Момент силы можно найти как

Момент силы
vec{M}=left[vec{r}timesvec{F}right]
Размерность L2MT−2
Единицы измерения
СИ Н·м
СГС Дина-сантиметр
Примечания
Псевдовектор

Моме́нт си́лы (момент силы относительно точки) — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы {vec {r}} и вектора силы vec{F}. Моменты сил, образующиеся в разных условиях, в технике могут иметь названия: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент, скру́чивающий момент.

Момент силы обозначается символом {vec  {M}} или, реже, {displaystyle {vec {tau }}} (тау).

Единица измерения в СИ: Н⋅м. Величина момента силы зависит от выбора начала отсчёта радиус-векторов O.

Понятие момента силы используется, в основном, в области задач статики и задач, связанных с вращением деталей (рычагов и др.) в технической механике. Особенно важен случай вращения твёрдого тела вокруг фиксированной оси — тогда O выбирают на этой оси, а вместо самого момента рассматривают его проекцию на ось {displaystyle M_{parallel }}; такая проекция называется моментом силы относительно оси.

Наличие момента силы влечёт изменение момента импульса тела vec{L} относительно того же начала O со временем t: имеет место соотношение {displaystyle d{vec {L}}/dt={vec {M}}}. В статике равенство нулю суммы моментов всех приложенных к телу сил является одним из условий (наряду с равенством нулю суммы сил) реализации состояния покоя.

Определение, общие сведения[править | править код]

В физике момент силы играет роль вращающего воздействия на тело.

Видеоурок: вращающий момент

В простейшем случае, если сила vec{F} приложена к рычагу перпендикулярно ему и оси вращения, то момент силы определяется как произведение величины F на расстояние x от места приложения силы до оси вращения рычага, называемое «плечом силы»:

{displaystyle M=Fx}.

Например, сила в 3 ньютона, приложенная на расстоянии 2 м от оси, создаёт такой же момент, что и сила в 1 ньютон с плечом 6 м.

Если действуют две силы, говорят о моменте пары сил (такая формулировка восходит к трудам Архимеда). При этом равновесие достигается в ситуации {displaystyle F_{1}x_{1}=F_{2}x_{2}}.

Для случаев более сложных движений и более сложных объектов определение момента как произведения {displaystyle Fx} требует универсализации.

Момент силы иногда называют вращающим или крутящим моментом. «Вращающий» момент понимается в технике как внешнее усилие, прикладываемое к объекту, а «крутящий» — как внутреннее, возникающее в самом объекте под действием приложенных нагрузок (этим понятием оперируют в сопромате).

Момент силы относительно точки[править | править код]

Момент силы, приложенный к гаечному ключу. Направлен от зрителя

В общем случае момент силы vec{F}, приложенной к телу, определяется как векторное произведение

{displaystyle {vec {M}}=left[{vec {r}}times {vec {F}}right]},

где {vec {r}} — радиус-вектор точки приложения силы. Вектор {vec  {M}} перпендикулярен векторам {vec {r}} и vec{F}.

Начало отсчета радиус-векторов O может быть любым. Обычно O выбирают в чем-либо выделенной точке: в месте закрепления подвеса, в центре масс, на оси вращения и т.д.. Если одновременно анализируется момент импульса тела vec{L}, то начало O всегда выбирается одинаковым для vec{L} и {vec  {M}}.

Если не оговорено иное, то «момент силы» — это момент силы относительно точки (O), а не некоей оси.

В случае нескольких приложенных сосредоточенных сил их моменты векторно суммируются:

{displaystyle {vec {M}}=sum _{i}left[{vec {r}}_{i}times {vec {F}}_{i}right]},

где {displaystyle {vec {r}}_{i}} — радиус-вектор точки приложения i-й силы {displaystyle {vec {F}}_{i}}. В случае силы, распределённой с плотностью {displaystyle d{vec {F}}/dV},

{displaystyle {vec {M}}=int limits _{V}left[{vec {r}}times {frac {d{vec {F}}}{dV}}right]dV}.

Если {displaystyle d{vec {F}}/dV} (Н/м3) — обобщённая функция, которая может содержать и дельтаобразные члены, то последней формулой охватываются и две предыдущие.

Момент силы относительно оси[править | править код]

Моментом силы относительно оси называется алгебраическое значение проекции момента {vec  {M}} на ось, то есть

{displaystyle M_{parallel }={vec {M}}cdot {vec {e}}_{o}},

где {displaystyle {vec {e}}_{o}} — единичный вектор вдоль оси, а начало отсчёта O выбрано на оси. Момент силы относительно оси может быть рассчитан как

{displaystyle M_{parallel }=pm left|{vec {r}}_{perp }times {vec {F}}_{perp }right|},

где через {displaystyle {vec {r}}_{perp }} и {displaystyle {vec {F}}_{perp }} обозначены составляющие радиус-вектора и силы в плоскости, перпендикулярной оси.

В отличие от момента силы {vec  {M}}, величина момента силы относительно оси {displaystyle M_{parallel }} не претерпевает изменения при сдвиге точки O вдоль оси.

Для краткости символ параллельности и знак могут опускаться, а {displaystyle M_{parallel }} (как и {vec  {M}}) именоваться «моментом силы».

Единицы измерения[править | править код]

Момент силы имеет размерность «сила, умноженная на расстояние» и единицу измерения ньютон-метр в системе СИ. 1 Н·м — это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

Формально, размерность {vec  {M}} (Н·м) совпадает с размерностями энергии и механической работы.

Некоторые примеры[править | править код]

Формула момента рычага[править | править код]

Момент, действующий на рычаг

Момент силы, действующей на рычаг, равен

{displaystyle {vec {M}}=rFsin alpha cdot {vec {e}}_{o}}

или, если записать момент силы относительно оси,

{displaystyle M_{parallel }=rFsin alpha },

где alpha — угол между направлением силы и рычагом. Плечо силы равно {displaystyle rsin alpha }. Максимальное значение момента достигается при перпендикулярности рычага и силы, то есть при {displaystyle alpha =pi /2}. При сонаправленности vec{F} и рычага момент равен нулю.

Статическое равновесие[править | править код]

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма моментов всех сил вокруг любой точки.

Для двумерного случая с горизонтальными и вертикальными силами требование сводится к тому, чтобы нулевыми были сумма сил в двух измерениях: {displaystyle Sigma F_{horizontal}=0,,Sigma F_{vertical}=0} и момент силы в третьем измерении: {displaystyle Sigma M=0}.

Движение твёрдого тела[править | править код]

Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

{displaystyle {vec {L_{o}}}=I_{c},{vec {omega }}+[M({vec {r_{o}}}-{vec {r_{c}}}),{vec {v_{c}}}].}

Будем рассматривать вращающиеся движения в системе координат Кёнига, так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I — постоянная величина во времени, то

{displaystyle {vec {M}}=I{frac {d{vec {omega }}}{dt}}=I{vec {alpha }},}

где {displaystyle {vec {alpha }}} — угловое ускорение, измеряемое в радианах в секунду за секунду (рад/с2). Пример: вращается однородный диск.

Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

{displaystyle {vec {M_{c}}}=I_{c}{frac {d{vec {omega }}}{dt}}+[{vec {w}},I_{c}{vec {w}}].}

Связь с другими величинами[править | править код]

С моментом импульса[править | править код]

Момент силы — производная момента импульса {displaystyle {vec {L}}={vec {r}}times {vec {p}}} относительно точки O по времени:

{displaystyle {vec {M}}={frac {d{vec {L}}}{dt}}},

Аналогичную формулу можно записать для моментов относительно оси:

{displaystyle M_{parallel }={frac {dL_{parallel }}{dt}}}.

Если момент силы {vec  {M}} или {displaystyle M_{parallel }} равен нулю, момент импульса относительно соответствующей точки или оси сохраняется.

С мощностью[править | править код]

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу и развивает мощность {displaystyle {vec {F}}cdot {vec {v}}} (где vec{v} — скорость материальной точки). Так же и в случае момента силы: если он совершает действие через «угловое расстояние», развивается мощность

{displaystyle P={vec {M}}cdot {vec {omega }}}.

В системе СИ мощность P измеряется в ваттах, угловая скорость vec{omega} — в радианах в секунду.

С механической работой[править | править код]

Если под действием момента силы {vec  {M}} происходит поворот тела на угол dvarphi, то совершается механическая работа

{displaystyle dA=left|{vec {M}}right|dvarphi }.

Для поворота, скажем, рычага вокруг фиксированной оси на угол {displaystyle varphi _{2}-varphi _{1}} получим

{displaystyle A=int _{varphi _{1}}^{varphi _{2}}left|{vec {M}}right|dvarphi =left|{vec {M}}right|(varphi _{2}-varphi _{1})=left|{vec {M}}right|int _{t_{1}}^{t_{2}}omega (t)dt}.

В системе СИ работа A измеряется в джоулях, угол — в радианах.

Размерность работы (и энергии) совпадает с размерностью момента силы («ньютон-метр» и джоуль — это одни и те же единицы). Момент силы 1 Н·м, при повороте рычага или вала на 1 радиан совершает работу в 1 Дж, а при повороте на один оборот совершает механическую работу и сообщает энергию 2pi джоуля.

Измерение момента силы[править | править код]

Измерение момента силы осуществляется с помощью специальных приборов — торсиометров. Принцип их действия обычно основан на измерении угла закручивания упругого вала, передающего крутящий момент, либо на измерении деформации некоторого упругого рычага. Измерения деформации и угла закручивания производится различными датчиками деформации — тензометрическими, магнитоупругими, а также измерителями малых перемещений — оптическими, ёмкостными, индуктивными, ультразвуковыми, механическими.

Существуют специальные динамометрические ключи для измерения крутящего момента затягивания резьбовых соединений и регулируемые и нерегулируемые ограничители крутящего момента, так называемые «трещотки», применяемые в гаечных ключах, шуруповёртах, винтовых микрометрах и др.

Из истории понятия[править | править код]

Для того чтобы понять, откуда появилось понятие момента сил и как к нему пришли, стоит рассмотреть действие силы на рычаг, поворачивающийся относительно неподвижной оси. Работа, совершаемая при действии силы {vec {F}} на рычаг {vec {r}}, совершающий вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием силы конец рычага смещается на бесконечно малый отрезок dl, которому соответствует бесконечно малый угол dvarphi. Обозначим через {displaystyle d{vec {l}}} вектор, который направлен вдоль бесконечно малого отрезка dl и равен ему по модулю. Угол между векторами {vec {F}} и {displaystyle d{vec {l}}} равен beta , а угол между векторами {vec {r}} и {vec {F}} равен alpha .

Следовательно, бесконечно малая работа dA, совершаемая силой {vec {F}} на бесконечно малом участке dl, равна скалярному произведению вектора {displaystyle d{vec {l}}} и вектора силы, то есть {displaystyle dA={vec {F}}cdot d{vec {l}}}.

Теперь попытаемся выразить модуль вектора {displaystyle d{vec {l}}} через радиус-вектор {vec {r}}, а проекцию вектора силы {vec {F}} на вектор {displaystyle d{vec {l}}} — через угол alpha .

Так как для бесконечно малого перемещения рычага dl можно считать, что траектория перемещения перпендикулярна рычагу {vec {r}}, используя соотношения для прямоугольного треугольника, можно записать следующее равенство: {displaystyle dl=rmathrm {tg} ,dvarphi }, где в случае малого угла справедливо {displaystyle mathrm {tg} ,dvarphi =dvarphi } и, следовательно, {displaystyle left|d{vec {l}}right|=left|{vec {r}}right|dvarphi }.

Для проекции вектора силы {vec {F}} на вектор {displaystyle d{vec {l}}} видно, что угол {displaystyle beta ={frac {pi }{2}}-alpha }, а так как {displaystyle cos {left({frac {pi }{2}}-alpha right)}=sin alpha }, получаем, что {displaystyle left|{vec {F}}right|cos beta =left|{vec {F}}right|sin alpha }.

Теперь запишем бесконечно малую работу через новые равенства: {displaystyle dA=left|{vec {r}}right|dvarphi left|{vec {F}}right|sin alpha }, или {displaystyle dA=left|{vec {r}}right|left|{vec {F}}right|sin alpha ,dvarphi }.

Видно, что произведение {displaystyle left|{vec {r}}right|left|{vec {F}}right|sin alpha } есть не что иное, как модуль векторного произведения векторов {vec {r}} и {vec {F}}, то есть {displaystyle left|{vec {r}}times {vec {F}}right|}, которое и было принято обозначить за момент силы M, или модуль вектора момента силы {displaystyle left|{vec {M}}right|}.

Теперь полная работа записывается просто: {displaystyle A=int limits _{0}^{varphi }left|{vec {r}}times {vec {F}}right|dvarphi }, или {displaystyle A=int limits _{0}^{varphi }left|{vec {M}}right|dvarphi }.

См. также[править | править код]

  • Момент инерции
  • Момент импульса
  • Теорема Вариньона

Момент силы M(F)

Моментом силы называют вращательное усилие создаваемое вектором силы относительно твердого тела, оси или точки.
Момент силы
Обозначение: M, m или M(F).

Размерность — [Н∙м] (Ньютон на метр) либо кратные значения [кН∙м]

Аналогом момента силы является момент пары сил.

Обязательным условием возникновения момента является то, что точка, относительно которой создается момент не должна лежать на линии действия силы.

Определение

Момент определяется как произведение силы F на плечо h:

M(F)=F×h

Момент как произведение силы на плечо

Плечо силы h, определяется как кратчайшее расстояние от точки до линии действия силы.

Наш короткий видеоурок про момент силы с примерами:

Другие видео

Например, сила величиной 7 кН приложенная на расстоянии 35см от рассматриваемой точки вращения создает момент M=7×0,35=2,45 кНм.

Пример момента силы

Наиболее наглядным примером момента силы может служить поворачивание гайки гаечным ключом.

Гайки заворачиваются вращением, для этого к ним прикладывается момент, но сам момент возникает при воздействии нашей силы на гаечный ключ.

Вы конечно интуитивно понимаете — для того чтобы посильнее закрутить гайку надо взяться за ключ как можно дальше от нее.

Пример момента силы - заворачивание гайки гаечным ключом

В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения её плеча (h2>h1).

Плечом при этом служит расстояние от центра гайки до точки приложения силы.

Плечо момента силы

Рассмотрим порядок определения плеча h момента:

Пусть заданы точка A и некоторая произвольная сила F, линия действия которой не проходит через эту точку. Требуется определить момент силы.

Сила и точка

Покажем линию действия силы F (штриховая линия)

Линия действия силы

Проведем из точки A перпендикуляр h к линии действия силы

Плечо момента силы

Длина отрезка h есть плечо момента силы F относительно точки A.

Момент принимается положительным, если его вращение происходит против хода часовой стрелки (как на рисунке).

Так принято для того, чтобы совпадали знаки момента и создаваемого им углового перемещения.

Примеры расчета момента силы

Сила расположена перпендикулярно оси стержня

Если сила F приложена перпендикулярно к оси бруса и известно расстояние между точками A и B.

Момент силы перпендикулярной стержню

То момент силы F относительно точки A:

МA=F×AB

Сила расположена под углом к оси стержня

В случае, если сила F приложена под углом α к оси балки
Момент силы расположенной под углом к стержню

Момент силы относительно точки B:

MB=F×cosα×AB

Известно расстояние от точки до линии действия силы

Если известно расстояние от точки где определяется момент до линии действия силы (плечо h)
Момент силы для произвольно расположенного стержня

Момент силы относительно точки B:

MB=F×h


См. также:

  • Примеры решения задач >
  • Момент силы относительно точки
  • Момент силы относительно оси

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Определение

Статика — раздел механики, изучающий условия равновесия тел.

Виды равновесия

Устойчивое равновесие

Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение равновесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии (Ep min).

Неустойчивое равновесие

Если тело вывести из неустойчивого равновесия, то возникает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии (Ep max).

Безразличное равновесие

При выведении тела из положения безразличного равновесия дополнительных сил не возникает.

Момент силы

Определение

Момент силы — векторная физическая величина, модуль которой равен произведению модуля силы на плечо силы:

M = Fd

M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).

Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.

Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?

Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:

M = Fd = mgd = 2∙10∙0,5 = 10 (Н∙м)

Момент силы может быть положительным и отрицательным.

Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:

M1 = F1d1

Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:

M2 = F2d2

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Mi=0

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

Mпо час. стр.=Mпр. час. стр.

Условия равновесия тел

Тело не участвует в поступательном движении:

Fi=0; vo=0

Тело не участвует во вращательном движении:

Mi=0; ω0=0

Тело находится в состоянии равновесия (не участвует ни в поступательном, ни во вращательном движении)

Fi=0; vo=0 и Fi=0; vo=0

Простые механизмы

Определение

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

mgsinθ<mg

Рычаг

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

F1F2=d2d1

Неподвижный блок

Изменяет направление действия силы. Модули и плечи сил при этом равны:

F1 = F2

M1 = M2

Подвижный блок

Дает выигрыш в силе в 2 раза:

d1 = R

d2 = 2R

F1 = 2F2

Клин

Делит силу на две равные части, направление которых зависит от формы клина:

F=F1+F2

Золотое правило механики

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.

Задание EF22660

Мальчик взвесил рыбу на самодельных весах с коромыслом из лёгкой рейки (см. рисунок). В качестве гири он использовал батон хлеба массой 0,8 кг. Определите массу рыбы.


Алгоритм решения

1.Записать исходные данные.

2.Записать правило моментов и выполнить решение в общем виде.

3.Подставить известные данные и вычислить искомую величину.

Решение

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

d1 = 0,3

d2 = 0,4

Запишем правило моментов:

F1 d1 = F2 d2

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

m1gd1 = m2gd2

m1d1 = m2d2

Отсюда масса рыбы равна:

m2=m1d1d2=0,8·0,30,4=0,6 (кг)

Ответ: 0,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18706

Однородный куб опирается одним ребром на пол, другим на вертикальную стену (см. рисунок). Плечо силы трения Fтр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно…

Ответ:

а) 0

б) О2О3

в) О2В

г) О3В


Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Решение

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 9.7k

Определение

Момент силы — это крутящий или вращательный момент, который является векторной величиной.

Чтобы определить, чему равен момент силы, нужно получить произведение вектора силы и радиус-вектора, который проводится к точке приложения силы от оси вращения. Поэтому величину можно назвать характеристикой вращательного воздействия силы на твердое тело.

Термины “крутящий” и “вращающий” моменты в данном случае не являются тождественными. Разница между ними состоит в том, что “вращающий” момент воспринимается как внешнее усилие, которое прикладывают к объекту. Термин “крутящий” же рассматривается как внутреннее усилие, которое появляется при приложении конкретных нагрузок (что делает определение схожим с используемым при изучении сопротивления материалов).

Понятие «момент силы»

Физики воспринимают этот термин в качестве так называемой “вращающей силы”. В соответствии с системой СИ, измеряется данная величина в ньютон-метрах. Иногда в литературе можно также встретить понятие “момент пары сил” (такое определение, например, появляется в исследованиях Архимеда над рычагами).

При использовании простых примеров (например, при приложении силы к рычагу в перпендикулярном отношении к нему) величина рассчитывается как произведение расстояния до оси вращения рычага и непосредственно силы, которая на него воздействует.

Пример: На рычаг оказывает воздействие силы в 3 ньютона, которую прикладывают на расстоянии 2 м от оси вращения рычага. В результате момент силы будет равнозначен силе в 1 ньютон, прикладываемой на расстоянии 6 м по отношению к рычагу.

Как определить, чему равен момент силы

Формула

Точно определить момент действия силы частицы удастся, применив следующую векторную формулу:

[vec{mathrm{M}}=vec{mathrm{r}} vec{mathrm{F}}]

В данном случае [vec{mathrm{r}}] — это радиус вектора частицы, а
[vec{mathrm{F}}] — сила, воздействующая на эту частицу.

Важно помнить, что в физике энергия воспринимается как скалярная величина. В то же время момент силы считается (псевдо)векторной величиной. Поэтому совпадение размерностей указанных величин никогда не бывает случайным. Например, момент силы в 1 Н/м, приложенный через целый оборот, при выполнении механической работы сообщает энергию в 2 Дж. В математическом отображении эта формула момента силы будет выглядеть так:

[mathbf{E}=mathbf{M} boldsymbol{theta}], где:

  • [mathbf{E}] — это энергия;
  • [mathbf{M}] — это вращающийся момент;
  • [boldsymbol{theta}] — это угол в радианах.

В современных условиях момент силы измеряется при помощи особых датчиков нагрузки, которые могут быть трех типов:

  • оптического;
  • тензометрического;
  • индуктивного.

Применение специальной техники позволяет определить величину предельно точно и избавляет ученых от необходимости производить лишние расчеты.

Нет времени решать самому?

Наши эксперты помогут!

Момент силы: формулы

Наиболее интересным в физике считается определение момента силы в поле. Для этого используется следующая формула:

[vec{M}=vec{M_{1}} vec{F}]

Где:

[vec{M_{1}}]- это момент рычага;
[vec{F}]- это величина силы, действующей на тело.

У такой формулы момента силы в физике будет один недостаток. С ее помощью не удастся определить, в каком направлении направлен момент силы. Известной станет только его величина. Если сила окажется перпендикулярной вектору, тогда момент рычага окажется равен расстоянию от центра до точки, в которой была приложена сила. В таком случае момент силы достигнет максимального значения:

[vec{T}=vec{r} quad vec{F}]

Если сила совершает какое-либо действие на определенном расстоянии, она параллельно выполняет механическую работу относительно того же объекта. В таком случае в физической практике считается, что и момент силы выполняет работу (при совершении действия через угловое расстояние).

[mathrm{P}=mathrm{M} {omega}]

Международная система измерений предлагает определять мощность в Ваттах, при этом момент силы измеряется в радианах в секунду. Для определения величину угловой скорости используется единица “радианы в секунду”).

Как определяется момент действия нескольких сил

Если на тело действуют одновременно две равные по величине и противоположно направленные силы (не лежащие на одной и той же прямой), оно находится в состоянии равновесия. Такая ситуация связана с тем, что результирующий момент данных сил по отношению к любой из осей не обладает нулевым значением. Ведь обе силы направлены в одну сторону момента и являются парой сил.

Если тело закреплено на оси, оно будет вращаться под влиянием пары сил. Когда же пара сил прилагается по отношению к свободному телу, последнее начнет крутиться вокруг той оси, которая проходит через центр тяжести.

В соответствии с правилом моментов сил в физике, момент пары сил считается одинаковым по отношению к любой оси, перпендикулярной плоскости этой пары. При этом суммарный момент пары M всегда определяется как произведение плеча пары (то есть расстояния l между силами) и одной из этих сил F. Данный расчет производится независимо от типов отрезков, на которые разделяется положение оси.

[mathrm{M}=mathrm{FL}_{1}+mathrm{FL}-2=mathrm{FL}_{1}+mathrm{L}_{2}=mathrm{FL}]

В случае, если равнодействующая момент нескольких сил равняется нулю, он будет одинаковым по отношению ко всем параллельным друг другу осям. Именно поэтому воздействие всех сил на тело можно заменить действием только одной пары сил, имеющих точно такой же момент.

Момент силы

Это мера силы, которая может заставить объект вращаться вокруг оси.

Так же, как сила – это то, что заставляет объект ускоряться в линейной кинематике, так и крутящий момент – это то, что заставляет объект приобретать угловое ускорение.

Момент силы является векторной величиной. Направление вектора крутящего момента зависит от направления действия силы на ось.

Любой, кто когда-либо открывал дверь, обладает интуитивным пониманием крутящего момента. Когда человек открывает дверь, он толкает ту сторону двери, которая находится дальше всего от петель. Нажатие на сторону, ближайшую к петлям, требует значительно большего усилия. Хотя проделанная работа одинакова в обоих случаях (большее усилие будет применено на меньшем расстоянии).

Виды моментов сил.png

Виды моментов сил

Моменты сил могут быть статическими или динамическими.

Статический момент

Момент, который не производит угловое ускорение.

Кто-то, толкающий закрытую дверь, прикладывает статический момент к двери, потому что дверь не вращается вокруг своих петель, несмотря на прилагаемое усилие. Кто-то, крутящий велосипед на постоянной скорости, также прикладывает статический крутящий момент, потому что он не ускоряется.
Ведущий вал в гоночном автомобиле, ускоряющийся от линии старта, несет динамический крутящий момент, потому что он должен вызывать угловое ускорение колес, учитывая, что автомобиль ускоряется по трассе.

Как рассчитывается момент сил

Величина вектора момента сил (обозначается M→overrightarrow M), создаваемого данной силой FF является:

M  →=  [F→×r→]overrightarrow{M;}=;left[overrightarrow Ftimesoverrightarrow rright]

или, если раскрыть векторное уравнение, получится:

M  →=F→⋅r→sin⁡θoverrightarrow{M;}=overrightarrow Fcdotoverrightarrow rsintheta,

где rr – расстояние от оси вращение, до точки действия силы, θθ — угол, между векторами rr и FF.
Направление вектора момента сил определяется с использованием правила правого захвата. Если рука вращается вокруг оси вращения пальцами, указывающими в направлении силы, то вектор момента сил указывает в направлении большого пальца, как показано на рисунке ниже.

момент силы.png

Единица СИ для момента сил является Ньютон-метр.

Роль момента сил во вращательной кинематике

Во вращательной кинематике крутящий момент занимает место силы в линейной кинематике. Существует прямой эквивалент закона Ньютона второй (F=m⋅a)(F = m·a),

M=I⋅αM = I·α,

где αα – угловое ускорение. II – момент инерции, свойство вращающейся системы, которое зависит от распределения массы системы.

Чем больше II, тем сложнее для объекта получить угловое ускорение.

Тест по теме «Момент силы»

Добавить комментарий