Метод интервалов как найти нули функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Свойства функции

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Определение

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Рисунок 2

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.
Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

График функции у=k/x выглядит следующим образом:

Рисунок 3

По данному рисунку видно, что нулей функции не существует.
Как найти нули функции?

  1. Для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.
  2. Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Рассмотрим примеры нахождения нулей функции.

Пример №1. Найти нули функции (если они существуют):

а) у= –11х +22

б) у= (х + 76)(х – 95)

в) у= – 46/х

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Получим х=2.

Таким образом, мы нашли нуль функции: х=2

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Рисунок 4

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Определение

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Рисунок 5

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Рисунок 6

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Рисунок 7

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Определение

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Даниил Романович | Просмотров: 15.9k

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f(x)<0 (знак неравенства может быть использован любой другой, например, ≤, > или ≥). Здесь f(x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

  • произведение линейных двучленов с коэффициентом 1 при переменной х;
  • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

(x+3)·(x2−x+1)·(x+2)3≥0,

(x-2)·(x+5)x+3>0 ,

(x−5)·(x+5)≤0,

(x2+2·x+7)·(x-1)2(x2-7)5·(x-1)·(x-3)7≤0 .

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

  • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
  • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
  • определяем знаки выражения f(x) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
  • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки < или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥, то выделяем штриховкой участки, отмеченные знаком «+».

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a, b), на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (−∞, a) и (a, +∞).

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x-5x+1>0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: (−∞, −1), (−1, 5) и (5, +∞).

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (−∞, −1). Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t<−1, и так как −1<5, то по свойству транзитивности, оно же будет удовлетворять и неравенству t<5.

Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t+1<0 и t−5<0. Это значит, что t+1 и t−5 – это отрицательные числа независимо от значения t на промежутке (−∞, −1).

Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t-5t+1 будет положительным. Это значит, что значение выражения x-5x+1 будет положительным при любом значении x из промежутка (−∞, −1). Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак «+».

Нахождение нулей числителя и знаменателя

Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

Рассмотрим дробь x·(x-0,6)x7·(x2+2·x+7)2·(x+5)3. Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x·(x−0,6)=0 и x7·(x2+2·x+7)2·(x+5)3=0.

В первом случае мы можем перейти к совокупности двух уравнений x=0 и x−0,6=0, что дает нам два корня 0 и 0,6. Это нули числителя.

Второе уравнение равносильно совокупности трех уравнений x7=0, (x2+2·x+7)2=0, (x+5)3=0. Проводим ряд преобразований и получаем x=0, x2+2·x+7=0, x+5=0. Корень первого уравнения 0, у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения -5. Это нули знаменателя.

0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

Определение знаков на интервалах

Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

Рассмотрим это утверждение на примере.

Возьмем неравенство x2-x+4x+3≥0. Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число -3. Получаем два промежутка на числовой прямой (−∞, −3) и (−3, +∞).

Для того, чтобы определить знаки промежутков, вычислим значение выражения x2-x+4x+3 для точек, взятых произвольно на каждом из промежутков.

Из первого промежутка (−∞, −3) возьмем −4. При x=−4 имеем (-4)2-(-4)+4(-4)+3=-24 . Мы получили отрицательное значение, значит весь интервал будет со знаком «-».

Для промежутка (−3, +∞) проведем вычисления с точкой, имеющей нулевую координату. При x=0 имеем 02-0+40+3=43. Получили положительное значение, что значит, что весь промежуток будет иметь знак «+».

Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак «+».

Теперь обратимся к примерам.

Возьмем неравенство (x-2)·(x-3)3·(x-4)2(x-1)4·(x-3)5·(x-4)≥0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2, 3, 4, знаменателя точки 1, 3, 4. Отметим их на оси координат черточками.

Определение знаков на интервалах

Нули знаменателя отметим пустыми точками.

Определение знаков на интервалах

Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

Определение знаков на интервалах

Теперь расставим точки на промежутках. Крайний правый промежуток (4, +∞) будет знак +.

Определение знаков на интервалах

Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4. Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения (x−4)2 и x−4. Сложим их степени 2+1=3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале (3, 4) будет знак минус.

Определение знаков на интервалах

Переходим к интервалу (2, 3) через точку с координатой 3. Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям (x−3)3 и (x−3)5, сумма степеней которых равна 3+5=8. Получение четного числа позволяет нам оставить знак интервала неизменным.

Определение знаков на интервалах

Точка с координатой 2 – это нуль числителя. Степень выражения х-2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

Определение знаков на интервалах

У нас остался последний интервал (−∞, 1). Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения (x−1)4, с четной степенью 4. Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

Определение знаков на интервалах

Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

x+3-343·x2+6·x+112·x+2-34(x-1)2·x-235·(x-12)

в любой точке интервала 3-34,3-24.

Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.

Примеры решения неравенств методом интервалов

Теперь займемся применением полученных знаний и навыков на практике.

Пример 1

Решите неравенство (x-1)·(x+5)2(x-7)·(x-1)3≤0 .

Решение

Целесообразно применить для решения неравенства метод интервалов. Находим нули числителя и знаменателя. Нули числителя 1 и -5, нули знаменателя 7 и 1. Отметим их на числовой прямой. Мы имеем дело с нестрогим неравенством, поэтому нули знаменателя отметим пустыми точками, нуль числителя -5 отметим обычной закрашенной точкой.

Примеры решения неравенств методом интервалов

Проставим знаки промежутков, используя правила изменения знака при переходе через нуль. Начнем с крайнего правого промежутка, для которого вычислим значение выражения из левой части неравенства в точке, произвольно взятой из промежутка. Получим знак «+». Перейдем последовательно через все точки на координатной прямой, расставляя знаки, и получим:

Примеры решения неравенств методом интервалов

Мы работаем с нестрогим неравенством, имеющим знак ≤. Это значит, что нам необходимо отметить штриховкой промежутки, отмеченные знаком «-».

Примеры решения неравенств методом интервалов

Ответ: (-∞,1)∪(1,7) .

Решение рациональных неравенств в большинстве случаев требует их предварительного преобразования к нужному виду. Только после этого появляется возможность использовать метод интервалов. Алгоритмы проведения таких преобразований рассмотрены в материале «Решение рациональных неравенств».

Рассмотрим пример преобразования квадратных трехчленов в записи неравенств.

Пример 2

Найдите решение неравенства (x2+3x+3)(x+3)x2+2·x-8>0.

Решение

Давайте посмотрим, действительно ли дискриминанты квадратных трехчленов в записи неравенства отрицательны. Это позволит нам определить, позволяет ли вид данного неравенства применить для решения метод интервалов.

Вычислим дискриминант для трехчлена x2+3·x+3: D=32−4·1·3=−3<0. Теперь вычислим дискриминант для трехчлена x2+2·x−8: D’=12−1·(−8)=9>0. Как видите, неравенство требует предварительного преобразования. Для этого представим трехчлен x2+2·x−8 как (x+4)·(x−2), а потом применим метод интервалов для решения неравенства (x2+3·x+3)·(x+3)(x+4)·(x-2)>0 .

Примеры решения неравенств методом интервалов

Ответ: (-4,-3)∪(2,+∞) .

Обобщенный метод интервалов

Обобщенный метод промежутков применяется для решения неравенств вида f(x)<0 (≤, >, ≥), где f(x) – произвольное выражение с одной переменной x.

Все действия проводятся по определенному алгоритму. При этом алгоритм решения неравенств обобщенным методом интервалов будет несколько отличаться от того, что мы разобрали ранее:

  • находим область определения функции f и нули этой функции;
  • отмечаем на координатной оси граничные точки;
  • наносим на числовую прямую нули функции;
  • определяем знаки промежутков;
  • наносим штриховку;
  • записываем ответ.

На числовой прямой необходимо отмечать в том числе и отдельные точки области определения. К примеру, областью определения функции служит множество (−5, 1]∪{3}∪[4, 7)∪{10}. Это значит, что нам необходимо отметить точки с координатами −5, 1, 3, 4, 7 и 10. Точки −5 и 7 изобразим пустыми, остальные можно выделить цветным карандашом для того, чтобы отличать их затем от нулей функции.

Нули функции в случае нестрогих неравенств наносятся обычными (закрашенными) точками, строгих – пустыми точками. Если нули совпадают с граничными точками или отдельными точками области определения, то их можно перекрасить в черный цвет, сделав пустыми или закрашенными в зависимости от вида неравенства.

Запись ответа представляет собой числовое множество, которое включает в себя:

  • промежутки со штриховкой;
  • отдельные точки области определения со знаком плюс, если мы имеем дело с неравенством, знак которого > или ≥ или со знаком минус, если в неравенстве есть знаки < или ≤.

Теперь стало понятно, что тот алгоритм, который мы привели в самом начале темы, является частным случаем алгоритма применения обобщенного метода интервалов.

Рассмотрим пример применения обобщенного метода интервалов.

Пример 3

Решите неравенство x2+2·x-24-34·x-3x-7<0 .

Решение

Вводим функцию f такую, что f(x)=x2+2·x-24-34·x-3x-7 . Найдем область определения функции f:

x2+2·x-24≥0x≠7D(f)=(-∞,-6]∪[4,7)∪(7,+∞) .

Теперь найдем нули функции. Для этого проведем решение иррационального уравнения:

x2+2·x-24-34·x-3=0

Получаем корень x=12.

Для обозначения граничных точек на оси координат используем оранжевый цвет. Точки -6,4 у нас будут закрашенными, а 7 оставляем пустой. Получаем:

Обобщенный метод интервалов

Отметим ноль функции пустой точкой черного цвета, так как мы работаем со строгим неравенством.

Обобщенный метод интервалов

Определяем знаки на отдельных промежутках. Для этого возьмем по одной точке из каждого промежутка, например, 16, 8, 6 и −8, и вычислим в них значение функции f:

f(16)=162+2·16-24-34·16-316-7=264-159>0f(8)=82+2·8-24-34·8-38-7=56-9<0f(6)=62+2·6-24-34·6-36-7=24-152-1==15-2·242=225-962>0f(-8)=-82+2·(-8)-24-34·(-8)-3-8-7=24+3-15<0

Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

Обобщенный метод интервалов

Ответом будет являться объединение двух промежутков со знаком «-»:(−∞, −6]∪(7, 12).

В ответ мы включили точку с координатой -6. Это не нуль функции, который мы бы не включили в ответ при решении строгого неравенства, а граничная точка области определения, которая входит в область определения. Значение функции в этой точке отрицательное, это значит, что она удовлетворяет неравенству.

Точку 4 мы в ответ не включили, точно также, как не включили весь промежуток [4, 7). В этой точке, точно также, как и на всем указанном промежутке значение функции положительно, что не удовлетворяет решаемому неравенству.

Запишем это еще раз для более четкого понимания: цветные точки необходимо включать в ответ в следующих случаях:

  • эти точки являются частью промежутка со штриховкой,
  • эти точки являются отдельными точками области определения функции, значения функции в которых удовлетворяют решаемому неравенству.

Ответ: (−∞, −6]∪(7, 12).

Метод интервалов

(методические рекомендации)

Одним из методов решения неравенств (рациональных, иррациональных и др. ) является метод интервалов, применение которого формируется в 8-9 классах, при решении линейных и квадратных неравенств.

Рассматривая более сложные задачи при решении неравенств вида ( один из знаков сравнения: < , , > , ) методом интервалов можно придерживаться, например, такого алгоритма.

Алгоритм решения неравенств методом интервалов

1. Найти область определения функции ( D(f) ).

2. Найти нули функции ( найти корни уравнения ).

3. Разбить область определения нулями функции на интервалы

(учитывая «строгий» или «нестрогий» знак исходного неравенства, нули функции на оси Ох соответственно «выкалываются» или «не выкалываются»).

4. Определить знак внутри каждого из полученных интервалов методом пробной точки (при этом возможно применение «правила чередования» знаков).

5. Выделить те числовые промежутки, на которых функция принимает соответствующий данному неравенству знак (если знак неравенства «нестрогий», то включить и не выколотые точки – нули функции).

6. Записать ответ.

Замечание. На практике пункты 3-5 можно объединить.

Примеры.

1. Решите неравенство .

Решение.

Рассмотрим функцию .

1) D(f) = R .

2) Нули функции:

или

нет корней

3) , ,

hello_html_d4a823b.png

Ответ: .

Замечание. Способы решения неравенства могут быть и другими, например: , где верно при любых действительных значениях x.

Исходное неравенство равносильно неравенству

Ответ: .

2. Решите неравенство .

Решение.

Рассмотрим функцию .

1) D(f) = R .

2) Нули функции:

или

3) , , ,

hello_html_m70aeba80.png

Ответ: .

Замечание. Способ решения неравенства может быть и другим:

Применяем метод интервалов, используя сокращенный вариант оформления

hello_html_m70aeba80.png

Ответ: .

3. Решите неравенство .

Решение.

Рассмотрим функцию .

1) D(f):

2) Нули функции:

3) ,

hello_html_279a862c.png

Ответ: .

Замечание 1. Способ решения неравенства может быть и другим:

1) ОДЗ:

2) Проверим крайнюю точку ОДЗ: решение неравенства (проверка).

3) Если , то .

Учитывая это условие, решим систему:

,

.

4) Объединяем полученные результаты:

.

Ответ: .

Замечание 2. При решении нестрогих неравенств вида

можно воспользоваться переходом к соответствующей совокупности:

или .

Такой переход можно обобщить и для неравенств , заменяя их совокупностью: или

Замечание 3. Стоит обратить внимание обучающихся и на частые рассуждения, приводящие к потере решений:

т.к. , то , тогда , получаем.

Произошла потеря решения .

Вывод. Демонстрация решений задач различными способами, в том числе и ошибочными, достаточно хороший метод обучения, дающий возможность обучающимся делать выбор наиболее приемлемого для себя способа решения той или иной задачи.

4. Найдите область определения функции

Решение. (Используем метод интервалов)

Для нахождения D(у) достаточно решить неравенство .

Рассмотрим функцию .

1) D(f) : , ,

2) Нули функции:

3) ,

hello_html_m5021f59e.png

Ответ: .

Замечание. Переход к системе ведет к потере решения

5. Решите неравенство .

Решение.

Рассмотрим функцию .

1) D(f):

2) Нули функции:

(В ходе решения уравнения могут появиться посторонние корни )

3) hello_html_2f86bad.png

Проверка: ; ,

следовательно: – не являются решением неравенства.

Вывод. – решение неравенства

Ответ: .

6. Решите неравенство .

Способ 1.

Решение.

Рассмотрим функцию .

1) D(f):

2) Нули функции:

(посторонний корень уравнения нулем функции не является)

Так как неравенство нестрогое, то нули функции являются решениями исходного неравенства.

3) ;

hello_html_5bf60cdc.png

Вывод. – решение неравенства

Ответ: .

Способ 2*. (используeм вспомогательный тригонометрический аргумент).

.

1) ОДЗ:

2) Пусть , тогда , значит .

Решим неравенство:

Учитывая условие , получим

Для решения неравенства воспользуемся методом интервалов, на промежутке

Нули функции:

hello_html_m4a430e7f.png

Функция – возрастающяя на промежутке , поэтому

Ответ: .

Задача 7*.

http://alexlarin.net/

вариант 130

задача №15

Решите неравенство

.

Способ 1*. (используем вспомогательный тригонометрический аргумент).

1) ОДЗ:

2) Проверим крайние точки ОДЗ:

а) решение неравенства (проверка);

б) не является решением неравенства (проверка).

3) Рассмотрим остальные значения переменной, входящие в ОДЗ,

.

Пусть , тогда , значит .

Решим неравенство:

, где ,

Для решения неравенства воспользуемся методом интервалов, на промежутке

Нули функции:

hello_html_m34c083c4.png

Функция – возрастающяя на интервале , поэтому

4) Объединяем полученные результаты:

Ответ: .

Замечание.

При решении этой задачи можно выполнить и другую замену:

1) ОДЗ:

2) Пусть , тогда , значит .

Решим неравенство:

, где ,

(*)

Для решения неравенства (*) воспользуемся методом интервалов, на промежутке

Нули функции:

нули функции являются решением тригонометрического неравенства (*)

hello_html_21a56e1b.png

Проверим крайние точки:
– не является решением неравенства (*);

– является решением неравенства (*).

Вывод:

Функция – убывающая на отрезке , поэтому

Ответ: .

Турков А.Ф.

Заслуженный учитель РФ, учитель математики МАОУ «Лицей № 38»,

г. Нижний Новгород

Добавить комментарий