Математика как найти tga

  • Определение

  • График тангенса

  • Свойства тангенса

  • Обратная к тангенсу функция

  • Таблица тангенсов

Определение

Тангенс острого угла α (tg α или tan α) – это отношение противолежащего катета (a) к прилежащему (b) в прямоугольном треугольнике.

tg α = a / b

Тангенс острого угла

Например:
a = 3
b = 4
tg α = a / b = 3 / 4 = 0.75

График тангенса

Функция тангенса пишется как y = tg (x). График в общем виде выглядит следующим образом:

График тангенса

Свойства тангенса

Ниже в табличном виде представлены основные свойства тангенса с формулами.

Свойство Формула
Симметричность tg (-α) = -tg α
Симметричность tg (90°- α) = ctg α
Тригонометрические тождества tg α = sin α / cos α
tg α = 1 / ctg α
Тангенс двойного угла tg 2α = 2 tg α / (1 – tg2α)
Тангенс суммы углов tg (α+β) = (tg α + tg β) / (1 – tg α tg β)
Тангенс разности углов tg (α-β) = (tg α – tg β) / (1 + tg α tg β)
Сумма тангенсов tg α + tg β = sin (α + β) / cos α cos β
Разность тангенсов tg α – tg β = sin (αβ) / cos α cos β
Произведение тангенсов tg α tg β = (tg α + tg β) / (ctg α + ctg β)
Тригонометрическая функция: Тангенс угла (tg)
Произведение тангенса и котангенса tg α ctg β = (tg α + ctg β) / (ctg α + tg β)
Тригонометрическая функция: Тангенс угла (tg)
Производная тангенса tg’ x = 1 / cos2 (x)
Интеграл тангенса ∫ tg x dx = -ln |cos x| + C
Формула Эйлера tg x = (eixeix) / i(eix + eix)

microexcel.ru

Обратная к тангенсу функция

Арктангенс x – это обратная функция к тангенсу x, где x – любое число (x∈ℝ).

Если тангенс угла у равняется х (tg y = x), значит арктангенс x равен у:

arctg x = tg-1 x = y

Например:

arctg 1 = tg-1 1 = 45° = π/4 рад

Таблица тангенсов

x (°) x (рад) tg x
-90° -π/2 -∞
-71.565° -1.2490 -3
-63.435° -1.1071 -2
-60° -π/3 -√3
-45° -π/4 -1
-30° -π/6 -1/√3
-26.565° -0.4636 -0.5
0 0
26.565° 0.4636 0.5
30° π/6 1/√3
45° π/4 1
60° π/3 3
63.435° 1.1071 2
71.565° 1.2490 3
90° π/2

microexcel.ru

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Тангенс

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение…

Итак, есть два определения:

  1. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

    Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

  2. Тангенс – это отношение синуса к косинусу.

    Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Приняты обозначения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Треугольник

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Сумма углов

Так как тангенс – это отношение катетов, то

Отношение катетов

Получается, что

Результат вычислений

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

В частности,

Углы

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Тригонометрическое тождество

Из формулы тангенсов, записывающей кратко второе определение

Формула

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:

Зависимость

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Синус

Тригонометрия – это раздел математики, изучающий соотношения между углами историцами треугольника. В данной статье мы рассмотрим, как вычислить тангенс угла А (tgA) в треугольнике ABC по известным сторонам.

Основные понятия

В треугольнике ABC обозначим стороны как a, b, c, а углы в вершинах A, B, C – как А, В, С соответственно. Здесь имеет место соотношение, называемое теоремой косинусов:

c^2 = a^2 + b^2 - 2*a*b*cosC, где C – угол, лежащий напротив стороны c.

В тригонометрии известно несколько связей между углами и сторонами треугольника. Одна из таких связей – это теорема о прямоугольном треугольнике, согласно которой для прямоугольного треугольника с катетами a и b и гипотенузой c выполняется соотношение:

cosA = a/c, sinA = b/c, tgA = b/a

Как вычислить tgA?

Рассмотрим произвольный треугольник ABC. Пусть угол А известен, а стороны a и b – заданы.

Для того, чтобы вычислить tgA, воспользуемся соотношением tgA = b/a. Для этого нам нужно найти длину стороны b. Мы можем это сделать с помощью теоремы косинусов:

b^2 = c^2 - a^2 - 2ac*cosA

Заметим, что мы можем найти известные значения a, c и A и вычислить b. После этого, подставив значения в формулу для tgA = b/a, мы найдем требуемое значение.

Пример

Представим, что в треугольнике ABC известны следующие значения:

  • сторона a = 4
  • сторона c = 6
  • угол А = 60°

Для того, чтобы найти сторону b, воспользуемся теоремой косинусов:

b^2 = 6^2 - 4^2 - 2*4*6*cos(60°)

b^2 = 36 - 16 - 24*0.5

b^2 = 12

b = sqrt(12)

Теперь мы можем найти tgA:

tgA = b/a = sqrt(12)/4 ≈ 0.866

Ответ: tgA ≈ 0.866.

Выводы

Тригонометрические формулы широко применяются в математике, физике, инженерии, геодезии и других научных областях. Надеемся, что данная статья помогла вам лучше понять, как вычисляется tgA в треугольнике ABC по известным сторонам.

Определение тангенса угла

Тангенсом угла в прямоугольном треугольнике называют отношение противолежащего катета к прилежащему.

Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.

Для простоты запоминания можно дать такое определение: тангенс угла — это отношение дальнего от рассматриваемого угла катета к ближнему катету.

1.png

В случае с рисунком, описанным выше: tg⁡α=abtgalpha=frac{a}{b}

Тангенс можно найти напрямую пользуясь данной формулой, а можно и через тригонометрические тождества. Разберем подробнее задачи.

Задача 1

В прямоугольном треугольнике катеты равны 6 см6text{ см} и 8 см8text{ см}. Найдите тангенс угла, близлежащего к меньшей стороне.

Решение

a=8a=8
b=6b=6

tg⁡α=ab=86≈1.33tgalpha=frac{a}{b}=frac{8}{6}approx1.33

Ответ

1.331.33

Формулу:

tg⁡α=abtgalpha=frac{a}{b}

Можно записать в следующем виде:

tg⁡α=sin⁡αcos⁡αtgalpha=frac{sinalpha}{cosalpha}

Проверим истинность данного выражения. Подставим вместо синуса и косинуса их определения:

tg⁡α=sin⁡αcos⁡α=acbc=abtgalpha=frac{sinalpha}{cosalpha}=frac{frac{a}{c}}{frac{b}{c}}=frac{a}{b}

Получили первичное равенство, значит выражение для тангенса через отношение синуса к косинусу верно.

Решим задачу, пользуясь этой формулой.

Задача 2

По условию задачи известен косинус угла, равный 32frac{sqrt{3}}{2} и синус того же угла, равный 12frac{1}{2}. Найдите тангенс данного угла.

Решение

cos⁡α=32cosalpha=frac{sqrt{3}}{2}

sin⁡α=12sinalpha=frac{1}{2}

tg⁡α=sin⁡αcos⁡α=1232=13tgalpha=frac{sinalpha}{cosalpha}=frac{frac{1}{2}}{frac{sqrt{3}}{2}}=frac{1}{sqrt{3}}

Ответ

13frac{1}{sqrt{3}}

Еще одно тождество помогает решить задачи, связанные с тангенсом:

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат косинуса.

Задача 3

Известен квадрат косинуса угла в прямоугольном треугольнике, равный 0.80.8. Нужно найти тангенс этого угла.

Решение

cos⁡2α=0.8cos^2alpha=0.8

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

1+tg⁡2α=10.81+tg^2alpha=frac{1}{0.8}

1+tg⁡2α=1.251+tg^2alpha=1.25

tg⁡2α=0.25tg^2alpha=0.25

tg⁡α=0.25tgalpha=sqrt{0.25}

tg⁡α=0.5tgalpha=0.5

Ответ

0.50.5

У вас есть трудности с вычислением тангенса? Можете заказать задачу по математике у наших экспертов!

Тест по теме “Вычисление тангенса”

Катетами прямоугольного треугольника называются те его стороны, которые образуют прямой угол. Каждый из катетов всегда меньше гипотенузы по значению, но в сумме они обязательно ее превосходят. Зная оба катета, можно найти не только третью сторону прямоугольного треугольника – гипотенузу, по теореме Пифагора, но и углы, находящиеся между катетами и гипотенузой. Для этого используется тригонометрическое отношение тангенса угла α, которое по определению равно отношению катета, противолежащего углу α, к катету прилежащему.

Делением катета, находящегося напротив угла, на катет, который является одной из сторон угла, получается значение тангенса, соответствующее определенной градусной мере. Краткая таблица основных значений тангенса находится внизу страницы, а полная таблица всех тангенсов расположена по ссылке.

Стороны и угол tg  прямоугольного треугольника

Свойства

Тангенс угла tg(α) — есть отношение противолежащего катета a к прилежащему катету b.

Таблица тангенсов

Тангенс угла градусов   0   0.000
Тангенс угла 30° градусов   1/√3   0.577
Тангенс угла 45° градусов   1   1.000
Тангенс угла 60° градусов   √3   1.732
Тангенс угла 90° градусов   ∞  

Добавить комментарий