Найдите значение выражения дроби как решать огэ

Здравствуйте, дорогие читатели, подписчики и гости канала. В этой статье рассмотрим различные вычисления с дробями, которые встречаются в шестом задании ОГЭ по математике. В июле 2.07.2021 года состоится последняя пересдача по математике в основной этап. Дополнительный этап будет уже в сентябре.

Давайте начнем разбор заданий.

1) Умножение дробь на дробь. Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, знаменатель на знаменатель, при возможности сократить.

6 и 4 сокращаем на 2 (6:2=3; 4:2=2)
6 и 4 сокращаем на 2 (6:2=3; 4:2=2)

2) Деление дроби на дробь. При делении дробь на дробь, первая дробь переписывается, вторая дробь переворачивается, а деление заменяется на умножение.

Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)
Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)

3) Вычитание и умножение дробей. Несколько действий.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №1. Находим общий знаменатель при вычитании. Чтобы найти общий знаменатель, нужно найти такое число, которое будет делиться на первое и второе число. В нашем случае это числа 10 и 20. Общий знаменатель 20.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №2. Распределительный закон умножения. Чтобы умножить число на сумму можно умножить это число на каждое слагаемое, и результат сложить. Также это действует и при вычитании.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Также встречаются выражения, в которых не стоит находить общий знаменатель, поскольку это будет сложно. Приведу два примера:

Пример №1

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Пример №2

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

4) Умножение целого числа на дробь. При умножении целого числа на дробь, целое число умножается на числитель, а знаменатель остается без изменений.

1, Общий знаменатель 12, т.к. 12 - это наименьшее число, которое делится на 4 и 6.            2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000.....  Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25
1, Общий знаменатель 12, т.к. 12 – это наименьшее число, которое делится на 4 и 6. 2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000….. Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25

5) Сложение, деление и умножение смешанных чисел.

При сложении, вычитании, умножении и делении смешанных чисел иногда легче перевести смешанное число в неправильную дробь. Чтобы смешанное число перевести в неправильную дробь, нужно целую часть умножить на знаменатель, к полученному значению прибавить числитель дробной части и записать это в числитель, а знаменатель оставить прежним.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

6) Вынесение общего множителя за скобку.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

7) Действия с десятичными дробями

Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.

В итоге у нас получилось, что числитель дроби умножили на 100 (10*10=100), значит и знаменатель дроби тоже умножаем на 100, чтобы значение дроби не изменилось.

И еще один пример:

Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.
Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.

8) Десятичные дроби и действия со степенями

В таких задания, в первую очередь нужно возводить числа в степень.
В таких задания, в первую очередь нужно возводить числа в степень.
Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

При возведении отрицательного числа в четную степень, получится число положительное. При возведении отрицательного числа в нечетную степень, получится число отрицательное.

В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.
В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.

И последнее выражение

В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.
В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.

Для отработки этих примеров, можно воспользоваться сайтом. Там много аналогичных задания, а эта статья вам будет в помощь при их решений.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Каталог заданий.
Действия с обыкновенными дробями


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 6 № 314127

i

Найдите значение выражения 18 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 9 конец дроби правая круглая скобка в квадрате минус 20 умножить на дробь: числитель: 1, знаменатель: 9 конец дроби .

Аналоги к заданию № 311234: 314127 32 311235 … Все

Источник: Банк за­да­ний ФИПИ

Решение

·

Помощь


2

Тип 6 № 314264

i

Вычислите:   дробь: числитель: 4, знаменатель: 25 конец дроби плюс дробь: числитель: 15, знаменатель: 4 конец дроби .

Аналоги к заданию № 314262: 314264 314265 383596 … Все

Источник: Банк за­да­ний ФИПИ

Решение

·

Помощь


3

Тип 6 № 314265

i

Вычислите:   дробь: числитель: 3, знаменатель: 2 конец дроби минус дробь: числитель: 9, знаменатель: 5 конец дроби .

Аналоги к заданию № 314262: 314264 314265 383596 … Все

Источник: Банк за­да­ний ФИПИ

Решение

·

Помощь


4

Тип 6 № 314288

i

Найдите значение выражения

 левая круглая скобка дробь: числитель: 19, знаменатель: 8 конец дроби плюс дробь: числитель: 11, знаменатель: 12 конец дроби правая круглая скобка : дробь: числитель: 5, знаменатель: 48 конец дроби .

Аналоги к заданию № 314282: 314288 333111 314283 … Все

Источник: Банк за­да­ний ФИПИ

Решение

·

Помощь


5

Тип 6 № 333006

i

Найдите значение выражения  дробь: числитель: 12, знаменатель: 20 умножить на 3 конец дроби .

Аналоги к заданию № 333006: 337375 353450 Все

Решение

·

Помощь

Пройти тестирование по этим заданиям

Найдите значения выражений

1 frac{7}{2} cdot frac{5}{4} – frac{3}{8} Смотреть видеоразбор >>
2 frac{22}{3}:frac{2}{15} cdot frac{6}{5} Смотреть видеоразбор >>
3 (frac{9}{14}-frac{10}{21}) cdot 42 Смотреть видеоразбор >>
4 (frac{11}{10}+frac{11}{13}):frac{22}{39} Смотреть видеоразбор >>
5 (frac{11}{10}-frac{13}{15}):frac{7}{60} Смотреть видеоразбор >>
6 frac{19}{6}:(frac{5}{6}+frac{3}{4}) Смотреть видеоразбор >>
7 frac{0,9+0,7}{3,2} Смотреть видеоразбор >>
8 frac{3,2-5,7}{2,5} Смотреть видеоразбор >>
9 frac{4,7-1,4}{7,5} Смотреть видеоразбор >>
10 frac{2,4}{1,2-0,4} Смотреть видеоразбор >>
11 frac{5,6}{1,9-7,5} Смотреть видеоразбор >>
12 (1,7+2,8) cdot 4,8 Смотреть видеоразбор >>
13 4,1 cdot 7,7 + 0,86 Смотреть видеоразбор >>
14 1,2 : 0,6 cdot 1,5 Смотреть видеоразбор >>
15 1 + frac{1}{7} cdot 0,77 Смотреть видеоразбор >>
16 frac{5}{3}:frac{2}{7}-frac{11}{6} Смотреть видеоразбор >>
17 frac{5}{6}+frac{5}{2} cdot frac{2}{3} Смотреть видеоразбор >>
18 (frac{5}{12}-frac{3}{20}) cdot frac{45}{2} Смотреть видеоразбор >>
19 (frac{17}{35}+frac{3}{8}):frac{5}{28} Смотреть видеоразбор >>
20 (frac{11}{5}-frac{13}{6}):frac{1}{90} Смотреть видеоразбор >>
21 frac{12}{7}:(frac{6}{7}-frac{3}{4}) Смотреть видеоразбор >>
22 frac{7,9+3,4}{0,2} Смотреть видеоразбор >>
23 frac{2,6-8,4}{2,5} Смотреть видеоразбор >>
24 frac{2,6-2,6}{7,8} Смотреть видеоразбор >>
25 frac{5,6}{1,7-1,6} Смотреть видеоразбор >>
26 frac{9,2}{0,5-2,8} Смотреть видеоразбор >>
27 (1,7+2,8) cdot 24 Смотреть видеоразбор >>
28 5,6 cdot 5,5 – 4,1 Смотреть видеоразбор >>
29 frac{1}{4} cdot 0,48 + 1 Смотреть видеоразбор >>
30 frac{1}{frac{1}{5}-frac{1}{30}} Смотреть видеоразбор >>
31 frac{14}{9} cdot frac{3}{2}:frac{7}{6} Смотреть видеоразбор >>
32 frac{5}{4}+frac{7}{6}:frac{2}{3} Смотреть видеоразбор >>
33 (frac{11}{9}+frac{4}{9}):frac{5}{36} Смотреть видеоразбор >>
34 (frac{5}{7}-frac{3}{7}):frac{2}{21} Смотреть видеоразбор >>
35 (frac{8}{25}-frac{13}{38}):frac{6}{19} Смотреть видеоразбор >>
36 3:(frac{6}{7}-frac{3}{4}) Смотреть видеоразбор >>
37 frac{6,9+4,1}{0,2} Смотреть видеоразбор >>
38 frac{0,5-1,5}{0,8} Смотреть видеоразбор >>
39 frac{3,8}{2,6+1,2} Смотреть видеоразбор >>
40 frac{2,6}{3,1-0,6} Смотреть видеоразбор >>
41 frac{6,9}{3,2-5,7} Смотреть видеоразбор >>
42 (6,9-3,4) cdot 8,4 Смотреть видеоразбор >>
43 5,4 cdot 1,9 – 2,15 Смотреть видеоразбор >>
44 frac{1}{6} cdot 9,6 – 1 Смотреть видеоразбор >>
45 frac{1}{frac{1}{2}+frac{1}{3}} Смотреть видеоразбор >>
46 frac{18}{7} cdot frac{14}{3} : frac{4}{5} Смотреть видеоразбор >>
47 (frac{5}{6}+frac{7}{15}) cdot frac{30}{13} Смотреть видеоразбор >>
48 (frac{3}{22}+frac{2}{11}):frac{5}{33} Смотреть видеоразбор >>
49 (frac{13}{6}-frac{11}{6}):frac{1}{90} Смотреть видеоразбор >>
50 frac{13}{7}:(frac{1}{3}+frac{2}{7}) Смотреть видеоразбор >>
51 frac{1,8+1,9}{3,7} Смотреть видеоразбор >>
52 frac{7,5+3,5}{2,5} Смотреть видеоразбор >>
53 frac{7,3-2,5}{1,2} Смотреть видеоразбор >>
54 frac{9,4}{2,1+2,6} Смотреть видеоразбор >>
55 frac{4,4}{5,8-5,3} Смотреть видеоразбор >>
56 frac{0,6}{1,7-2,9} Смотреть видеоразбор >>
57 (5,3-2,8)cdot38 Смотреть видеоразбор >>
58 1,32:1,2-0,8 Смотреть видеоразбор >>
59 3-frac{1}{4}cdot5,6 Смотреть видеоразбор >>
60 frac{1}{frac{1}{4}-frac{1}{5}} Смотреть видеоразбор >>
61 frac{15}{2}:frac{5}{21}cdotfrac{4}{3} Смотреть видеоразбор >>
62 (frac{4}{15}+frac{1}{20})cdot60 Смотреть видеоразбор >>
63 (frac{13}{21}+frac{3}{14}):frac{10}{27} Смотреть видеоразбор >>
64 (frac{17}{8}-frac{1}{16}):frac{11}{48} Смотреть видеоразбор >>
65 13:(frac{1}{3}+frac{2}{7}) Смотреть видеоразбор >>
66 frac{4,2+3,3}{0,3} Смотреть видеоразбор >>
67 frac{2,7+5,8}{6,8} Смотреть видеоразбор >>
68 (frac{6,8-4,7}{1,4}) Смотреть видеоразбор >>
69 frac{5,6}{8,5-2,9} Смотреть видеоразбор >>
70 frac{2,1}{6,6-2,4} Смотреть видеоразбор >>
71 frac{7,7}{3,7-8,7} Смотреть видеоразбор >>
72 3,5cdot6,6+1,6 Смотреть видеоразбор >>
73 2,7+1,32:1,2 Смотреть видеоразбор >>
74 0,15:frac{3}{7}+1 Смотреть видеоразбор >>
75 frac{1}{frac{1}{10}-frac{1}{15}} Смотреть видеоразбор >>

Шестое задание проверяет наши умения проведения вычислений. Это самое простое задание из всего модуля и требует от нас только знания арифметики. В первом задании арифметические действия будут самыми простыми. В демонстрационном варианте ОГЭ предлагается сложить две дроби: обыкновенную и десятичную. Тем не менее, в соответствии с документами о проведении ОГЭ, учащиеся должны быть готовы и к выполнению некоторых других несложных заданий. Ответом в первом задании является целое число или конечная десятичная дробь.

Итак, для успешного выполнения необходимо помнить:

  1. порядок проведения арифметических операцийсначала производятся действия в скобках, затем возведение в степень или извлечение корня, затем умножения и деления, а затем вычитания и сложения.
  2. правила умножения и деления в столбик
  3. правила вычисления обыкновенных дробей

Напоминаем правила операций с обыкновенными дробями:

операции с дробями

Рекомендуем вычислить отдельно числитель и знаменатель, а затем разделить числитель на знаменатель. Остальные рекомендации смотрите ниже при разборе типовых вариантов первого задания ОГЭ по математике. 🙂

Задание 6OM21R

Найти значение выражения 4,9 – 9,4.


Выполним вычитание десятичных дробей, где 9,4 больше по модулю, значит, ответ будет отрицательным. Итак, – (9,4 – 4,9)= – 4,5

Ответ: -4,5

pазбирался: Даниил Романович | обсудить разбор

Задание OM0606o

Найдите значение выражения:

–0,3·(–10)4+4·(–10)2–59


Для получения результата необходимо последовательно выполнить математические действия в соответствии с их приоритетом.

–0,3·(–10)4+4·(–10)2–59 =

Выполняем возведение в степень. Получаем числа, состоящие из единицы и следующего за ней количества нулей, равного показателю степени. При этом знаки «–» в скобках исчезают, поскольку показатели степеней четные. Получаем:

= –0,3·10000+4·100–59 =

Выполняем умножение. Для этого в числе 0,3 переносим десятичную запятую на 4 знака вправо (так как в 10000 четыре нуля), а к 4 дописываем, соответственно, 2 нуля. Получаем:

= –3000+400–59 =

Выполняем сложение –3000+400. Поскольку это числа с разными знаками, то вычитаем из большего модуля меньший и перед результатом ставим «–», поскольку число с большим модулем отрицательное. Получаем:

= –2600–59 =

Так как оба числа отрицательные, то складываем их модули и перед результатом ставим «–». Получаем:

= –(2600+59) = –2659

Ответ: -2659

pазбирался: Даниил Романович | обсудить разбор

Задание OM0605o

Найдите значение выражения:

–13•(–9,3)–7,8


Это задание требует простого умения выполнять арифметические действия с десятичными дробями.

–13·(–9,3)–7,8 =

Сначала выполняем умножение. Умножаем –13 и –9,3 в столбик без учета знаков «–» перед сомножителями. В полученном произведении отделяем одну – последнюю – цифру десятичной запятой:

Знак произведения будет положительным, поскольку умножаются два отрицательных числа. Получаем:

= 120,9–7,8 =

Эту разность можно вычислить в столбик, но можно и устно. Выполним это действие в уме: вычитаем отдельно целые части и десятичные. Получаем:

= 113,1

Ответ: 113,1

pазбирался: Даниил Романович | обсудить разбор

Задание OM0604o

Найдите значение выражения:  ¼ + 0,07


К данному заданию, как и к большинству заданий 1 модуля Алгебры, подход к решению заключается в переводе дроби от одного вида к другому. В нашем случае это переход от обыкновенной дроби к десятичной.

Переводим ¼ из обыкновенной дроби в десятичную. Делим 1 на 4, получаем 0,25. Затем переписываем выражение с использованием только десятичных дробей и вычисляем:

0,25 + 0,07 = 0,32

Ответ: 0,32

pазбирался: Даниил Романович | обсудить разбор

Задание OM0603o

Найдите значение выражения:1-3


Аналогично предыдущим заданиям вычисляем знаменатель: для этого приводим дроби к общему знаменателю — это 84. Для этого первую дробь умножаем на 4, а вторую на 3, получим:

1/21 + 1/28 = 4/84 + 3/84

Затем складываем:

4/84 + 3/84 = 7/84

Итак, мы получили в знаменателе 7/84, теперь делим числитель на знаменатель — это все равно что умножить 1 на обратную 7/84 дробь:

1 / ( 7 / 84 ) = 1 •84/7 = 84/7

Далее остается поделить 84 на 7:

84 / 7 = 12

Ответ: 12

pазбирался: Даниил Романович | обсудить разбор

Задание OM0602o

Найдите значение выражения:1-2


Можно решать задачу напрямую — вычисляя значения последовательно, это не должно составить труда, однако решение будет долгим и с большими вычислениями. Здесь можно заметить, что   1/3 присутствует как в уменьшаемом — 6 • (1/3)², так и в вычитаемом — 17  • 1/3, поэтому её можно легко вынести за скобку.

1/3 • (6 • (1/3)  — 17 )

Проведя вычисления в скобках, получим:

1/3 • ( 6 • (1/3)  — 17 ) = 1/3 • (6 /3  — 17 ) = 1/3 • ( 2  — 17 ) = 1/3 • ( -15 )

Теперь умножим полученное значение -15 на 1/3:

1/3 • ( -15 ) = -5

Ответ: -5

pазбирался: Даниил Романович | обсудить разбор

Задание OM0601o

Найдите значение выражения:1-1


Задачу можно решать разными путями, а именно менять последовательность действий, но этот вариант решения рекомендуется для тех, кто уверен в своих возможностях и знает математику на отлично. Для остальных мы рекомендуем выполнить последовательно действия в числителе и знаменателе, а затем разделить числитель на знаменатель. Числитель вычислять в данном примере нет необходимости, это число 9.

Вычислим значение знаменателя:

4,5 • 2,5

Можно произвести вычисления в столбик, тогда получим:

4,5 • 2,5 = 11,25

Либо перевести дробь к простому виду:

4,5 • 2,5 = 4½ • 2 ½ = 9 / 2 • 5 / 2 = 45 / 4

Последний случай предпочтительней, так как для дальнейшей операции – деления числителя на знаменатель задача упрощается. Делим числитель на знаменатель, умножая числитель на перевернутую дробь в знаменателе:

9 / ( 45 / 4 ) = ( 9 / 1 ) • ( 4 / 45 ) = ( 9 • 4 ) / (1 • 45 )

9 и 45 можно сократить на 9:

( 9 • 4 ) / (1 • 45 ) = ( 1 • 4 )/ (1 • 5 ) = 4 / 5 = 8 / 10 = 0,8

Ответ: 0,8

pазбирался: Даниил Романович | обсудить разбор

Задача 6 ОГЭ по математике называется «Числа и вычисления». Это действия с обыкновенными и с десятичными дробями. Действия со степенями. Сравнение чисел.

Приступим к решению задач.

Пример 1. Найдите значение выражения  frac{0,8}{1-frac{1}{9}}.

Решение. Вспоминаем, что при вычитании дробей нужно их привести к общему знаменателю, а при делении дробей первую из них умножаем на перевёрнутую вторую.

Посчитаем, чему равен знаменатель.

1-frac{1}{9}= frac{9}{9}-frac{1}{9}=frac{8}{9}

Получим:
frac{0,8}{1-frac{1}{9}}=frac{8}{10}:frac{8}{9}=frac{8}{10}cdot frac{9}{8}=frac{9}{10}=0,9 .

Ответ: 0,9.

Пример 2. Соотнесите обыкновенные дроби с равными им десятичными дробями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Решение. Каждую из данных обыкновенных дробей можно представить в виде десятичной, например, используя деление в столбик.

Итак, деление выполнено. Сопоставим полученные результаты:

Ответ: 4312.

Замечание 1. Преобразование обыкновенных дробей в десятичные можно произвести и без деления в столбик. Т. к. любая десятичная дробь записывается как обыкновенная со знаменателем 10, 100, 1000 и т. д., то данные обыкновенные дроби можно «доделать» до десятичных. Для этого используем основное свойство дроби: дробь не изменится, если её числитель и знаменатель домножить на одно и тоже число.

Замечание 2. В этой задаче можно было, наоборот, преобразовывать заданные десятичные дроби в обыкновенные путём упрощения, т. е. сокращения числителя и знаменателя.

Выбирайте любой способ. Здесь важен правильный результат!

Для выполнения следующих заданий нам потребуются свойства степеней. Напомним основные из них.

Степенью называется выражение вида boldsymbol{a^c.}

Здесь a — основание степени, c — показатель степени.
По определению, a^1=a.

Возвести число в квадрат — значит умножить его само на себя: a^2=acdot a.

Возвести число в куб — значит умножить его само на себя три раза:  a^3=acdot acdot a.

Возвести число в натуральную степень  n — значит умножить его само на себя  n  раз:

a^n=underbrace{acdot acdot acdot acdot dots cdot a}_{n}

По определению,{  a}^0=1.

Это верно для ane 0. Выражение 0^0 не определено.

Определим, что такое степень с целым отрицательным показателем.

a^{-1}=frac{1}{a}

a^{-2}=frac{1}{a^2}

a^{-n}=frac{1}{a^n}

Конечно, все это верно для ane 0, поскольку на ноль делить нельзя.

Соберем свойства степеней и основные формулы в одной таблице.

a^0=1
a^ncdot a^m=a^{n+m} При перемножении степеней с одинаковыми основаниями показатели степеней складываются.

frac{a^n}{a^m}=a^{n-m}

При делении степеней с одинаковыми основаниями показатели степеней вычитаются.
 

(a^n)^m=a^{ncdot m}

При возведении степени в степень показатели степеней перемножаются.
 

a^{-n}=frac{1}{a^n}

При возведении в отрицательную степень получаем дробь, где единица делится на степень с положительным показателем.
(acdot b)^n=a^n cdot b^n При возведении произведения двух множителей в степень каждый из этих множителей возводится в заданную степень.
(frac{a}{b})^n=frac{a^n}{b^n} При возведении дроби в степень получается дробь, числитель и знаменатель которой возведены в заданную степень.
 

(frac{a}{b})^{-n}=(frac{b}{a})^n

При возведении дроби в отрицательную степень дробь переворачивается, а показатель степени становится положительным.

Пример 3. Найдите значение выражения {{(16cdot 10}^{-2})}^2cdot {(13cdot 10}^4).

Решение. Вычислим, используя свойства степеней:

{{(16cdot 10}^{-2})}^2cdot {(13cdot 10}^4)={16}^2cdot {left({10}^{-2}right)}^2cdot {13cdot 10}^4=256cdot 13cdot ({10}^{-4}cdot {10}^4)=3 328cdot {10}^0=3328.

Ответ: 3328.

Пример 4. Найдите значение выражения {5cdot 10}^{-1}+{6cdot 10}^{-2}+{4cdot 10}^{-4}.

Решение. Вычислим, используя свойства степеней:

{5cdot 10}^{-1}+{6cdot 10}^{-2}+{4cdot 10}^{-4}=5cdot frac{1}{{10}^1}+6cdot frac{1}{{10}^2}+4cdot frac{1}{{10}^4}=
=5cdot 0,1+6cdot 0,01+4cdot 0,0001=0,5+0,06+0,0004=0,5604.

Ответ: 0,5604.

Пример 5. Найдите значение выражения frac{3^8cdot 3^5}{3^9}.

Решение. Вычислим, используя свойства степеней:

frac{3^8cdot 3^5}{3^9}=frac{3^{8+5}}{3^9}=frac{3^{13}}{3^9}=3^{13-9}=3^4=81.

Ответ: 81.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 6 ОГЭ по математике. Числа и вычисления.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Добавить комментарий