta }{2}}cos {frac {alpha mp beta }{2}},}
{displaystyle cos alpha +cos beta =2cos {frac {alpha +beta }{2}}cos {frac {alpha -beta }{2}},}
{displaystyle cos alpha -cos beta =-2sin {frac {alpha +beta }{2}}sin {frac {alpha -beta }{2}},}
{displaystyle operatorname {tg} alpha pm operatorname {tg} beta ={frac {sin(alpha pm beta )}{cos alpha cos beta }},}
{displaystyle operatorname {ctg} alpha pm operatorname {ctg} beta ={frac {sin(beta pm alpha )}{sin alpha sin beta }},}
{displaystyle 1pm sin {2alpha }=(sin alpha pm cos alpha )^{2},}
{displaystyle sin alpha pm cos alpha ={sqrt {2}}cdot sin left(alpha pm {pi  over 4}right).}

Существует представление:

Asin alpha +Bcos alpha ={sqrt  {A^{2}+B^{2}}};sin(alpha +phi ),

где угол phi находится из соотношений:

{displaystyle sin phi ={frac {B}{sqrt {A^{2}+B^{2}}}},}
{displaystyle cos phi ={frac {A}{sqrt {A^{2}+B^{2}}}}.}

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

{displaystyle sin x={frac {sin x}{1}}={frac {2sin {frac {x}{2}}cos {frac {x}{2}}}{sin ^{2}{frac {x}{2}}+cos ^{2}{frac {x}{2}}}}={frac {2operatorname {tg} {frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle cos x={frac {cos x}{1}}={frac {cos ^{2}{frac {x}{2}}-sin ^{2}{frac {x}{2}}}{cos ^{2}{frac {x}{2}}+sin ^{2}{frac {x}{2}}}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {tg} ~x={frac {sin x}{cos x}}={frac {2operatorname {tg} {frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {ctg} ~x={frac {cos x}{sin x}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}},}

{displaystyle sec x={frac {1}{cos x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {cosec} ~x={frac {1}{sin x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}}.}

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

{displaystyle sin x=x,prod _{n=1}^{infty }left(1-{frac {x^{2}}{pi ^{2}n^{2}}}right),}
{displaystyle cos x=prod _{n=0}^{infty }left(1-{frac {4x^{2}}{pi ^{2}(2n+1)^{2}}}right).}

Эти соотношения выполняются при любом значении x.

Непрерывные дроби[править | править код]

Разложение тангенса в непрерывную дробь:

{displaystyle mathop {rm {tg}} x={frac {x}{1-{frac {x^{2}}{3-{frac {x^{2}}{5-{frac {x^{2}}{7-{frac {x^{2}}{ddots }}}}}}}}}}}

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( sin x )' = cos x ,,

( cos x )' = -sin x ,,

{displaystyle (operatorname {tg} x)'={frac {1}{cos ^{2}x}}=1+operatorname {tg} ^{2}x=sec ^{2}x,}

{displaystyle (operatorname {ctg} x)'=-{frac {1}{sin ^{2}x}}=-operatorname {cosec} ^{2}x,}

{displaystyle (sec x)'={frac {sin x}{cos ^{2}x}}=sec xoperatorname {tg} x,}

( operatorname{cosec}~x)' = -frac{cos x}{sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:

intsin x, dx = -cos x + C ,,

intcos x, dx = sin x + C ,,

{displaystyle int operatorname {tg} x,dx=-ln left|cos xright|+C,,}

{displaystyle int operatorname {ctg} x,dx=ln left|sin xright|+C,,}

intsec x, dx=ln left| operatorname{tg} , left( frac {pi}{4}+frac{x}{2}right) right|+ C ,,

int operatorname{cosec}~ x, dx=ln left| operatorname{tg} , frac{x}{2} right|+ C.

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

{displaystyle e^{ivartheta }=cos vartheta +isin vartheta .}

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

sin z = sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = frac{e^{i z} - e^{-i z}}{2i}, = frac{operatorname{sh}  i z }{i};
cos z = sum_{n=0}^infty frac{(-1)^{n}}{(2n)!}z^{2n} = frac{e^{i z} + e^{-i z}}{2}, = operatorname{ch} i z;
operatorname{tg}, z = frac{sin z}{cos z} = frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
operatorname{ctg}, z = frac{cos z}{sin z} = frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
sec z = frac{1}{cos z} = frac{2}{e^{i z} + e^{-i z}};
{displaystyle operatorname {cosec} ,z={frac {1}{sin z}}={frac {2i}{e^{iz}-e^{-iz}}},} где {displaystyle i^{2}=-1.}

Соответственно, для вещественного x:

{displaystyle cos x=operatorname {Re} (e^{ix}),}
{displaystyle sin x=operatorname {Im} (e^{ix}).}

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

{displaystyle sin(x+iy)=sin x,operatorname {ch} ,y+icos x,operatorname {sh} ,y,}
{displaystyle cos(x+iy)=cos x,operatorname {ch} ,y-isin x,operatorname {sh} ,y.}

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

Complex sin.jpg

Complex cos.jpg

Complex tan.jpg

Complex Cot.jpg

Complex Sec.jpg

Complex Csc.jpg

{displaystyle sin ,z} {displaystyle cos ,z} {displaystyle operatorname {tg} ,z} {displaystyle operatorname {ctg} ,z} {displaystyle sec ,z} {displaystyle operatorname {cosec} ,z}

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения sin, cos введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
  2. Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. Справочник по элементарной математике, 1978, с. 282—284.
  4. Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
  5. Справочник по элементарной математике, 1978, с. 271—272.
  6. Латинско-русский словарь. Дата обращения: 9 апреля 2023.
  7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  8. В формулах, содержащих логарифм в правой части равенств, константы интегрирования scriptstyle C, вообще говоря, различны для различных интервалов непрерывности.

Добавить комментарий