Найдите несократимую дробь, равную дроби:
а)
25
100
;
б)
48
56
;
в)
75
125
;
г)
108
144
;
д)
600
720
;
е)
100
1000
;
ж)
350
1000
;
з)
250
1000
;
и)
320
6400
;
к)
800
1000
.
reshalka.com
Математика 5 класс Никольский. Номер №771
Решение а
25
100
=
25
:
25
100
:
25
=
1
4
Решение б
48
56
=
48
:
8
56
:
8
=
6
7
Решение в
75
125
=
75
:
25
125
:
25
=
3
5
Решение г
108
144
=
108
:
36
144
:
36
=
3
4
Решение д
600
720
=
600
:
120
720
:
120
=
5
6
Решение е
100
1000
=
100
:
100
1000
:
100
=
1
10
Решение ж
350
1000
=
7
∗
50
20
∗
50
=
7
20
Решение з
250
1000
=
250
:
250
1000
:
250
=
1
4
Решение и
320
6400
=
320
:
320
6400
:
320
=
1
20
Решение к
800
1000
=
800
:
200
1000
:
200
=
4
5
ГДЗ и решебники
вип уровня
Условие
Найдите несократимую дробь, равную дроби:
а) 25/100;
б) 48/56;
в) 75/125;
г) 108/144;
д) 600/720;
е) 100/1000;
ж) 350/1000;
з) 250/1000;
и) 320/6400;
к) 800/1000.
Решение 1
Решение 2
Решение 3
Популярные решебники
Равенство дробей.
Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.
Чтобы понять основные свойства дробей рассмотрим окружность.
На окружности видно, что 4 части или доли закрашены из восьми возможных. Запишем полученную дробь (frac{4}{8})
На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь (frac{1}{2})
Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны (frac{4}{8} = frac{1}{2}), то есть это одно и тоже число.
Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.
(frac{4}{8} = frac{1 cdot color{red} {4}}{2 cdot color{red} {4}} = frac{1}{2} cdot color{red} {frac{4}{4}} =frac{1}{2} cdot color{red}{1} = frac{1}{2})
Что мы сделали? Расписали числитель и знаменатель на множители (frac{1 cdot color{red} {4}}{2 cdot color{red} {4}}), а потом разделили дроби (frac{1}{2} cdot color{red} {frac{4}{4}}). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей.
Посмотрим еще один пример и сократим дробь.
(frac{6}{10} = frac{3 cdot color{red} {2}}{5 cdot color{red} {2}} = frac{3}{5} cdot color{red} {frac{2}{2}} =frac{3}{5} cdot color{red}{1} = frac{3}{5})
Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.
Основное свойство дроби.
Отсюда следует основное свойство дроби:
Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.
(bf frac{a}{b} = frac{a cdot n}{b cdot n})
Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:
(frac{6}{8} = frac{6 div color{red} {2}}{8 div color{red} {2}} = frac{3}{4})
Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.
(bf frac{a}{b} = frac{a div n}{b div n})
Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями.
Пример сократимой дроби: (frac{2}{4}, frac{6}{10}, frac{9}{15}, frac{10}{5}, …)
Так же есть и несократимые дроби.
Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.
Пример несократимой дроби: (frac{1}{2}, frac{3}{5}, frac{5}{7}, frac{13}{5}, …)
Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:
(7 = frac{7}{1})
Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.
Проверьте справедливо ли равенство: (frac{7}{11} = frac{14}{22})?
Ответ: распишем дробь (frac{14}{22} = frac{7 cdot 2}{11 cdot 2} = frac{7}{11}), да справедливо.
Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби (frac{2}{3}).
б) Найдите дробь с числителем 8, равную дроби (frac{1}{5}).
Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби (frac{2}{3}) на 5.
(frac{2}{3} = frac{2 cdot 5}{3 cdot 5} = frac{10}{15})
б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби (frac{1}{5}) на 8. Получим:
(frac{1}{5} = frac{1 cdot 8}{5 cdot 8} = frac{8}{40})
Пример №2:
Найдите несократимую дробь, равную дроби: а)(frac{16}{36}), б) (frac{10}{25}).
Решение:
а) (frac{16}{36} = frac{4 cdot 4}{9 cdot 4} = frac{4}{9})
б) (frac{10}{25} = frac{2 cdot 5}{5 cdot 5} = frac{2}{5})
Пример №3:
Запишите число в виде дроби: а) 13 б)123
Решение:
а) (13 = frac{13} {1})
б) (123 = frac{123} {1})
Самые старые упоминания о таких математических явлениях, как дробь, учёные обнаружили в древнем Египте. Особенностью их было то, что у них были обозначения только вида 12, 23,13, при этом больше двойки числа, делимого они не использовали, а использовали метод сложения, к примеру, вместо дроби 56, писали 12 +13.
Но применять такие дроби было сложно, поэтому учёные разных областей пытались вывести общую универсальную формулу для удобства. Так появилась шестидесятеричная, но проводить вычисления с ней тоже было очень трудно, однако её довольно долго применяли в Вавилоне и Греции. Существовала также система называемая Асс, её суть в делении на 12, использовали её римляне. Результат такого деления, точнее одну долю, называли унцией. Самой близкой по своей системе исчисления была дробь, которую предложили в Индии, разница от современных была в формате записи, без чёрточки, и такая дробь была перевернута, в верхней части находился делитель, а в нижней делимое. Та запись, которую и по сей день используют в математике была придумана арабами.
Что такое дробь, основные понятия и виды
Определение
Дробь — число, состоящее из нескольких равных долей.
По сути дробь — это деление одного числа на другое. Выделяют два вида: обыкновенные и десятичные.
Обыкновенная дробь — означает, состоящая из целых чисел. Обыкновенные, имею два типа записи к примеру:
- 15- разделена наклонной линией, читается как одна пятая;
- [frac{1}{5}] — горизонтальной линией.
Определения:
- Числитель — число, находящееся в верхней границе дроби;
- Знаменатель — число которое мы видим в нижней границе дроби.
Например: 15, где 1- числитель, 5- знаменатель. Для того чтобы проще объяснить, что такое дробь приведём простой пример. Торт разрезан на 5 кусков, если мы взяли два и них то это 25 (две пятые части торта).
Обыкновенные дроби имеют два типа правильные и неправильные.
Правильной дробью называется дробь с значениями, в которых числитель меньше знаменателя. Такое название данный тип дроби получил не зря, ведь так логичнее и правильнее, когда часть меньше целого.
Неправильная в свою очередь имеет обратные значения, когда числитель больше знаменателя.
Примечание. Дроби, у которых знаменатель и числитель одинаковы, тоже неправильные.
Смешанная дробь. Существует также такое определение как смешанная дробь, такой вид, представляет собой дробь, состоящую из двух частей целой и дробной. Пример — [4 frac{3}{5}], где четыре это целая часть, а 35 дробная. Такой тип дроби можно получить, только при делении неправильного вида дробей.
Десятичные дроби. К десятичным, относят дроби которые в знаменателе имеют 10 в натуральной степени. К примеру [frac{5}{10}, frac{6}{100}] и тд. Такие, так же могут иметь вид строчной записи, 0,5 и 0,06. При этом в такой записи целая часть отделяется от дробной знаком запятой.
Существуют также понятия сократимой и несократимой дроби. Сократимая дробь, это та, в которой можно произвести деление числителя и знаменателя на одно и то же число.
Несократимая дробь, если такие действия выполнить нельзя.
Составная дробь, многоуровневая или выражение, имеющее несколько черт дроби. Пример [frac{frac{3}{7}}{-31}]
Равные и неравные дроби. Для того чтобы сказать, являются дроби равными или нет, нужно их сравнить.
Равные обыкновенные [frac{a}{d} frac{c}{b}] — можно вывести при помощи такого верного равенства а*b=d*c , если такое равенство не верно то данные дроби будут называться неравными.
Положительные и отрицательные дроби.
Положительные называют обыкновенные дроби, с положительными числами, при необходимость перед такими дробями ставится знак +, пример [+frac{6}{9}].
Отрицательными, считаются дроби со знаком минус, пример [-frac{6}{9}].
Стоит отметить что две дроби вида [-frac{6}{9} text { и }+frac{6}{9}] являются противоположными.
Алгебраическая дробь.
Отличается она тем, что на месте числителя и знаменателя находятся алгебраические значения, числа заменены буквами. Примеры —
[ frac{x+y}{x-y}, frac{x^{3}+1}{x^{2}-x+2}, frac{a^{2}-4}{a+2}, frac{a}{2}, frac{3 a+7}{5} ]
Если в такой дроби буквы заменить числами, то она сразу станет обыкновенной.
Одночлен — это выражение, содержащее числа, степени положительные и их произведение. Пример: в.
Многочлен — это сумма одночленов. Пример: 7а+6в
Дроби на координате прямых.
Если рассматривать координату прямых, то положительные дроби на ней будут расположены справа от нулевого значения, а отрицательные слева.
Действия, которые можно выполнить с дробями
В общем то, действия с дробями это все те же действия, которые можно выполнить с числами:
- Сравнение;
- Сложение;
- Вычитание;
- Умножение;
- Деление.
Свойства дроби
Чтобы сложить или вычесть дроби, дробь обязана иметь равные знаменатели, необходимо просто выполнить это действие с их числителями
Примеры:
[ frac{4}{9}+frac{5}{9}=frac{4+5}{9} ; text { и } frac{4}{9}-frac{5}{9}=frac{5-4}{9}. ]
Что же касается дробей с разной частью делителя (Знаменателя), то тут чтобы выполнить действия сложения и вычитания с ними необходимо привести знаменатели к общему числу.
Примеры: [frac{4}{9}+frac{5}{8}=frac{4+5}{9 cdot 8}], точно так же и для вычитания.
Чтобы выполнить такое действие, как умножение обыкновенных дробей, нужно произвести умножение сначала с их числителями, а после и знаменателями.
Пример: [frac{4}{9} cdot frac{5}{8}=frac{4 cdot 5}{9 cdot 8}].
При умножении дроби на число, в такой вычислении просто умножается числитель на заданное число, а знаменатель остаётся тем же.
Пример: [frac{4}{9} cdot 6=frac{4 cdot 6}{9}];
Что же касается деления, то при делении одной дроби на другую, нужно произвести умножение, при котором первая дробь остаётся в неизменном виде, а вторая переворачивается. То есть получается мы умножаем числитель первой дроби данного примера, на знаменатель второй, и полученное число находится в верхней части дроби, а в нижней умножение знаменателя первой дроби на числитель второй.
Пример: [frac{4}{9} backslash frac{5}{8}=frac{4 cdot 8}{9 cdot 5}].
Сравнение дробей
Чтобы провести сравнение с разными делителями (знаменателями), необходимо сделать так, чтобы знаменатель стал общим только тогда можно будет сравнить числители. Соответственно, где числитель больше там и дробь больше.
Основное свойство дробей
Основным свойством дроби является выражение — «числитель и знаменатель можно делить и умножать на одно и то же число при этом значение всей дроби не поменяется.»
Еще одно определение которое пригодится нам для сокращения дроби это НОД.
НОД — наибольший общий делитель.
Общий делитель — это число, которое может быть делителем каждого из указанных чисел.
Пример: если взять число 3, то оно станет общим делителем для чисел 6 и 9. так как 9=3*3 а 6=3*2.
Алгоритм Евклида для вычисления НОД (наибольшего общего делителя)
Не всегда, сходу, можно понять какое число является наибольшим общим числителем, особенно если числа крупные, поэтому существует специальный алгоритм для выведения такого числа НОД.
Суть алгоритма такова: для нахождения НОД чисел а и b (где они целые и положительные числа, к тому же a больше b), выполняется ряд делений с остатком, получается ряд равенств, где деление останавливается в том случае если rk+1=0, при этом rk=НОД(a, b)
Пример. Рассчитаем НОД для 28 и 64.
Как находим:
Распишем простые множители для каждого числа и подчеркнем одинаковые
Д (28) = 2 * 2 * 7
Д (64) = 2 * 2 * 2 * 2 * 2 * 2
Найдем произведение одинаковых простых множителей и запишем ответ
НОД (28; 64) = 2 * 2 = 4
Ответ: НОД (28; 64) = 4
Оформить поиск НОД можно в строчку, как мы сделали выше или в столбик, как на картинке.
Сокращение дроби
Выражение сократить дробь, фактически означает что необходимо провести деление её числителя и знаменателя на одно и то же число, не равное единице.
Результатом таких действий станет появление новой дроби, значение которой, равно первичной.
Например: возьмём обыкновенную дробь [frac{12}{44}] и произведем сокращение. Для этого разделим и числитель и знаменатель на 2, получится такая дробь [frac{12}{44} backslash 2=frac{12 backslash 2}{44 backslash 2}=frac{6}{22}].
Нет времени решать самому?
Наши эксперты помогут!
Несократимый вид дроби, приведение к такому виду
Обычно целью таких манипуляций с дробями является получение из исходного вида дроби несократимый. К примеру дробь, которая получилась у нас выше, [frac{6}{22}] при сокращении на два, как мы видим все ещё можно сократить.
Для того чтобы привести дробь к виду несократимой, нужно выполнить манипуляции по делению, числителя и знаменателя на наибольший НОД. В таком случае по свойству НОД в числителе и знаменателе окажутся простые числа, а дробь будет несократимой.
[ frac{a}{d}=frac{a backslash text { НОД }(a, d)}{d backslash text { НОД }(a, d)} ]
Из вышесказанного следует, что приведение дроби к несократимому виду значит, нужно произвести деление числителя и знаменателя на их НОД.
Пример: вернёмся к нашему примеру дроби [frac{12}{44}], для приведения ее к несократимому виду нужной сначала найти наибольший общий делитель чисел 12 и 44. таким числом НОД для них является цифра 4.
Получается: [frac{12}{44}=frac{12 backslash 4}{44 backslash 4}=frac{3}{11}].
Для чего нужно сокращение? Такие манипуляции с дробями необходимо применять, в случаях работы с большими числами.
Стоит вспомнить негласное правило математики, суть его в том, что если что-то можно сделать проще нужно упростить. Поэтому, говоря о сокращении дроби, имеется в виду именно приведение к несократимому виду, а не просто уменьшение числителя и знаменателя.
Правило сокращения
Для того чтобы сократить, необходимо:
- Найти делитель наибольшего значения, который будет общим для знаменателя и числителя;
- Разделить числитель и знаменатель на него.
Примеры:
Дана такая дробь: [frac{182}{195}]. сократим её.
Найдём такой делитель, при помощи применения алгоритма Евклида.
195 = 182 *1+13
182=13*14
Из чего следует, что НОД(182,195)=13
Поэтому для сокращения дроби [frac{182}{195}], разделим числитель 182 и знаменатель 195 на 13 и получим равенство: [frac{182}{195}=frac{182 backslash 13}{195 backslash 13}=frac{14}{25}]
Таким образом мы и получили несократимую дробь равную исходной.
Второй способ.
Второй способ основан на разложении числителя и знаменателя исходной дроби на простые множители, из которых позже все общие множители убираются.
Пример сокращения: [frac{123}{154}] для сокращения представим числитель и знаменатель дроби в виде простых множителей
[ frac{182}{195}=frac{2 cdot 7 cdot 13}{3 cdot 5 cdot 13} ]
Затем уберём все общие множители, как в числителе так и в знаменателе, [frac{182}{195}=frac{2 cdot 7 cdot 13}{3 cdot 5 cdot 13}=frac{2 cdot 7}{3 cdot 5}=frac{14}{15}]
Третий способ сокращения дроби.
Третий способ — способ последовательного сокращения. Применяя такой способ, сокращение происходит поэтапно, сокращая каждый раз на какой-либо очевидный общий множитель.
Пример: [frac{18000}{22000}]
При сокращении такой дроби сразу можно увидеть, что и числитель и знаменатель деяться на 1000 в результате такого деления получается:
[ frac{18000}{22000}=frac{18000 backslash 1000}{22000 backslash 1000}=frac{18}{22} ]
Следующим этапом мы видим, что оба значения и числителя, и знаменателя делятся на 2, получим несократимую дробь.
[ frac{18}{22}=frac{18000 backslash 2}{22000 backslash 2}=frac{9}{11} ]
Как мы видим сокращение дроби не такой сложный процесс, главное подобрать удобный способ.
Сокращение алгебраической дроби
Так же, как и в примерах выше, сокращение алгебраической дроби, это деление числителя и знаменателя на общий делитель. Отличие в том, что в алгебраической, таким общим множителем является многочлен и одночлен.
Для того чтобы сократить такие дроби нужно пройти три этапа:
- Определение множителя, который будет общим для числителя и знаменателя;
- Сокращение коэффициента;
- Деление числителя и знаменателя на множитель.
Сокращая дробь со степенями, применяется правило деления степеней с равными основаниями.
Формула:
[ a^{n} div a^{m}=a^{n-m} ]
Рассмотрим пример сокращения со степенями:
[ frac{x^{3}}{x^{2}}=frac{x^{3} / x^{2}}{x^{2} / x^{2}}=frac{x^{3-2}}{x^{2-2}}=frac{x^{1}}{x^{0}}=frac{x}{1}=x ]
Исходя из вышеописанной схемы:
- Сокращаем x3 и x2;
- Производим деление выбирая меньшее значение степени;
- Вычитаем.
В результате получаем сокращенную дробь.
Не забываем, что сократить можно только одинаковые буквенные множители.
Сокращение дробей с одночленами.
Пример: [frac{40 x}{5 x^{2}}=frac{8}{x^{2-1}}=frac{8}{x}]
Решение:
- 8 — тот самый множитель, который является общим
- Х и x2 делим на x и получаем ответ.
Дроби с многочленами: сокращение.
Для сокращения таких видов, существует два правила:
- Сократить многочлен в взятый в скобки, можно только с точно таким же многочленом в скобках;
- Сократится должен весь многочлен, взятый в скобки, нельзя сократить только часть.
Пример: [frac{x-c}{x(x-c)}=frac{1}{x}]
Вынесение общего множителя при сокращении.
Бывают случаи, когда при сокращении алгебраической дроби с многочленами, их нет одинаковых, в таком случае нужно убрать общий множитель за скобки.
Для такого вынесения тоже существуют правила их 4:
- необходимо найти число, на которое можно разделить числа каждого одночлена;
- необходимо также найти буквенный множитель, который повторяется, в каждом одночлене, их может быть несколько;
- выносим буквенный множитель, который был найден, за скобки;
- производим работу с оставшимися многочленами в скобках.
Для того чтобы умножить многочлен на одночлен, необходимо по очереди умножить каждый член многочлена на одночлен.
Приведём пример:
[frac{6 x+42 a}{7 a+x}=frac{6(x+7 a)}{7 a+x}=frac{6}{7}]
Калькулятор сокращения дробей
Подведём итоги. Для того чтобы не возникло трудностей с сокращением, стоит запомнить:
- Сокращая дробь вам необходимо найти общий множитель для числителя и знаменателя, если речь идет об алгебраических дробях, но и НОД обыкновенных;
- Разделить числитель и знаменатель на общий множительделитель;
- Если дробь алгебраическая, при делении многочлена на множитель необходимо вынести общий множитель за скобки;
- Стоит хорошо выучить все формулы и определения, связанные с дробями.
- Всегда проверять результат сокращения.
Математика
5 класс
Урок № 48
Равенство дробей
Перечень рассматриваемых вопросов:
– обыкновенная дробь;
– числитель, знаменатель обыкновенной дроби;
– сократимая, несократимая дробь;
– равные дроби;
– основное свойство дроби.
Тезаурус
Дробь в математике – это число, состоящее из одной или нескольких равных частей (долей) единицы.
Правильные дроби – это дроби, в которых числитель меньше знаменателя.
Несократимая дробь – это дробь, в которой числитель и знаменатель являются взаимно простыми числами (имеют только один общий делитель – 1).
Сократимая дробь – это дробь, у которой числитель и знаменатель имеют общий положительный делитель, не равный нулю и единице.
Обязательная литература
1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
Дополнительная литература
1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
«Все, что без этого было темно, сомнительно и неверно, математика сделала ясным, верным и очевидным», – сказал Михаил Васильевич Ломоносов.
Эти слова как нельзя кстати походят к теме нашего занятия, на котором мы будем устанавливать между, казалось бы, разными дробями равенство, хоть и не вполне очевидное с первого взгляда.
Итак, выясним, какие дроби можно назвать равными.
Для начала нарисуем отрезок. Далее разделим его на две части. Затем каждую из половинок разделим ещё на две части.
Получается, что весь отрезок поделён на четыре части. Если теперь сложить две части из четырёх, то получится ровно половина отрезка, которая в виде обыкновенной дроби будет записана как одна вторая.
Получается, что одна вторая это тоже самое, что и две четвёртых, т. е. это равные дроби.
Возьмём торт и разделим его на 10 частей.
Половина торта – это 5 частей. В виде обыкновенной дроби получается, что частям торта. Отсюда получается так называемое основное свойство дроби, которое заключается в следующем: если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
С помощью этого свойства всегда получаются равные дроби. Например,
Аналогично, представим семь в виде дроби:
Если возьмём число один, представим его в виде дроби, то получим:
Получается, что две равные дроби являются различными записями одного и того же числа.
Это свойство можно применить и в обратном порядке, в этом случае говорят, что дробь можно сократить. Если числитель и знаменатель дроби имеют общий множитель, то дробь можно сократить на этот множитель, т. е. разделить на него числитель и знаменатель.
В этом случае тоже получается равная дробь. Такие дроби называются сократимыми.
Сократимая дробь – это дробь у которой числитель и знаменатель имеют общий положительный делитель, не равный нулю и единице. Например,
Или возьмём дробь :
Рассмотрим ещё один пример, возьмём дробь :
Стоит отметить, что общий множитель числителя и знаменателя можно найти как их НОД. Например,
Стоит отметить, что сокращать дроби можно постепенно, эти действия всё равно приведут к нужному результату.
Но дроби не всегда можно сократить.
Если числитель и знаменатель дроби являются взаимно простыми числами (имеют только один общий делитель – 1), то такая дробь называется несократимой.
Например, ; – несократимые дроби.
Стоит отметить, что для любой дроби существует единственная равная ей несократимая дробь. Например, дробь равна несократимой дроби , а дробь равна несократимой дроби .
Отметим ещё одно свойство: если числитель дроби делится на знаменатель, то дробь равна частному от деления числителя на знаменатель. Например, возьмём дробь . Мы знаем, что 45 делится на девять, значит, .
Решим задание, связанное с сокращением дробей.
Укажите все общие делители, НОД числителя и знаменателя дроби и сократите дробь.
Решение: начнём с того, что определим общие делители числителя и знаменателя дроби, разложив их на множители:
Общие делители у 66 и 90 – это числа 1, 2, 3, 6.
НОД (66; 90) = 6
Сократим дробь. Так как НОД (66; 90) = 6, то разделим числитель и знаменатель на 6 и получим:
Ответ: общие делители – это числа 1, 2, 3, 6.
НОД (66; 90) = 6, .
Тренировочные задания
№ 1. Сократите дробь .
Решение: для решения этой задачи достаточно определить НОД (15; 20) = 3, это и есть число, на которое будем делить и числитель, и знаменатель, поэтому .
Ответ: .
№ 2. На полке лежат 20 книг. Взяли 4 книги. Какой дробью можно выразить взятую часть книг?
Варианты ответа: ; ; .
Решение: для решения этой задачи сначала найдём дробь, равную взятой части. Это будет дробь . Далее посмотрим на варианты ответов – такой дроби нет, следовательно, нужно сократить полученную дробь. Числитель и знаменатель делятся на 4, поэтому получаем .
Ответ: .