Найдите площадь трапеции егэ как решать

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 657    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с клетками размером 1 см times 1 см

изображен треугольник (см. рис.). Найдите его площадь в квадратных

сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с клетками размером 1 см times 1 см

изображен треугольник (см. рис.). Найдите его площадь в квадратных

сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с клетками размером 1 см х 1 см изображен треугольник (см. рис.). Найдите его площадь в квадратных сантиметрах.


На клетчатой бумаге с клетками размером 1 см times 1 см изображен треугольник (см. рис.). Найдите его площадь в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с клетками размером 1 см times 1 см изображена трапеция (см. рис.). Найдите ее площадь в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с размером клетки  дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см times дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с размером клетки  дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см times дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с размером клетки  дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см times дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.


На клетчатой бумаге с размером клетки  дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см times дробь: числитель: 1, знаменатель: корень из: начало аргумента: Пи конец аргумента конец дроби см изображён круг. Найдите площадь закрашенного сектора. Ответ дайте в квадратных сантиметрах.

Всего: 657    1–20 | 21–40 | 41–60 | 61–80 …

18. Площади геометрических фигур


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Площадь трапеции

Найдите площадь прямоугольной трапеции, основания которой равны (6) и (2), большая боковая сторона составляет с основанием угол (45^circ).

Проведем высоту (CH).

Так как (angle HBC=45^circ), то (angle HCB=45^circ). Следовательно, (triangle HBC) равнобедренный и (HB=HC).
(ADCH) – прямоугольник, следовательно, (AH=DC=2). Тогда (CH=HB=6-2=4). Тогда площадь трапеции равна [S=dfrac{AB+DC}2cdot CH=dfrac{2+6}2cdot 4=16]

Ответ: 16

Основания прямоугольной трапеции равны (12) и (4). Ее площадь равна (64). Найдите острый угол этой трапеции. Ответ дайте в градусах.

Проведем высоту (CH).

(ADCH) – прямоугольник, следовательно, (AH=DC=4). Тогда (HB=12-4=8). Площадь трапеции равна [64=dfrac{AB+DC}2cdot CH=dfrac{4+12}2cdot CHquadRightarrowquad
CH=8]
Заметим, что мы получили, что (CH=HB=8). То есть (triangle
CHB)
равнобедренный, значит, углы при основании равны, то есть (angle HCB=angle HBC). Так как сумма острых углов в прямоугольном треугольнике равна (90^circ), то (angle B=angle
HBC=90^circ:2=45^circ)
.

Ответ: 45

Основания трапеции равны (18) и (6), боковая сторона, равная (7), образует с одним из оснований угол (150^circ). Найдите площадь трапеции.

Пусть (AD=7), тогда (angle ADC=150^circ). По свойству трапеции (angle DAB=180^circ-150^circ=30^circ). Проведем (DHperp
AB)
.

Рассмотрим (triangle ADH). Катет, лежащий против угла (30^circ), равен половине гипотенузы, следовательно, (DH=AD:2=3,5). Тогда площадь трапеции равна [S=dfrac{AB+DC}2cdot DH=dfrac{18+6}2cdot 3,5=42]

Ответ: 42

Основания трапеции равны (27) и (9), боковая сторона равна (8). Площадь трапеции равна (72). Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ дайте в градусах.

Пусть (AD=8). Проведем (DHperp AB).

Тогда площадь трапеции равна [72=dfrac{AB+DC}2cdot DH=dfrac{27+9}2cdot DHquadRightarrowquad
DH=4]
Рассмотрим прямоугольный (triangle ADH). Так как катет (DH) равен половине гипотенузы (AD), то угол (DAH) равен (30^circ).

Ответ: 30

Основания равнобедренной трапеции равны (14) и (26), а ее боковые стороны равны (10). Найдите площадь трапеции.

Проведем высоту (BH). По свойству равнобедренной трапеции (AH=(AD-BC):2=(26-14):2=6).

Тогда из прямоугольного треугольника (ABH): [BH=sqrt{AB^2-AH^2}=sqrt{10^2-6^2}=8] Тогда площадь трапеции: [S=dfrac{AD+BC}2cdot BH=dfrac{26+14}2cdot 8=160]

Ответ: 160

Основания равнобедренной трапеции равны (7) и (13), а ее площадь равна (40). Найдите боковую сторону трапеции.

Проведем высоту (BH).

Площадь трапеции равна [40=dfrac{AD+BC}2cdot BH=dfrac{7+13}2cdot BHquadRightarrowquad BH=
4]
Рассмотрим прямоугольный (triangle ABH). По свойству равнобедренной трапеции (AH=(AD-BC):2=(13-7):2=3). Следовательно, [AB=sqrt{AH^2+BH^2}=5]

Ответ: 5

Основания равнобедренной трапеции равны (14) и (26), а ее периметр равен (60). Найдите площадь трапеции.

Проведем высоту (BH). По свойству равнобедренной трапеции (AH=(AD-BC):2=(26-14):2=6).

Так как периметр трапеции равен (60), а боковые стороны равны, то [AB=dfrac{60-14-26}2=10] Тогда из прямоугольного треугольника (ABH): [BH=sqrt{AB^2-AH^2}=sqrt{10^2-6^2}=8] Тогда площадь трапеции: [S=dfrac{AD+BC}2cdot BH=dfrac{26+14}2cdot 8=160]

Ответ: 160

УСТАЛ? Просто отдохни

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Трапеция»

Открытый банк заданий по теме трапеция. Задания B6 из ЕГЭ по математике (профильный уровень)

Производная и первообразная функции

Задание №1067

Тип задания: 6
Тема:
Трапеция

Условие

Большее основание равнобедренной трапеции равно 24. Боковая сторона равна 7. Синус острого угла равен frac{sqrt{33}}{7}. Найдите меньшее основание.

Показать решение

Решение

Рассмотрим равнобедренную трапецию ABCD, в которой BC и AD — основания, AD = 24, AB = CD = 7. Проведём высоты CK и BH. BCKH — прямоугольник, BC = KH.

равнобедренная трапеция ABCD с высотами CK и BH

Треугольник ABH прямоугольный, cos A = frac{AH}{AB}. Вычислим cos A= sqrt{1-sin^2A}= sqrt{1-left (frac{sqrt{33}}{7}right)^2}= frac47. AH= ABcos A= 7cdotfrac47= 4. Треугольники ABH и DCK равны по гипотенузе и острому угу, откуда AH=KD=4, BC=24-4-4=16.

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1065

Тип задания: 6
Тема:
Трапеция

Условие

Площадь треугольника МРЕ равна 68, KT — средняя линия, параллельная стороне MP. Найдите площадь трапеции MPTK.

Трапеция MPTK со средней линией

Показать решение

Решение

S_{MPTK}=S_{MPE}-S_{KTE}. KT — средняя линия, параллельная стороне MP, поэтому K и T — середины сторон и ET=frac12EP, KE=frac12 EM.

triangle MPE sim triangle KTE по двум углам: angle E — общий, MP parallel KT Rightarrow angle MPE= angle KTE. S_{KTE}= frac14S_{MPE}= frac{68}{4}= 17. S_{MPTK}= 68-17= 51.

Ответ

51

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1064

Тип задания: 6
Тема:
Трапеция

Условие

Площадь треугольника АВС равна 76, DE — средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Трапеция ABCD со средней линией

Показать решение

Решение

S_{ABED}=S_{ABC}-S_{CDE}. DE — средняя линия, параллельая стороне AB, поэтому D и E — середины сторон.

CD=frac12CA, CE=frac12CB, S_{ABC} =frac12CAcdot CBsin C,

S_{CDE}= frac12CDcdot CEsin C= frac12cdotfrac12CAcdotfrac12CBsin C= frac14cdotfrac12CAcdot CBsin C= frac14 S_{ABC}= frac{76}{4}=19

S_{ABED}= S_{ABC}-S_{CDE}= 76-19=57.

Ответ

57

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1061

Тип задания: 6
Тема:
Трапеция

Условие

Основания равнобедренной трапеции равны 10 и 90, а её боковые стороны равны 41. Найдите площадь трапеции.

Показать решение

Решение

Рассмотрим равнобедренную трапецию ABCD, в которой BC = 10, AD = 90 — основания, AB = CD = 41.

равнобедренная трапеция ABCD

Проведём высоты CP и BH. BCPH — прямоугольник, BC = PH = 10. Прямоугольные треугольники ABH и DCP равны по гипотенузе и катету (AB = CD, BH = CP), тогда AH = PD = (90 – 10) : 2 = 40.

Треугольник ABH прямоугольный, BH = sqrt{41^2-40^2} = 9.

Площадь трапеции равна S = frac{BC+AD}{2}cdot BH= frac{10+90}{2}cdot 9= 450.

Ответ

450

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №895

Тип задания: 6
Тема:
Трапеция

Условие

Основания равнобедренной трапеции равны 15 и 43. Косинус острого угла трапеции равен 0,7. Найдите боковую сторону.

Показать решение

Решение

Рассмотрим равнобедренную трапецию ABCD, в которой BC=15, AD=43 — основания, AB=CD.

равнобедренная трапеция ABCD с высотами CK и BH

Проведём высоты CK и BH. BCKH — прямоугольник, BC=KH=15. Треугольники ABH и DCK равны по гипотенузе и острому углу, откуда AH=KD=(43-15):2=14. Треугольник ABH прямоугольный, cos A=frac{AH}{AB}. Боковая сторона трапеции AB=AH:cos A=14:0.7=20.

Ответ

20

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №888

Тип задания: 6
Тема:
Трапеция

Условие

Найдите площадь прямоугольной трапеции, основания которой равны 16 и 22, большая боковая сторона составляет с основанием угол 45^{circ}.

Показать решение

Решение

Рассмотрим прямоугольную трапецию ABCD с основаниями BC=16 и AD=22, angle A=90^{circ}, angle D=45^{circ}. Проведём высоту CH. ABCH — прямоугольник, BC=AH=16, тогда HD=22-16=6.

Прямоугольная трапеция ABCD с высотой CH

Треугольник CDH прямоугольный и равнобедренный (т.к. angle CHD=90^{circ}, angle HCD=45^{circ}=angle D). HD=HC=6.

Площадь трапеции S=frac{BC+AD}{2}cdot CH=frac{16+22}{2}cdot6=114.

Ответ

114

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №297

Тип задания: 6
Тема:
Трапеция

Условие

Основания равнобедренной трапеции равны 9 и 53. Тангенс острого угла равен frac{6}{11}. Найдите высоту трапеции.

Показать решение

Решение

Рассмотрим рисунок:

Равнобедренная трапеция

BKperp AD и CMperp AD, тогда AK=MD=frac{53-9}{2}=22.

frac{BK}{AK}=tgangle BAK=frac{6}{11}, поэтому BK=AKcdotfrac{6}{11}=22cdotfrac{6}{11}=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №293

Тип задания: 6
Тема:
Трапеция

Условие

Основания прямоугольной трапеции имеют длины 4 и 8. Ее большая сторона с основанием образуют угол равный 45^{circ}. Найдите площадь трапеции.

Прямоугольная трапеция

Показать решение

Решение

Пусть CH — высота трапеции ABCD. Тогда в прямоугольном треугольнике CHD острый угол CHD = 45^{circ}. Значит, этот треугольник равнобедренный, то есть CH=DH=AD-BC=8-4=4.

Прямоугольная трапеция с высотой

Тогда S_{ABCD}=frac{AD+BC}{2}cdot CH=frac{8+4}{2}cdot4=24.

Ответ

24

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Ситуация вынудила стать учителем онлайн. Пришлось многому научиться. Понравилось. Теперь здесь на канале каждый день пишу краткое содержание одного онлайн урока на 45 минут или просто какую-нибудь фишку для онлайна .

Вся (или почти вся) теория по трапеции для ЕГЭ

Итак, что нужно знать про трапецию:

1)

Вся (или почти вся) теория по трапеции для ЕГЭ

2)

Вся (или почти вся) теория по трапеции для ЕГЭ

3)

Вся (или почти вся) теория по трапеции для ЕГЭ

4)

Вся (или почти вся) теория по трапеции для ЕГЭ

5)

Вся (или почти вся) теория по трапеции для ЕГЭ

6)

Вся (или почти вся) теория по трапеции для ЕГЭ

7)

Вся (или почти вся) теория по трапеции для ЕГЭ

8) Случай равнобедренной трапеции, в которую вписана окружность

Вся (или почти вся) теория по трапеции для ЕГЭ

9) Формула Буракова

Вся (или почти вся) теория по трапеции для ЕГЭ

10) Дополнительные построения:

Доп. построение в случае, если в задаче участвует середина боковой стороны
Доп. построение в случае, если в задаче участвует середина боковой стороны
Продлить боковые стороны до пересечения (особенно эффектно для прямоугольной трапеции)
Продлить боковые стороны до пересечения (особенно эффектно для прямоугольной трапеции)
Когда известны диагонали трапеции, полезно вынести одну диагонали параллельным переносом через вершину (в этой задаче требовалось найти площадь трапеции)
Когда известны диагонали трапеции, полезно вынести одну диагонали параллельным переносом через вершину (в этой задаче требовалось найти площадь трапеции)

Первая задача:

Вся (или почти вся) теория по трапеции для ЕГЭ
Ответ: 1:2
Ответ: 1:2
Вся (или почти вся) теория по трапеции для ЕГЭ
Вся (или почти вся) теория по трапеции для ЕГЭ

Вторая задача:

Вся (или почти вся) теория по трапеции для ЕГЭ
Обожаю эту задачу на неверный чертеж!
Обожаю эту задачу на неверный чертеж!

Третья задача:

Ответ: 3:5
Ответ: 3:5
Вся (или почти вся) теория по трапеции для ЕГЭ
Вся (или почти вся) теория по трапеции для ЕГЭ
Вся (или почти вся) теория по трапеции для ЕГЭ

Задание 972

Основания равнобедренной трапеции равны 7 и 13, а ее площадь равна 40. Найдите периметр трапеции.

Ответ: 30

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Площадь трапеции вычисляется по формуле $$S=frac{a+b}{2}*h$$. Получаем $$40=frac{7+13}{2}*CH$$. Отсюда CH = 4.

Из треугольника CHD по теореме Пифагора находим CD = 5. Отсюда периметр равен 7 + 13 + 5 + 5 = 30

Задание 1858

Най­ди­те боль­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль AC об­ра­зу­ет с ос­но­ва­ни­ем AD и бо­ко­вой сто­ро­ной AB углы, рав­ные 30° и 45° со­от­вет­ствен­но.

Ответ: 105

Скрыть

$$angle A=angle BAC+angle CAD=30+45=75^{circ}$$, тогда по свойству углов трапеции: $$angle B=180-angle A=105^{circ}$$

Задание 1859

Най­ди­те угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 50° со­от­вет­ствен­но.

Ответ: 80

Скрыть

$$angle A=angle BAC+angle CAD=30+50=80^{circ}$$

Задание 1860

Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол тра­пе­ции. Ответ дайте в гра­ду­сах.

Ответ: 110

Скрыть

Так как дана равнобедренная трапеция, то сумма острых углов при большем основании будет составлять 140 градусов, $$angle A=angle B=frac{140}{2}=70^{circ}$$, по свойству углов трапеции: $$angle D=180-angle A=110^{circ}$$

Задание 1861

Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции, если два ее угла от­но­сят­ся как 1:2. Ответ дайте в гра­ду­сах.

Ответ: 60

Скрыть

Пусть меньший угол равен х, тогда больший угол равен 2х. По свойству углов трапеции получаем, что $$x+2x=180Leftrightarrow$$$$x=60$$, то есть меньший угол составляет $$60^{circ}$$

Задание 1863

Тан­генс остро­го угла пря­мо­уголь­ной тра­пе­ции равен $$frac{5}{6}$$. Най­ди­те её боль­шее ос­но­ва­ние, если мень­шее ос­но­ва­ние равно вы­со­те и равно 15.

Ответ: 33

Скрыть

Опустим высоту CF, тогда из прямоугольного треугольника CFB: $$FB=frac{CF}{tgB}=frac{15}{frac{5}{6}}=18$$. DC=AF=15, тогда AB=15+18=33.

Задание 1864

В рав­но­бед­рен­ной тра­пе­ции из­вест­ны вы­со­та 4, мень­шее ос­но­ва­ние 8 и угол при ос­но­ва­нии $$45^{circ}$$. Най­ди­те боль­шее ос­но­ва­ние.

Ответ: 16

Скрыть

Опустим высоты DE=CF=4, тогда из прямоугольного треугольника ADE: так как $$angle A=45^{circ}$$, то $$angle ADE=90-45=45^{circ}$$, следовательно, реугольник AED – равнобедренный, и AE=DE=4, аналогично FB=4. Но EF=DC=8, тогда AB=4+4+8=16.

Задание 1865

Ос­но­ва­ния тра­пе­ции равны 4 и 10. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.

Ответ: 5

Скрыть

EG – средняя линия треугольника ADB, тогда $$EG=frac{1}{2}=AB=5$$, аналогично GF – средняя линия треугольника DCB, тогда $$GF=frac{1}{2}DC=2$$, наибольший в таком случае равен 5

Примечение: больший из отрезков всегда будет равен половине большего основания

Задание 1866

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 50 и 104, бо­ко­вая сто­ро­на 45. Най­ди­те длину диа­го­на­ли тра­пе­ции.

Ответ: 85

Скрыть

Опустим две высоты DE=CF, тогда AE=FB (из равенства прямоугольных треугольников ADE и CFB по катету и гипотенузе), и DC=EF=50, тогда $$AE=FB=frac{104-50}{2}=27$$. Тогда из прямоугольного треугольника ADE : $$DE=sqrt{AD^{2}-AE^{2}}=sqrt{45^{2}-27^{2}}=36$$, следовательно, EB=AB-AE=104-27=77. Тогда из прямоугольного треугольника DEB: $$DB=sqrt{DE^{2}+EB^{2}}=sqrt{77^{2}+36^{2}}=85$$

Задание 1867

Около тра­пе­ции, один из углов ко­то­рой равен 49°, опи­са­на окруж­ность. Най­ди­те осталь­ные углы тра­пе­ции.

За­пи­ши­те ве­ли­чи­ны углов в ответ через точку с за­пя­той в по­ряд­ке не­убы­ва­ния.

Ответ: 49; 131; 131

Скрыть

По свойству вписанного четырехугольник $$angle A+angle C=180^{circ}$$, пусть $$angle A=49^{circ}Rightarrow$$$$angle C=180-49=131^{circ}$$. По свойству углов трапеции $$angle B=180-angle C=180-131=49^{circ}$$, аналогично $$angle D=180-angle A=131^{circ}$$

Задание 1868

В тра­пе­цию, сумма длин бо­ко­вых сто­рон ко­то­рой равна 24, впи­са­на окруж­ность. Най­ди­те длину сред­ней линии тра­пе­ции.

Ответ: 12

Скрыть

По свойству описанного четырехугольника AD+BC=AB+CD, тогда сумма оснований тоже 24, средняя линия же равна полусумме оснований, то есть 24/2=12.

Задание 1965

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а синус угла между ней и одним из ос­но­ва­ний равен $$frac{1}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30

Скрыть

  1. Опустим высоту CE. Пусть $$sin D=frac{1}{3}$$, тогда из прямоугольного треугольника CED: $$CE=CD*sin D=2$$
  2. Из формулы площади трапеции: $$S_{ABCD}=frac{18+12}{2}*2=30$$

Задание 1966

Ос­но­ва­ния тра­пе­ции равны 18 и 12, одна из бо­ко­вых сто­рон равна 6, а ко­си­нус угла между ней и одним из ос­но­ва­ний равен $$frac{2sqrt{2}}{3}$$. Най­ди­те пло­щадь тра­пе­ции.

Ответ: 30

Скрыть

  1. Пусть $$cos D =frac{2sqrt{2}}{3}$$, опустим высоту CE. Тогда из треугольника  CED: $$ED=CD*cos D=6*frac{2sqrt{2}}{3}=4sqrt{2}$$
  2. По теореме Пифагора из треугольника CED: $$CE=sqrt{6^{2}-(4sqrt{2})^{2}}=2$$
  3. Из формулы площади трапеции $$S_{ABCD}=frac{18+12}{2}*2=30$$

Задание 1967

Сред­няя линия тра­пе­ции равна 11, а мень­ше ос­но­ва­ние равно 5. Най­ди­те боль­шее ос­но­ва­ние тра­пе­ции.

Ответ: 17

Скрыть

Пусть a – большее основание, тогда из формулы длины средней линии трапеции : $$a=2*11-5=17$$

Задание 1968

Бо­ко­вая сто­ро­на тра­пе­ции равна 5, а один из при­ле­га­ю­щих к ней углов равен 30°. Най­ди­те пло­щадь тра­пе­ции, если её ос­но­ва­ния равны 3 и 9.

Ответ: 15

Скрыть

  1. Пусть $$angle D=30^{circ}$$. Опустим высоту CE, тогда из прямоугольного треугольника CED: $$CE=CD*sin D=2,5$$
  2. По формуле площади трапеции $$S_{ABCD}=frac{3+9}{2}*2,5=15$$

Добавить комментарий