Космос привлекал людей еще с древних времен. Глядя на звезды и безграничное пространство, человек мечтал изучить его. Однако оно настолько велико, что сделать это не так-то просто. Несмотря на то, что люди уже обладают технологиями, позволяющими отправиться в открытый космос, его освоение идет очень медленно.
Что такое космос
Под космосом подразумевается пустое пространство во Вселенной, находящееся за пределами планетарных атмосфер. В нем присутствуют частицы водорода, кислорода и пыли, правда их концентрация очень мала и составляет лишь несколько молекул на кубический метр.
Также в некоторых участках межзвездной среды могут встречаться электромагнитное излучение и космические лучи. Последние представляют собой движущиеся на большой скорости атомы ядер и элементарные частицы.
Границы
Космос обладает множеством границ, пролегающих на разных расстояниях относительно Земли:
- 35 км – на этой высоте вода уже не может существовать в жидком виде, поскольку из-за атмосферного давления в 611 Па она закипает даже при нулевой температуре;
- 100 км – здесь проходит официально признанная граница между атмосферой Земли и ближним космосом, за ее пределами, для перемещения, люди вынуждены прибегать не к аэронавтике, а космонавтике;
- 100 тыс. км – наружная граница экзосферы – самого верхнего атмосферного слоя;
- 260 тыс. км – расстояние от Земли, где притяжение планеты сильнее солнечного;
- 13 млрд км – начало межзвездного пространства и дальнего космоса;
- 20 трлн км – граница Облака Оорта, за пределами которой не действует притяжение Солнечной системы;
- 300 квдрлн км – расстояние до границы Млечного Пути;
- 30 квнтлн км – граница Местной группы галактик, куда входят Млечный Путь, Андромеда и Треугольник;
- 250 скстлн км – предел видимости вещества в космическом пространстве;
- 870 скстлн км – граница видимости излучения.
Интересный факт: в большинстве случаев для измерения расстояния астрономы используют не километры, а парсек, который равен 30,8568 трлн км.
Чем космос отличается от Вселенной
Довольно трудно установить четкую разницу между этими понятиями, поскольку в определенном контексте под ними могут подразумеваться разные вещи.
В современном мире за космос принимают бескрайнее пространство, начинающееся сразу после атмосферы Земли. В нем находятся планеты, звезды, галактики и другие небесные объекты. Для большего удобства космос разделяют на ближний, который можно исследовать с помощью современных спутников и аппаратов, и дальний, добраться до которого пока невозможно.
Под Вселенной подразумевается не только пространство между объектами, но и сами небесные тела. В философии даже человек является ее частью. Также существует мнение, что космос существовал всегда, а Вселенная возникла в момент Большого Взрыва.
Межпланетное пространство
Под межпланетным подразумевается пространство, ограниченное орбитой наиболее отдаленной планеты от звезды. В нем могут присутствовать различные вещества: газ, частички пыли, водород и т.д. Также пространство пронизано электромагнитным излучением.
Температура в конкретной точке межпланетного пространства определяется путем помещения в нее абсолютно черного тела. Последнее впитывает в себя электромагнитное излучение и тепло, постепенно нагреваясь. Его температура и будет считаться за истинное значение.
Интересный факт: на орбите Земли абсолютно черное тело нагревается до 3,85 градусов Цельсия, чему и равняется температура межпланетного пространства в этой области.
Межпланетная среда
Данная среда представляет собой совокупность веществ и полей, находящихся в межпланетном пространстве. В Солнечной системе она состоит из:
- магнитного поля;
- космических лучей;
- нейтрального газа;
- пыли;
- электромагнитного излучения;
- солнечного ветра.
Последний компонент преобладает в межпланетной среде, поскольку звезда испускает в пространство большое количество ионизированных частиц.
Межгалактическое пространство
Под данным пространством подразумевается область космоса, находящаяся между галактиками. В ней практически отсутствуют какие-либо вещества, и по своему составу она схожа с вакуумом.
Интересный факт: межгалактическое пространство заполнено ионизированным газом, концентрация которого составляет атом водорода на кубический дециметр.
Между галактиками температура способна доходить до 10 млн градусов Цельсия. Такое высокое значение обусловлено большим количеством звездного ветра и излучения, исходящего от черных дыр.
Войд
Войдом называется космическое пространство, в котором отсутствуют галактики. Плотность объектов в таких областях на 90% меньше, чем в звездных системах. Размеры войда могут варьироваться от 10 000 до 100 000 парсек. Если габариты превышают этот диапазон, то его называют “супервойдом”. Границы таких областей определяются с помощью галактических нитей. Последние представляют собой прямые, состоящие из скопления звездных систем.
Интересный факт: войды были обнаружены в 1978 году астрономами Национальной обсерватории Китт Пик. Открытие позволило составить первые трехмерные карты космического пространства.
Межгалактическая звезда
Межгалактическими звездами называются светила, которые не входят в состав галактик. Первые объекты такого типа были открыты во второй половине 90-х. Считается, что они образуются за счет столкновения галактик или при сближении двойной звезды с черной дырой. В последнем случае одно из светил “выстреливается” в сторону и перемещается на большое расстояние.
Большое число звезд такого типа обнаружено в Скоплении Девы. Их количество находится в районе триллиона. Также найдено 675 светил в окрестностях Млечного Пути. Большинство из них являются красными гигантами, а состав указывает на то, что звезды образовались в центре галактики, после чего переместились на ее границу.
Процесс изучения
Изучать космос человечество начинало постепенно, и в будущем ему предстоит совершить еще массу увлекательных открытий. Процесс освоения внеземного пространства начался 4 октября 1957 года, когда состоялся запуск аппарата “Спутник-1” – первого устройства, отправленного за пределы атмосферы.
А 12 апреля 1961 года Юрий Гагарин полетел в космос. Спустя пять лет люди успешно состыковали пилотируемые корабли, а через год повторили это с беспилотными. В 1969 году, 21 июля, Нил Армстронг первым высадился на Луну. Через два года в эксплуатацию была введена станция “Салют-1”, движущаяся по орбите Земли. В ноябре 1998 года был запущен первый модуль МКС.
С тех пор люди всячески стараются улучшать технологии, позволяющие осваивать космическое пространство.
Скорости, необходимые для выхода в ближний и дальний космос
Для того, чтобы объект мог выйти на орбиту планеты, он должен двигаться с определенными скоростями, которые называются космическими. Для Земли они равны следующим значениям:
- 7,9 км/с – 1-я космическая скорость, позволяет выйти на орбиту Земли;
- 11,1 км/с – 2-я космическая скорость, на которой объект попадает в межпланетное пространство;
- 16,67 км/с – 3-я космическая скорость, позволяет выйти в межзвездное пространство;
- 550 км/с – 4-я космическая скорость, необходимая для полета за пределы галактики Млечный путь.
Если объект движется с меньшей скоростью, то сила притяжения планеты, звезды или галактики не позволит ему достигнуть нужной границы.
Воздействие пребывания в открытом космосе на организм человека
Если человек окажется в открытом космосе без средств защиты, у него начнется декомпрессия – процесс расширения пузырьков газа в организме. Параллельно с этим он будет испытывать нехватку кислорода и получать солнечные ожоги. Также если в легких находится воздух, они могут деформироваться из-за разницы давления.
Интересный факт: если человек, находясь в открытом космосе, не будет пытаться дышать, то сможет пробыть в нем 30-60 секунд, не получив серьезных повреждений.
Поскольку вещества не могут находиться в космосе в жидком состоянии, влага на глазах и в ротовой полости сразу начинает испаряться. Также с большой долей вероятности человек потеряет сознание уже через 15-20 секунд.
Почему в космосе холодно? Какая в космосе температура?
Температура в космосе равна -273 градусам Цельсия. Такое значение называют “абсолютным нулем”, поскольку при нем атомы веществ перестают двигаться. Но почему же в космосе так холодно, даже несмотря на то, что сквозь него проходят солнечные лучи?
Низкая температура связана с тем, что в межпланетном пространстве практически отсутствуют какие-либо вещества. Соответственно, солнечным лучам нечего нагревать.
Почему в космосе холодно, если там вакуум
Теплопроводность вакуума равна нулю, и он полностью пропускает излучение. Поскольку в нем отсутствуют какие-либо вещества и объекты, проходящие сквозь него солнечные лучи ничего не нагревают. Соответственно, температура не меняется и остается равной абсолютному нулю.
Почему космос черный?
Несмотря на то, что в космосе находится множество звезд, испускающих свет, он остается черным. В 1823 году астроном Вильгельм Ольберс предположил, что если пространство вокруг безгранично, а объекты в нем статичны, человек должен видеть свет звезд в любой точке пространства. Однако его глаза распознают лишь мелкие точки на черном фоне. Получается, космос имеет границы. А в 1920-х годах Эдвин Хаббл доказал, что галактики движутся и постепенно отдаляются друг от друга. На основе его выводов появилась теория Большого Взрыва.
Она и объясняет, почему космос черного цвета. Галактики и звезды отдаляются друг от друга с такой скоростью, что свет от них не успевает доходить до точки, с которой ведется наблюдение. И когда человек смотрит на черную область в пространстве, то в ней также находятся звезды, просто он не может их разглядеть. Ведь свет от них не успевает дойти до него.
На какой высоте официально начинается космос?
Космос начинается в 100 км над поверхностью Земли, где пролегает линия Кармана. Ее назвали в честь американского инженера Теодора фон Кармана. В XX веке он первым установил, что на этой высоте атмосфера становится настолько разреженной, что для продолжения движения вверх аппарат должен двигаться с первой космической скоростью.
Позже астрономы провели более точные расчеты и вычислили, что атмосферные ветра полностью отсутствуют на высоте в 118 км, и там же появляются космические частицы.
Интересный факт: NASA в качестве границы между земной атмосферой и космосом использует другую высоту над поверхностью планеты – 122 км.
Важнейшие этапы освоения космоса
Человечество со временем изобретает новые технологии, позволяющие дальше продвинуться в освоении космоса. В истории можно выделить важнейшие этапы данного процесса:
- 4 октября 1957 года состоялся пуск аппарата “Спутник-1”;
- 4 января 1959 года спутник “Луна-1” начала вращение вокруг Солнца, став его первым искусственным спутником;
- 12 апреля 1961 года Юрий Гагарин первым отправился в космос;
- 15 сентября 1968 года аппарат Зонд-5 сумел вернуться на Землю после того, как совершил полет вокруг Луны;
- 15 декабря 1970 года аппарат “Венера-7” сел на Венеру;
- 2 декабря 1971 года “Марс-3” сел на Марс;
- с 1975 по 2011 года состоялись запуски первых искусственных спутников разных планет Солнечной системы;
- 20 ноября 1998 года состоялся запуск модуля “Заря”, ставшего первым блоком МКС.
Также разные страны планируют свои космические программы на годы вперед и продумывают дальнейшее освоение космоса.
Что означает слово “космос”?
Под космосом в современном мире понимают пространство между небесными телами, лежащее за пределами их атмосфер. В философии это слово означает “порядок” и “мироздание”. Также в этой области космос ставится в противоположность хаосу.
Интересное видео о космосе
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Космос привлекал людей еще с древних времен. Глядя на звезды и безграничное пространство, человек мечтал изучить его. Однако оно настолько велико, что сделать это не так-то просто. Несмотря на то, что люди уже обладают технологиями, позволяющими отправиться в открытый космос, его освоение идет очень медленно.
Что такое космос
Под космосом подразумевается пустое пространство во Вселенной, находящееся за пределами планетарных атмосфер. В нем присутствуют частицы водорода, кислорода и пыли, правда их концентрация очень мала и составляет лишь несколько молекул на кубический метр.
Также в некоторых участках межзвездной среды могут встречаться электромагнитное излучение и космические лучи. Последние представляют собой движущиеся на большой скорости атомы ядер и элементарные частицы.
Границы
Космос обладает множеством границ, пролегающих на разных расстояниях относительно Земли:
- 35 км – на этой высоте вода уже не может существовать в жидком виде, поскольку из-за атмосферного давления в 611 Па она закипает даже при нулевой температуре;
- 100 км – здесь проходит официально признанная граница между атмосферой Земли и ближним космосом, за ее пределами, для перемещения, люди вынуждены прибегать не к аэронавтике, а космонавтике;
- 100 тыс. км – наружная граница экзосферы – самого верхнего атмосферного слоя;
- 260 тыс. км – расстояние от Земли, где притяжение планеты сильнее солнечного;
- 13 млрд км – начало межзвездного пространства и дальнего космоса;
- 20 трлн км – граница Облака Оорта, за пределами которой не действует притяжение Солнечной системы;
- 300 квдрлн км – расстояние до границы Млечного Пути;
- 30 квнтлн км – граница Местной группы галактик, куда входят Млечный Путь, Андромеда и Треугольник;
- 250 скстлн км – предел видимости вещества в космическом пространстве;
- 870 скстлн км – граница видимости излучения.
Интересный факт: в большинстве случаев для измерения расстояния астрономы используют не километры, а парсек, который равен 30,8568 трлн км.
Чем космос отличается от Вселенной
Довольно трудно установить четкую разницу между этими понятиями, поскольку в определенном контексте под ними могут подразумеваться разные вещи.
В современном мире за космос принимают бескрайнее пространство, начинающееся сразу после атмосферы Земли. В нем находятся планеты, звезды, галактики и другие небесные объекты. Для большего удобства космос разделяют на ближний, который можно исследовать с помощью современных спутников и аппаратов, и дальний, добраться до которого пока невозможно.
Под Вселенной подразумевается не только пространство между объектами, но и сами небесные тела. В философии даже человек является ее частью. Также существует мнение, что космос существовал всегда, а Вселенная возникла в момент Большого Взрыва.
Межпланетное пространство
Под межпланетным подразумевается пространство, ограниченное орбитой наиболее отдаленной планеты от звезды. В нем могут присутствовать различные вещества: газ, частички пыли, водород и т.д. Также пространство пронизано электромагнитным излучением.
Температура в конкретной точке межпланетного пространства определяется путем помещения в нее абсолютно черного тела. Последнее впитывает в себя электромагнитное излучение и тепло, постепенно нагреваясь. Его температура и будет считаться за истинное значение.
Интересный факт: на орбите Земли абсолютно черное тело нагревается до 3,85 градусов Цельсия, чему и равняется температура межпланетного пространства в этой области.
Межпланетная среда
Данная среда представляет собой совокупность веществ и полей, находящихся в межпланетном пространстве. В Солнечной системе она состоит из:
- магнитного поля;
- космических лучей;
- нейтрального газа;
- пыли;
- электромагнитного излучения;
- солнечного ветра.
Последний компонент преобладает в межпланетной среде, поскольку звезда испускает в пространство большое количество ионизированных частиц.
Межгалактическое пространство
Под данным пространством подразумевается область космоса, находящаяся между галактиками. В ней практически отсутствуют какие-либо вещества, и по своему составу она схожа с вакуумом.
Интересный факт: межгалактическое пространство заполнено ионизированным газом, концентрация которого составляет атом водорода на кубический дециметр.
Между галактиками температура способна доходить до 10 млн градусов Цельсия. Такое высокое значение обусловлено большим количеством звездного ветра и излучения, исходящего от черных дыр.
Войд
Войдом называется космическое пространство, в котором отсутствуют галактики. Плотность объектов в таких областях на 90% меньше, чем в звездных системах. Размеры войда могут варьироваться от 10 000 до 100 000 парсек. Если габариты превышают этот диапазон, то его называют “супервойдом”. Границы таких областей определяются с помощью галактических нитей. Последние представляют собой прямые, состоящие из скопления звездных систем.
Интересный факт: войды были обнаружены в 1978 году астрономами Национальной обсерватории Китт Пик. Открытие позволило составить первые трехмерные карты космического пространства.
Межгалактическая звезда
Межгалактическими звездами называются светила, которые не входят в состав галактик. Первые объекты такого типа были открыты во второй половине 90-х. Считается, что они образуются за счет столкновения галактик или при сближении двойной звезды с черной дырой. В последнем случае одно из светил “выстреливается” в сторону и перемещается на большое расстояние.
Большое число звезд такого типа обнаружено в Скоплении Девы. Их количество находится в районе триллиона. Также найдено 675 светил в окрестностях Млечного Пути. Большинство из них являются красными гигантами, а состав указывает на то, что звезды образовались в центре галактики, после чего переместились на ее границу.
Процесс изучения
Изучать космос человечество начинало постепенно, и в будущем ему предстоит совершить еще массу увлекательных открытий. Процесс освоения внеземного пространства начался 4 октября 1957 года, когда состоялся запуск аппарата “Спутник-1” – первого устройства, отправленного за пределы атмосферы
А 12 апреля 1961 года Юрий Гагарин полетел в космос. Спустя пять лет люди успешно состыковали пилотируемые корабли, а через год повторили это с беспилотными. В 1969 году, 21 июля, Нил Армстронг первым высадился на Луну. Через два года в эксплуатацию была введена станция “Салют-1”, движущаяся по орбите Земли. В ноябре 1998 года был запущен первый модуль МКС.
С тех пор люди всячески стараются улучшать технологии, позволяющие осваивать космическое пространство.
Скорости, необходимые для выхода в ближний и дальний космос
Для того, чтобы объект мог выйти на орбиту планеты, он должен двигаться с определенными скоростями, которые называются космическими. Для Земли они равны следующим значениям:
- 7,9 км/с – 1-я космическая скорость, позволяет выйти на орбиту Земли;
- 11,1 км/с – 2-я космическая скорость, на которой объект попадает в межпланетное пространство;
- 16,67 км/с – 3-я космическая скорость, позволяет выйти в межзвездное пространство;
- 550 км/с – 4-я космическая скорость, необходимая для полета за пределы галактики Млечный путь.
Если объект движется с меньшей скоростью, то сила притяжения планеты, звезды или галактики не позволит ему достигнуть нужной границы.
Воздействие пребывания в открытом космосе на организм человека
Если человек окажется в открытом космосе без средств защиты, у него начнется декомпрессия – процесс расширения пузырьков газа в организме. Параллельно с этим он будет испытывать нехватку кислорода и получать солнечные ожоги. Также если в легких находится воздух, они могут деформироваться из-за разницы давления.
Интересный факт: если человек, находясь в открытом космосе, не будет пытаться дышать, то сможет пробыть в нем 30-60 секунд, не получив серьезных повреждений.
Поскольку вещества не могут находиться в космосе в жидком состоянии, влага на глазах и в ротовой полости сразу начинает испаряться. Также с большой долей вероятности человек потеряет сознание уже через 15-20 секунд.
Почему в космосе холодно
Температура в космоса равна -273 градусам Цельсия. Такое значение называют “абсолютным нулем”, поскольку при нем атомы веществ перестают двигаться. Но почему же в космосе так холодно, даже несмотря на то, что сквозь него проходят солнечные лучи?
Низкая температура связана с тем, что в межпланетном пространстве практически отсутствуют какие-либо вещества. Соответственно, солнечным лучам нечего нагревать.
Почему в космосе холодно, если там вакуум
Теплопроводность вакуума равна нулю, и он полностью пропускает излучение. Поскольку в нем отсутствуют какие-либо вещества и объекты, проходящие сквозь него солнечные лучи ничего не нагревают. Соответственно, температура не меняется и остается равной абсолютному нулю.
Почему космос черный?
Несмотря на то, что в космосе находится множество звезд, испускающих свет, он остается черным. В 1823 году астроном Вильгельм Ольберс предположил, что если пространство вокруг безгранично, а объекты в нем статичны, человек должен видеть свет звезд в любой точке пространства. Однако его глаза распознают лишь мелкие точки на черном фоне. Получается, космос имеет границы. А в 1920-х годах Эдвин Хаббл доказал, что галактики движутся и постепенно отдаляются друг от друга. На основе его выводов появилась теория Большого Взрыва.
Она и объясняет, почему космос черного цвета. Галактики и звезды отдаляются друг от друга с такой скоростью, что свет от них не успевает доходить до точки, с которой ведется наблюдение. И когда человек смотрит на черную область в пространстве, то в ней также находятся звезды, просто он не может их разглядеть. Ведь свет от них не успевает дойти до него.
На какой высоте официально начинается космос?
Космос начинается в 100 км над поверхностью Земли, где пролегает линия Кармана. Ее назвали в честь американского инженера Теодора фон Кармана. В XX веке он первым установил, что на этой высоте атмосфера становится настолько разреженной, что для продолжения движения вверх аппарат должен двигаться с первой космической скоростью.
Позже астрономы провели более точные расчеты и вычислили, что атмосферные ветра полностью отсутствуют на высоте в 118 км, и там же появляются космические частицы.
Интересный факт: NASA в качестве границы между земной атмосферой и космосом использует другую высоту над поверхностью планеты – 122 км.
Человечество со временем изобретает новые технологии, позволяющие дальше продвинуться в освоении космоса. В истории можно выделить важнейшие этапы данного процесса:
- 4 октября 1957 года состоялся пуск аппарата “Спутник-1”;
- 4 января 1959 года спутник “Луна-1” начала вращение вокруг Солнца, став его первым искусственным спутником;
- 12 апреля 1961 года Юрий Гагарин первым отправился в космос;
- 15 сентября 1968 года аппарат Зонд-5 сумел вернуться на Землю после того, как совершил полет вокруг Луны;
- 15 декабря 1970 года аппарат “Венера-7” сел на Венеру;
- 2 декабря 1971 года “Марс-3” сел на Марс;
- с 1975 по 2011 года состоялись запуски первых искусственных спутников разных планет Солнечной системы;
- 20 ноября 1998 года состоялся запуск модуля “Заря”, ставшего первым блоком МКС.
Также разные страны планируют свои космические программы на годы вперед и продумывают дальнейшее освоение космоса.
Что означает слово “космос”?
Под космосом в современном мире понимают пространство между небесными телами, лежащее за пределами их атмосфер. В философии это слово означает “порядок” и “мироздание”. Также в этой области космос ставится в противоположность хаосу.
Источник : https://kipmu.ru/kosmos/
Запрос «Космос» перенаправляется сюда; см. также другие значения.
Косми́ческое простра́нство, ко́смос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно ионы и атомы водорода), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.
Этимология[править | править код]
В своём изначальном понимании греческий термин «космос» (мироустройство) имел философскую основу, определяя гипотетический замкнутый вакуум вокруг Земли — центра Вселенной[1]. Тем не менее, в языках на латинской основе и её заимствованиях к одинаковой семантике применяют практический термин «пространство» (так как с научной точки зрения обволакивающий Землю вакуум бесконечен), поэтому в русском и близких ему языках в результате реформенной корректировки родился своеобразный плеоназм «космическое пространство».
Границы[править | править код]
Чёткой границы не существует, атмосфера разрежается постепенно по мере удаления от земной поверхности, и до сих пор нет единого мнения, что считать фактором начала космоса. Если бы температура была постоянной, то давление бы изменялось по экспоненциальному закону от 100 кПа на уровне моря до нуля. Международная авиационная федерация в качестве рабочей границы между атмосферой и космосом установила высоту в 100 км (линия Кармана), потому что на этой высоте для создания подъёмной аэродинамической силы необходимо, чтобы летательный аппарат двигался с первой космической скоростью, из-за чего теряется смысл авиаполёта[2][3][4][5].
Астрономы из США и Канады измерили границу влияния атмосферных ветров и начала воздействия космических частиц. Она оказалась на высоте 118 километров, хотя само NASA считает границей космоса 122 км. На такой высоте шаттлы переключались с обычного маневрирования с использованием только ракетных двигателей на аэродинамическое с «опорой» на атмосферу[3][4].
Межпланетная среда[править | править код]
Окружающая Солнце область космического пространства, на которую распространяется солнечный ветер, называется гелиосферой. В пределах гелиосферы находятся орбиты всех известных планет Солнечной системы[6][Комм. 1]. Свободное от крупных плотных тел пространство гелиосферы заполнено так называемой межпланетной средой, а за гелиопаузой начинается область межзвёздной среды.
Межпланетная среда сильно разрежена, но не является абсолютным вакуумом. Основную часть её вещества составляет плазма солнечного ветра (около 8 частиц на кубический сантиметр на уровне орбиты Земли), в небольших количествах присутствуют состоящие из нейтральных атомов и молекул газы. Её пронизывают космические лучи, магнитные поля и электромагнитные излучения солнечного и иного происхождения. К межпланетной среде относится также космическая пыль размером от 10-9 до 10-6 м, но не более крупные тела Солнечной системы[7]. В межпланетной среде путешествуют отправляемые с различными целями космические аппараты. По состоянию на 2023 год, только два аппарата серии «Вояджер» покинули гелиосферу в работоспособном состоянии и сообщили результаты непосредственных наблюдений межзвёздной среды.
Низкая плотность вещества межпланетной среды делает её гораздо более удобным местом для астрономических наблюдений, чем поверхность окружённой плотной атмосферой Земли, поэтому космические телескопы позволяют получать особо ценные для науки сведения.
Воздействие пребывания в открытом космосе на организм человека[править | править код]
Как утверждают учёные НАСА, вопреки распространённым представлениям, при попадании в открытый космос без защитного скафандра человек не замёрзнет, не взорвётся и мгновенно не потеряет сознание, его кровь не закипит — вместо этого настанет смерть от недостатка кислорода. Опасность заключается в самом процессе декомпрессии — именно этот период времени наиболее опасен для организма, так как при взрывной декомпрессии пузырьки газа в крови начинают расширяться. Если присутствует хладагент (например, азот), то при таких условиях он замораживает кровь. В космических условиях недостаточно давления для поддержания жидкого состояния вещества (возможны лишь газообразное или твёрдое состояние, за исключением жидкого гелия), поэтому вначале со слизистых оболочек организма (язык, глаза, лёгкие) начнёт быстро испаряться вода. Некоторые другие проблемы — декомпрессионная болезнь, солнечные ожоги незащищённых участков кожи и поражение подкожных тканей — начнут сказываться уже через 10 секунд. В какой-то момент человек потеряет сознание из-за нехватки кислорода. Смерть может наступить примерно через 1-2 минуты, хотя точно это не известно. Тем не менее, если не задерживать дыхание в лёгких (попытка задержки приведёт к баротравме), то 30-60 секунд пребывания в открытом космосе не вызовут каких-либо необратимых повреждений человеческого организма[8].
В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд — примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.
Журнал «Aviation Week & Space Technology[en]» 13 февраля 1995 года опубликовал письмо, в котором рассказывалось об инциденте, произошедшем 16 августа 1960 года во время подъёма стратостата с открытой гондолой на высоту 19,5 миль (около 31 км) для совершения рекордного прыжка с парашютом (Проект «Эксельсиор»). Правая рука пилота оказалась разгерметизирована, однако он решил продолжить подъём. Рука, как и можно было ожидать, испытывала крайне болезненные ощущения, и ею нельзя было пользоваться. Однако при возвращении пилота в более плотные слои атмосферы состояние руки вернулось в норму[9].
Космонавт Михаил Корниенко и астронавт Скотт Келли, отвечая на вопросы, сообщили, что нахождение в открытом космосе без скафандра может привести к выходу азота из состава крови, заставив её, по сути, кипеть[10].
Границы на пути в космос и пределы дальнего космического пространства[править | править код]
Атмосфера и ближний космос[править | править код]
- Уровень моря — атмосферное давление 101,325 кПа (1 атм.; 760 мм рт. ст), плотность среды 2,55⋅1022 молекул в дм³[11]. Яркость дневного ясного неба 1500—5000 кд/м² при высоте Солнца 30—60°[12][13].
- 0,5 км — до этой высоты проживает 80 % человеческого населения мира.
- 2 км — до этой высоты проживает 99 % населения мира[14].
- 2—3 км — начало проявления недомоганий (горная болезнь) у неакклиматизированных людей.
- 4,7 км — МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
- 5,0 км — 50 % от атмосферного давления на уровне моря (см. Стандартная атмосфера).
- 5,1 км — самый высокорасположенный постоянный населённый пункт город Ла-Ринконада (Перу).
- 5,5 км — пройдена половина массы атмосферы[15] (гора Эльбрус). Яркость неба в зените 646—1230 кд/м²[16].
- 6 км — граница обитания человека (временные посёлки шерпов в Гималаях[17]), граница жизни в горах.
- до 6,5 км — снеговая линия в Тибете и Андах. Во всех прочих местах она располагается ниже, в Антарктиде — до 0 м над уровнем моря.
- 6,6 км — самая высоко расположенная каменная постройка (гора Льюльяильяко, Южная Америка)[18].
- 7 км — граница приспособляемости человека к длительному пребыванию в горах.
- 7,99 км — граница однородной атмосферы при 0 °C и одинаковой плотности от уровня моря. Яркость неба снижается пропорционально уменьшению высоты однородной атмосферы на данном уровне[19].
- 8,2 км — граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть. Яркость неба в зените 440—893 кд/м²[20].
- 8,848 км — высочайшая точка Земли гора Эверест — предел доступности пешком в космос.
- 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
- 10—12 км — граница между тропосферой и стратосферой (тропопауза) в средних широтах. Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
- 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10—20 с)[21]; предел кратковременного дыхания чистым кислородом без дополнительного давления.
Потолок дозвуковых пассажирских авиалайнеров. Яркость неба в зените 280—880 кд/м²[16]. - 15—16 км — дыхание чистым кислородом эквивалентно пребыванию в космосе[21].
Над головой осталось 10 % массы атмосферы[22]. Небо становится тёмно-фиолетовым (10—15 км)[23]. - 16 км — при нахождении в высотном костюме в кабине нужно дополнительное давление.
- 18,9—19,35 — линия Армстронга — начало космоса для организма человека: закипание воды при температуре человеческого тела. Внутренние жидкости ещё не кипят, так как тело генерирует достаточно внутреннего давления, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза.
- 19 км — яркость тёмно-фиолетового неба в зените 5 % от яркости чистого синего неба на уровне моря (74,3—75 свечей[24] против 1490 кд/м²[12]), днём могут быть видны самые яркие звёзды и планеты.
- 20 км — зона от 20 до 100 км по ряду параметров считается «ближним космосом». На этих высотах вид из иллюминатора почти как в околоземном космосе, но спутники здесь не летают, небо тёмно-фиолетовое и чёрно-лиловое, хотя и выглядит чёрным по контрасту с яркими Солнцем и поверхностью.
Потолок тепловых аэростатов-монгольфьеров (19 811 м)[25]. - 20—30 км — начало верхней атмосферы[26].
- 20—22 км — верхняя граница биосферы: предел подъёма ветрами живых спор и бактерий[27].
- 20—25 км — озоновый слой в средних широтах. Яркость неба днём в 20—40 раз меньше яркости на уровне моря[28], как в центре полосы полного солнечного затмения и как в сумерки, когда Солнце ниже горизонта на 2—3 градуса и могут быть видны планеты.
- 25 км — интенсивность первичной космической радиации начинает преобладать над вторичной (рождённой в атмосфере)[29].
- 25—26 км — максимальная высота реального применения существующих реактивных самолётов.
- 29 км — самая низкая научно определённая граница атмосферы по закону изменения давления и падения температуры с высотой, XIX век[30][31]. Тогда не знали о стратосфере и обратном подъёме температуры.
- 30 км — яркость неба в зените 20—35 кд/м² (~1 % наземного)[32], звёзд не видно, могут быть видны самые яркие планеты[33]. Высота однородной атмосферы над этим уровнем 95—100 м[34][32].
- 30—100 км — средняя атмосфера по терминологии COSPAR[35].
- 34,4 км — среднее давление у поверхности Марса соответствует этой высоте[36]. Тем не менее этот разреженный газ способен ветрами поднять пыль, окрашивающую марсианское небо в жёлто-розовый цвет[37].
- 34,668 км — рекорд высоты стратостата с двумя пилотами (проект «Страто-Лаб»[en], 1961 г.)
- ок. 35 км — начало космоса для воды или тройная точка воды: на этой высоте атмосферное давление 611,657 Па и вода кипит при 0 °C, а выше не может находиться в жидком виде.
- 37,8 км — рекорд высоты полёта турбореактивных самолётов (МиГ-25М, динамический потолок)[38].
- ок. 40 км (52 000 шагов) — верхняя граница атмосферы в XI веке: первое научное определение её высоты по продолжительности сумерек и диаметру Земли (арабский учёный Альгазен, 965—1039 гг.)[39]
- 41,42 км — рекорд высоты стратостата, управляемого одним человеком, а также рекорд высоты прыжка с парашютом (Алан Юстас, 2014 г.)[40]. Предыдущий рекорд — 39 км (Феликс Баумгартнер, 2012 г.)
- 45 км — теоретический предел для прямоточного воздушно-реактивного самолёта.
- 48 км — максимальная интенсивность ультрафиолетовых лучей Солнца[41].
- 50—55 км — граница между стратосферой и мезосферой (стратопауза).
- 50—150 км — в этой зоне ни один аппарат не сможет долго лететь на постоянной высоте[42][43].
- 51,694 км — последний пилотируемый рекорд высоты в докосмическую эпоху (Джозеф Уокер на ракетоплане X-15, 30 марта 1961 г., см. Список полетов X-15[en]). Высота однородной атмосферы 5,4 м[19] — менее 0,07 % её массы.
- 53,7 км — рекорд высоты беспилотного газового аэростата метеозонда (20 сентября 2013 г., Япония)[44].
- 55 км — спускаемый аппарат при баллистическом спуске испытывает максимальные перегрузки[45].
Атмосфера перестаёт поглощать космическую радиацию[46]. Яркость неба ок. 5 кд/м²[47][48]. Выше свечение некоторых явлений может намного перекрывать яркость рассеянного света (см. далее). - 40—80 км — максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью[49].
- 60 км — начало ионосферы — области атмосферы, ионизированной солнечным излучением.
- 70 км — верхняя граница атмосферы в 1714 г. по расчёту Эдмунда Галлея на основе измерений давления альпинистами, закона Бойля и наблюдений за метеорами[50].
- ок. 80 км — прекращают распространяться из-за быстрого затухания самые длинные звуковые волны до 30 м. Более короткие звуковые волны вроде человеческого голоса (0,25—4,28 м)[51], а тем более ультразвук затухают на меньших высотах[52]
- 80 км — высота перигея ИСЗ, с которого начинается сход с орбиты[53].
Начало регистрируемых перегрузок при спуске с 1-й космической скоростью (СА Союз)[54]. - 75—85 км — высота появления серебристых облаков, иногда имеющих яркость до 1—3 кд/м²[55].
- 80,45 км (50 миль) — граница космоса в ВВС США. NASA придерживается высоты ФАИ 100 км[56][57].
- 80—90 км — граница между мезосферой и термосферой (мезопауза). Яркость неба 0,08 кд/м²[58][59].
- 90 км — начало регистрируемых перегрузок при спуске со второй космической скоростью.
- 90—100 км — турбопауза, ниже которой гомосфера, где воздух перемешивается и одинаков по составу, а выше — гетеросфера, в которой ветры останавливаются и воздух делится на слои разных по массе газов.
- ок. 100 км — начало плазмосферы, где ионизированный воздух взаимодействует с магнитосферой.
- ок. 100 км — самый яркий натриевый слой свечения атмосферы толщиной 10—20 км[60], из космоса наблюдается как единый светящийся слой[61]
- 100 км — доказанная протяжённость атмосферы по состоянию на 1902 год (благодаря открытию отражающего радиоволны ионизированного слоя Кеннелли — Хевисайда 90—120 км)[62].
Околоземное космическое пространство[править | править код]
- 100 км — официальная международная граница между атмосферой и космосом — линия Кармана, рубеж между аэронавтикой и космонавтикой. Летающий корпус и крылья начиная со 100 км не имеют смысла, так как скорость полёта для создания подъёмной силы становится выше первой космической скорости и атмосферный летательный аппарат превращается в космический спутник. Плотность среды 12 квадриллионов частиц на 1 дм³[63], яркость тёмно-буро-фиолетового неба 0,01—0,0001 кд/м² — приближается к яркости тёмно-синего ночного неба[64][58]. Высота однородной атмосферы 45 см[19].
- 100—110 км — начало разрушения спутника: обгорание антенн и панелей солнечных батарей[65].
- 108 км[66] — минимальная высота начала последнего витка спутника с наименьшим баллистическим коэффициентом[67], завершая оборот, спутник переходит в баллистический спуск.
- 110 км — минимальная высота аппарата, буксируемого более высоколетящим тяжёлым спутником[43].
- 110—120 км[66] — минимально возможные высоты начала последнего витка реальных спутников[67].
- 118 км — переход от атмосферного ветра к потокам заряженных частиц[68].
- 120—150 км — переход от свободно-молекулярного течения к течению сплошной среды, в которой средняя длина свободного пробега частиц воздуха становится сравнимой с обычными размерами спутника от 1 до 25 м[69]. Набегающий поток воздуха начинает уплотняться перед спутником и оказывает большее тормозящее воздействие. Для микроспутников и небольших метеоритов эта граница располагается ниже.
- 121—122 — самый низкий начальный перигей секретных спутников, но апогей их был 260—400 км.[70]
- 122 км (400 000 футов) — первые заметные проявления атмосферы при возвращении с орбиты: набегающий воздух стабилизирует крылатый аппарат типа Спейс Шаттл носом по ходу движения[4].
- 130 км[66] — высота начала последнего оборота шарообразного спутника диаметром 2,3 м и массой 2400 кг (параметры СА Восток)[71][72]; по другим данным высота начала последнего витка для такого спутника около 150 км[73]
- 135 км — максимальная высота появления болидов[74].
- 150 км[66] — спутник с геометрически нарастающей быстротой теряет высоту, ему осталось существовать 1—2 оборота[75]; спутник с площадью миделя 1 м² (диаметром ок. 1,14 м) массой 1000 кг за один оборот спустится на 20 км[71].
- 150—160 км — дневное небо становится чёрным[41][76]: яркость неба приближается к минимальной различаемой глазом яркости 1⋅10-6 кд/м²[77][58][78].
- 160 км (100 миль) — граница начала более-менее стабильных низких околоземных орбит.
- 188 км — высота первого беспилотного космического полёта (ракета Фау-2, 1944 г.)[79][80].
- 200 км — наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
- 302 км — максимальная высота (апогей) первого пилотируемого космического полёта (Ю. А. Гагарин на космическом корабле Восток-1, 12 апреля 1961 г.).
- 320 км — доказанная протяжённость атмосферы по состоянию на 1927 год (благодаря открытию слоя Эплтона)[62].
- 350 км — наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
- ок. 400 км — высота орбиты Международной космической станции. Наибольшая высота ядерных испытаний (Starfish Prime, 1962 г.). Взрыв создал временный искусственный радиационный пояс, который мог бы умертвить космонавтов на околоземных орбитах, но в это время не проводилось пилотируемых полётов.
- 500 км — начало внутреннего протонного радиационного пояса и окончание безопасных орбит для длительных полётов человека. Не различаемая глазом яркость неба всё ещё имеет место[48].
- 690 км — средняя высота границы между термосферой и экзосферой (Термопауза, экзобаза). Выше экзобазы длина свободного пробега молекул воздуха больше высоты однородной атмосферы и если они летят вверх со скоростью более второй космической, то с вероятностью свыше 50 % покинут атмосферу.
- 947 км — высота апогея первого искусственного спутника Земли (Спутник-1, 1957 г.).
- 1000—1100 км — максимальная высота полярных сияний, последнее видимое с поверхности Земли проявление атмосферы; но обычно хорошо заметные сияния яркостью до 1 кд/м²[81][82] происходят на высотах 90—400 км. Плотность среды 400—500 миллионов частиц на 1 дм³[83][84].
- 1300 км — зарегистрированная граница атмосферы к 1950 году[85].
- 1320 км — максимальная высота траектории баллистической ракеты при полёте на расстояние 10 тыс. км[86].
- 1372 км — максимальная высота, достигнутая человеком до первых полётов к Луне; космонавты впервые увидели не просто закруглённый горизонт, а шарообразность Земли (корабль Джемини-11 2 сентября 1966 г.)[87].
- 2000 км — условная граница между низкими и средними околоземными орбитами. Атмосфера не оказывает воздействия на спутники, и они могут существовать на орбите многие тысячелетия.
- 3000 км — максимальная интенсивность потока протонов внутреннего радиационного пояса (до 0,5—1 Гр/час — смертельная доза в течение нескольких часов полёта)[88].
- 12 756,49 км — мы удалились на расстояние, равное экваториальному диаметру планеты Земля.
- 17 000 км — максимум интенсивности внешнего электронного радиационного пояса до 0,4 Гр в сутки[89].
- 27 743 км — расстояние пролёта заранее (свыше 1 дня) обнаруженного астероида 2012 DA14.
- 35 786 км — граница между средними и высокими околоземными орбитами[en].
Высота геостационарной орбиты, спутник на такой орбите будет всегда висеть над одной точкой экватора. Плотность частиц на этой высоте ~20—30 тыс. атомов водорода на дм³[90]. - ок. 80 000 км — теоретический предел атмосферы в первой половине XX века. Если бы вся атмосфера равномерно вращалась вместе с Землёй, то с этой высоты на экваторе центробежная сила превосходила бы притяжение, и молекулы воздуха, вышедшие за эту границу, разлетались бы в разные стороны[91][92]. Граница оказалась близка к реальной и явление рассеяния атмосферы имеет место, но происходит оно из-за теплового и корпускулярного воздействия Солнца во всём объёме экзосферы.
- ок. 90 000 км — расстояние до головной ударной волны, образованной столкновением магнитосферы Земли с солнечным ветром.
- ок. 100 000 км — верхняя граница экзосферы (геокорона) Земли со стороны Солнца[93], во время повышенной солнечной активности она уплотняется до 5 диаметров Земли (~60 тыс. км). Однако с теневой стороны последние следы «хвоста» экзосферы, сдуваемого солнечным ветром, могут прослеживаться до расстояний 50—100 диаметров Земли (600—1200 тыс. км)[94]. Каждый месяц в течение четырёх дней этот хвост пересекает Луна[95][96].
Межпланетное пространство[править | править код]
- 260 000 км — радиус сферы тяготения, где притяжение Земли превосходит притяжение Солнца.
- 363 104—405 696 км — высота орбиты Луны над Землёй (30 диаметров Земли). Плотность среды межпланетного пространства (плотность солнечного ветра) в окрестностях земной орбиты 5—10 тысяч частиц на 1 дм³ со всплесками до 200 000 частиц в 1 дм³ во время солнечных вспышек[97]
- 401 056 км — абсолютный рекорд высоты, на которой был человек (Аполлон-13 14 апреля 1970 г.).
- 928 000 км — радиус сферы гравитационного влияния Земли, в которой движение космических тел приблизительно соответствует движению по кеплеровской орбите, в фокусе которой находится Земля.
- 1 497 000 км — радиус сферы Хилла Земли и максимальная высота её орбитальных спутников с периодом обращения 1 год. Далее притяжение Солнца будет перетягивать вышедшие из сферы тела.
- 1 500 000 км — расстояние до одной из точек либрации L2, в которых попавшие туда тела находятся в гравитационном равновесии. Космическая станция, выведенная в эту точку, с минимальными затратами топлива на коррекции траектории всегда бы следовала за Землёй и находилась бы в её тени.
- 21 000 000 км — можно считать, что исчезает гравитационное воздействие Земли на пролетающие объекты[3][4].
- 40 000 000 км — минимальное расстояние от Земли до ближайшей большой планеты Венера.
- 56 000 000 — 58 000 000 км — минимальное расстояние до Марса во время Великих противостояний.
- 149 597 870,7 км — среднее расстояние от Земли до Солнца. Это расстояние служит мерилом расстояний в Солнечной системе и называется астрономическая единица (а. е.). Свет проходит это расстояние примерно за 500 секунд (8 минут 20 секунд).
- 590 000 000 км — минимальное расстояние от Земли до ближайшей большой газовой планеты Юпитер. Дальнейшие числа указывают расстояние от Солнца.
- 4 500 000 000 км (4,5 миллиардов км, 30 а. е.) — радиус границы околосолнечного межпланетного пространства — радиус орбиты самой дальней большой планеты Нептун. Начало Пояса Койпера.
- 8 230 000 000 км (55 а. е.) — дальняя граница пояса Койпера — пояса малых ледяных планет, в который входит карликовая планета Плутон. Начало Рассеянного диска, состоящего из нескольких известных транснептуновых объектов с вытянутыми орбитами и короткопериодических комет.
- 11 384 000 000 км — перигелий малой красной планеты Седны в 2076 году, являющейся переходным случаем между Рассеянным диском и Облаком Оорта (см ниже). После этого планета начнёт шеститысячелетний полёт по вытянутой орбите к афелию, отстоящему на 140—150 млрд км от Солнца.
- 11—14 млрд км — граница гелиосферы, где солнечный ветер со сверхзвуковой скоростью наталкивается на межзвёздное вещество и создаёт ударную волну, начало межзвёздного пространства.
- 23 337 267 829 км (примерно 156 а. е.) — расстояние от Солнца до самого дальнего на данный момент межзвёздного автоматического космического аппарата Вояджер-1 на 24 апреля 2022 года.
- 35 000 000 000 км (35 млрд км, 230 а. е.) — расстояние до предполагаемой головной ударной волны, образованной собственным движением Солнечной системы через межзвёздное вещество.
- 65 000 000 000 км — расстояние до аппарата Вояджер-1 к 2100 году.
Межзвёздное пространство[править | править код]
- ок. 300 000 000 000 км (300 млрд км) — ближняя граница облака Хиллса, являющегося внутренней частью облака Оорта — большого, но очень разреженного шарообразного скопища ледяных глыб, которые медленно летят по своим орбитам. Изредка выбиваясь из этого облака и приближаясь к Солнцу, они становятся долгопериодическими кометами.
- 4 500 000 000 000 км (4,5 трлн км) — расстояние до орбиты гипотетической планеты Тюхе, вызывающей исход комет из Облака Оорта в околосолнечное пространство.
- 9 460 730 472 580,8 км (ок. 9,5 трлн км) — световой год — расстояние, которое свет со скоростью 299 792 км/с проходит за 1 год. Служит для измерения межзвёздных и межгалактических расстояний.
- до 15 000 000 000 000 км — дальность вероятного нахождения гипотетического спутника Солнца звезды Немезида, ещё одного возможного виновника прихода комет к Солнцу.
- до 20 000 000 000 000 км (20 трлн км, 2 св. года) — гравитационные границы Солнечной системы (Сфера Хилла) — внешняя граница Облака Оорта, максимальная дальность существования спутников Солнца (планет, комет, гипотетических слабосветящих звёзд).
- 30 856 776 000 000 км — 1 парсек — более узкопрофессиональная астрономическая единица измерения межзвёздных расстояний, равен 3,2616 светового года.
- ок. 40 000 000 000 000 км (40 трлн км, 4,243 св. года) — расстояние до ближайшей к нам известной звезды Проксима Центавра.
- ок. 56 000 000 000 000 км (56 трлн км, 5,96 св. года — расстояние до летящей звезды Барнарда. К ней предполагалось послать первый реально проектируемый с 1970-х годов беспилотный аппарат «Дедал», способный долететь и передать информацию в пределах одной человеческой жизни (около 50 лет).
- 100 000 000 000 000 км (100 трлн км, 10,57 св. года) — в пределах этого радиуса находятся 18 ближайших звёзд, включая Солнце.
- ок. 300 000 000 000 000 км (300 трлн км, 30 св. лет) — размер Местного межзвёздного облака, через которое сейчас движется Солнечная система (плотность среды этого облака 300 атомов на 1 дм³).
- ок. 3 000 000 000 000 000 км (3 квадрлн км, 300 св. лет) — размер Местного газового пузыря, в состав которого входит Местное межзвёздное облако с Солнечной системой (плотность среды 50 атомов на 1 дм³).
- ок. 33 000 000 000 000 000 км (33 квадрлн км, 3500 св. лет) — толщина галактического Рукава Ориона, вблизи внутреннего края которого находится Местный пузырь.
- ок. 300 000 000 000 000 000 км (300 квадрлн км) — расстояние от Солнца до ближайшего внешнего края гало нашей галактики Млечный Путь (англ. Milky Way). До конца XIX века Галактика считалась пределом всей Вселенной.
Галактика М31 Андромеда, ближайшая галактика к Млечному пути)
- ок. 1 000 000 000 000 000 000 км (1 квинтлн км, 100 тысяч св. лет) — диаметр нашей галактики Млечный Путь, в ней 200—400 миллиардов звёзд, суммарная масса вместе с чёрными дырами, тёмной материей и другими невидимыми объектами — ок. 3 триллионов Солнц. За её пределами простирается чёрное, почти пустое и беззвёздное межгалактическое пространство с едва различимыми без телескопа маленькими пятнами нескольких ближайших галактик. Объём межгалактического пространства многократно больше объёма межзвёздного, а плотность среды его — менее 1 атома водорода на 1 дм³.
Межгалактическое пространство[править | править код]
- ок. 5 000 000 000 000 000 000 км (ок. 5 квинтиллионов км) — размер подгруппы Млечного Пути, в которую входят наша галактика и её спутники карликовые галактики, всего 15 галактик. Самые известные из них — Большое Магелланово Облако и Малое Магелланово Облако, через 4 миллиарда лет они вероятно будут поглощены нашей галактикой.
- ок. 30 000 000 000 000 000 000 км (ок. 30 квинтиллионов км, ок. 1 млн парсек) — размер Местной группы галактик, в которую входят три крупных соседа: Млечный путь, Галактика Андромеды, Галактика Треугольника, и многочисленные карликовые галактики (более 50 галактик). Галактика Андромеды и наша галактика сближаются со скоростью около 120 км/с и вероятно столкнутся друг с другом примерно через 4—5 миллиардов лет.
- ок. 2 000 000 000 000 000 000 000 км (2 секстиллиона км, 200 млн св. лет) — размер Местного сверхскопления галактик (Сверхскопления Девы) (около 30 тысяч галактик, масса около квадриллиона Солнц).
- ок. 4 900 000 000 000 000 000 000 км (4,9 секстиллиона км, 520 млн св. лет) — размер ещё более крупного сверхскопления Ланиакея («Необъятные небеса»), в которое входят наше сверхскопление Девы и так называемый Великий аттрактор, притягивающий к себе и заставляющий двигаться окружающие галактики, включая нашу, со скоростью обращения около 500 км/с. Всего в Ланиакее около 100 тысяч галактик, масса её около 100 квадриллионов Солнц.
- ок. 10 000 000 000 000 000 000 000 км (10 секстиллионов км, 1 млрд св. лет) — длина Комплекса сверхскоплений Рыб-Кита, называемого ещё галактической нитью и гиперскоплением Рыб-Кита, в котором мы живём (60 скоплений галактик, 10 масс Ланиакеи или около квинтиллиона Солнц).
- до 100 000 000 000 000 000 000 000 км — расстояние до Супервойда Эридана, самого большого на сегодня известного войда размером около 1 млрд св. лет. В центральных областях этого огромного пустого пространства нет звёзд и галактик, и вообще почти нет обычной материи, плотность его среды 10 % от средней плотности Вселенной или 1 атом водорода в 1—2 м³. Космонавт в центре войда без большого телескопа не смог бы увидеть ничего, кроме темноты.
На рисунке справа в кубической вырезке из Вселенной видны многие сотни больших и малых войдов, расположенных, как пузыри в пене, между многочисленными галактическими нитями. Объём войдов намного больше объёма нитей. - ок. 100 000 000 000 000 000 000 000 км (100 секстиллионов км, 10 млрд св. лет) — длина великой стены Геркулес — Северная корона, самой большой известной сегодня суперструктуры в наблюдаемой Вселенной. Находится на расстоянии около 10 млрд световых лет от нас. Свет от нашего только родившегося Солнца сейчас находится на полпути к Великой стене, а достигнет её, когда Солнце уже погибнет.
- ок. 250 000 000 000 000 000 000 000 км (ок. 250 секстиллионов км, свыше 26 млрд св. лет) — размер пределов видимости вещества (галактик и звёзд) в наблюдаемой Вселенной (около 2 триллионов галактик).
- ок. 870 000 000 000 000 000 000 000 км (870 секстиллионов км, 92 млрд св. лет) — размер пределов видимости излучения в наблюдаемой Вселенной.
Скорости, необходимые для выхода в ближний и дальний космос[править | править код]
Для того чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:
- Первая космическая скорость — 7,9 км/с — скорость для выхода на орбиту вокруг Земли;
- Вторая космическая скорость — 11,1 км/с — скорость для ухода из сферы притяжения Земли и выхода в межпланетное пространство;
- Третья космическая скорость — 16,67 км/с — скорость для ухода из сферы притяжения Солнца и выхода в межзвёздное пространство;
- Четвёртая космическая скорость — около 550 км/с — скорость для ухода из сферы притяжения галактики Млечный Путь и выхода в межгалактическое пространство. Для сравнения, скорость движения Солнца относительно центра галактики составляет примерно 220 км/с.
Если же какая-либо из скоростей будет меньше указанной, то тело не сможет выйти на соответствующую орбиту (утверждение верно лишь для старта с указанной скоростью с поверхности Земли и дальнейшего движения без тяги).
Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский.
Скорости разгона космического аппарата при помощи одного только ионного двигателя для вывода его на земную орбиту недостаточно, но для движения в межпланетном космическом пространстве и маневрирования он вполне подходит и используется достаточно часто.
Правовой режим космического пространства[править | править код]
Правовой режим космического пространства и небесных тел регулируется серией резолюций Генеральной Ассамблеи ООН (особое значение из которых имеет резолюция 1962 (XVIII)) и Договором о космосе 1967 года. Основные элементы этого режима заключаются в том, что космос и небесные тела признаются территорией общего использования (res communis), космос и небесные тела открыты для исследования и использования всеми государствами на недискриминационной основе в соответствии с международным правом, при свободном доступе во все районы небесных тел. Участники Договора о космосе обязались не выводить на орбиту вокруг Земли любые объекты с ядерным оружием или другими видами оружия массового уничтожения, не устанавливать такое оружие на небесных телах и не размещать такое оружие в космическом пространстве каким-либо иным образом. Однако доктринальное толкование этого положения исключает из данного запрета суборбитальный, т. е. не совершающий хотя бы одного полного витка вокруг Земли, пролет через космос объектов с ядерным оружием на борту, т. е. межконтинентальных баллистических ракет (Договор ОСВ-2, подписанный СССР и США в 1979 году, запретил для его участников частично орбитальные ракеты), а также размещение в космосе объектов с обычным оружием на борту[98].
Однако возможный переход в практическую плоскость казавшихся некогда фантастическими идей добычи космических ресурсов создает новые проблемы. В 2020 году более 30 экспертов из разных стран указали, что отсутствие ясных международных правил относительно коммерческой добычи космических ископаемых создает проблемы для соответствующих компаний. Поэтому государства принимают национальные акты, чтобы поддержать их и регулировать их деятельность. Так в 2015 году в США был принят Закон о конкурентоспособности коммерческих космических запусков, или закон о стимулировании частной космической конкурентоспособности (Commercial Space Launch Competitiveness Act of 2015) разрешает гражданам США свободно заниматься разработкой планет и астероидов, владеть и распоряжаться полученными таким образом ресурсами, в том числе водой и минералами (но не живыми объектами). Аналогичные законы были приняты в 2017—2021 годах в ОАЭ, Люксембурге и Японии[99].
Комментарии[править | править код]
- ↑ Однако граница гелиосферы, называемая гелиопаузой, не является границей Солнечной системы, поскольку сфера действия тяготения Солнца простирается примерно в тысячу раз дальше.
Примечания[править | править код]
- ↑ CABINET // In Between Space and Cosmos. Дата обращения: 9 октября 2015. Архивировано 5 сентября 2015 года.
- ↑ Sanz Fernández de Córdoba. Presentation of the Karman separation line, used as the boundary separating Aeronautics and Astronautics (англ.). Официальный сайт Международной авиационной федерации. Дата обращения: 26 июня 2012. Архивировано 22 августа 2011 года.
- ↑ 1 2 3 Андрей Кисляков. Где начинается граница космоса? РИА Новости (16 апреля 2009). Дата обращения: 4 сентября 2010. Архивировано 22 августа 2011 года.
- ↑ 1 2 3 4 Ученые уточнили границу космоса. Lenta.ru (10 апреля 2009). Дата обращения: 4 сентября 2010. Архивировано 22 августа 2011 года.
- ↑ Найдена ещё одна граница космоса (недоступная ссылка — история). Мембрана (10 апреля 2009). Дата обращения: 12 декабря 2010. Архивировано 22 августа 2011 года.
- ↑ Гелиосфера / Кононович Э. В. // Большая российская энциклопедия [Электронный ресурс]. — 2016.
- ↑ Межпланетная среда / Ермолаев Ю. И. // Большая российская энциклопедия [Электронный ресурс]. — 2017.
- ↑ Бездушное пространство: Смерть в открытом космосе Архивная копия от 10 июня 2009 на Wayback Machine, «Популярная механика», 29 ноября 2006 г
- ↑ NASA: Human Body in a Vacuum. Дата обращения: 7 мая 2007. Архивировано 4 июня 2012 года.
- ↑ Космонавты рассказали, что ждет человека в открытом космосе. Дата обращения: 25 марта 2016. Архивировано 25 марта 2016 года.
- ↑ Атмосфера стандартная. Параметры. — М.: ИПК Издательство стандартов, 1981. Архивировано 22 апреля 2016 года.
- ↑ 1 2 Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 49
- ↑ Таблицы физических величин / под ред. акад. И.К.Кикоина. — М.: Атомиздат, 1975. — С. 647.
- ↑ Максаковский В.П. Географическая картина мира. — Ярославль: Верхневолжское издательство, 1996. — С. 108. — 180 с.
- ↑ Большая Советская энциклопедия. 2-е издание. — М.: Сов. энциклопедия, 1953. — Т. 3. — С. 381.
- ↑ 1 2 Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 49, 53
- ↑ Гвоздецкий Н.А., Голубчиков Ю.Н. Горы. — М.: Мысль, 1987. — С. 70. — 399 с.
- ↑ Книга рекордов Гиннесса. Пер. с англ. — М.: “Тройка”, 1993. — С. 96. — 304 с. — ISBN 5-87087-001-1.
- ↑ 1 2 3 Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 23
- ↑ Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 53
- ↑ 1 2 Черняков, Дмитриев, Непомнящий, 1975, с. 339.
- ↑ Большая Советская энциклопедия. 2-е издание. — М.: Сов. энциклопедия, 1953. — Т. 3. — С. 381.
- ↑ Большая Советская энциклопедия. 2-е издание. — М.: Сов. энциклопедия, 1953. — Т. 3. — С. 380.
- ↑ Труды всесоюзной конференции по изучению стратосферы. Л.-М., 1935. — С. 174, 255.
- ↑ Книга рекордов Гиннесса. Пер. с англ. — М.: “Тройка”, 1993. — С. 141. — 304 с. — ISBN 5-87087-001-1.
- ↑ Космонавтика: Энциклопедия. — М.: Сов. энциклопедия, 1985. — С. 34. — 528 с.
- ↑ Зигель Ф. Ю. Города на орбитах. — М.: Детская литература, 1980. — С. 124. — 224 с.
- ↑ H.A. Miley, E.H. Cullington, J.F. Bedinger Day‐sky brightness measured by rocketborne photoelectric photometers // Eos, Transactions American Geophysical Union, 1953, Vol. 34, 680—694
- ↑ Большая Советская энциклопедия. 2-е издание. — М.: Сов. энциклопедия, 1953. — С. 95.
- ↑ Техническая энциклопедия. — М.: Издательство иностранной литературы, 1912. — Т. 1. Выпуск 6. — С. 299.
- ↑ A.Ritter. Anwendunger der mechan. Wärmetheorie auf Kosmolog. Probleme, Лейпциг, 1882. Стр. 8—10
- ↑ 1 2 Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 25, 49
- ↑ Koomen M.J. Visibility of Stars at High Altitude in Daylight // Journal of the Optical Society of America, Vol. 49, N 6, 1959, pp. 626—629
- ↑ Смеркалов В. А. Спектральная яркость дневного неба на различных высотах// Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып.871, 1961. — С. 44
- ↑ Микиров А. Е., Смеркалов В. А. Исследование рассеянного излучения верхней атмосферы Земли. — Л.: Гидрометеоиздат, 1981. — С. 5. — 208 с.
- ↑ Атмосфера стандартная. Параметры. — М.v.aspx: ИПК Издательство стандартов, 1981. — С. 37. — 180 с. Архивировано 5 февраля 2021 года.
- ↑ На Земле подобного эффекта нет и небо остаётся темным, поскольку пыль на такую высоту не поднимается
- ↑ Рекорды МиГ-25. Дата обращения: 28 июня 2014. Архивировано 27 сентября 2015 года.
- ↑ Ф. Розенберг. История физики. Л., 1934. Дата обращения: 20 октября 2012. Архивировано 16 мая 2013 года.
- ↑ Parachutist’s Record Fall: Over 25 Miles in 15 Minutes. Дата обращения: 25 октября 2014. Архивировано 17 апреля 2021 года.
- ↑ 1 2 Бургесс З. К границам пространства. — М.: Издательство иностранной литературы, 1957. — С. 8. — 224 с.
- ↑ Обычные самолёты и аэростаты на эти высоты не поднимаются, ракетопланы, геофизические и метеорологические ракеты слишком быстро тратят топливо и вскоре начинают падение, спутники с круговой орбитой, то есть формально с постоянной высотой, здесь также долго не задерживаются из-за нарастающего сопротивления воздуха, см. далее.
- ↑ 1 2 Белецкий В., Левин У. Тысяча и один вариант «космического лифта». // Техника — молодёжи, 1990, № 10. — С. 5
- ↑ 無人気球到達高度の世界記録更新について. (Японское агентство аэрокосмических исследований). Дата обращения: 25 июня 2017. Архивировано 20 июня 2017 года.
- ↑ Космическая техника / Сайферт Г.. — М.: «Наука», 1964. — С. 381. — 728 с.
- ↑ Бургесс З. Глава VII. Космические лучи и частицы межзвёздного вещества // К границам пространства. — М.: Издательство иностранной литературы, 1957.
- ↑ Бирюкова Л. А. Опыт определения яркости неба до высот 60 км // Труды ЦАО, 1959, вып. 25 — С. 77—84
- ↑ 1 2 Микиров А. Е., Смеркалов В. А. Исследование рассеянного излучения верхней атмосферы Земли. — Л.: Гидрометеоиздат, 1981. — С. 145. — 208 с.
- ↑ Попов Е. И. Спускаемые аппараты. — М.: «Знание», 1985. — 64 с.
- ↑ Бургесс З. К границам пространства / пер. с англ. С. И. Кузнецова и Н. А. Закса; под ред. Д. Л. Тимрота. — М.: Издательство иностранной литературы, 1957. — С. 18. — 224 с.
- ↑ Енохович А. С. Справочник по физике.—2-е изд. / под ред. акад. И. К. Кикоина. — М.: Просвещение, 1990. — С. 104. — 384 с.
- ↑ Митра С.К. Верхняя атмосфера. Пер. с англ. Розенберга Г.В. и Макаровой Е.А. / Под ре. Красовского В.И. и Альберта Я Л.. — М.: Издательство иностранной литературы, 1955. — С. 62. — 640 с.
- ↑ Ежегодник БСЭ, 1966. Дата обращения: 4 марта 2017. Архивировано 15 сентября 2012 года.
- ↑ Батурин, Ю.М. Повседневная жизнь российских космонавтов. — М.: Молодая гвардия, 2011. — 127 с.
- ↑ Ишанин Г. Г., Панков Э. Д., Андреев А. Л. Источники и приемники излучения / под ред. акад. И.К.Кикоина. — СПб.: Политехника, 19901991. — 240 с. — ISBN 5-7325-0164-9.
- ↑ A long-overdue tribute. NASA (21 октября 2005). Дата обращения: 30 октября 2006. Архивировано 24 октября 2018 года.
- ↑ Wong, Wilson & Fergusson, James Gordon (2010), Military space power: a guide to the issues, Contemporary military, strategic, and security issues, ABC-CLIO, ISBN 0-313-35680-7, <https://books.google.com/books?id=GFg5CqCojqQC&pg=PA16> Архивная копия от 17 апреля 2017 на Wayback Machine
- ↑ 1 2 3 Микиров А. Е., Смеркалов В. А. Исследование рассеянного излучения верхней атмосферы Земли. — Л.: Гидрометеоиздат, 1981. — С. 146. — 208 с.
- ↑ Berg O.E. Day sky brightness to 220 km // Journal of Geophysical Research. 1955, vol. 60, № 3, p. 271—277
- ↑ http://www.albany.edu/faculty/rgk/atm101/airglow.htm Архивная копия от 16 февраля 2017 на Wayback Machine Airglow
- ↑ Физическая энциклопедия / А. М. Прохоров. — М.: Сов. энциклопедия, 1988. — Т. 1. — С. 139. — 704 с.
- ↑ 1 2 Бургесс З. Глава II. Рассказ продолжается // К границам пространства. — М.: Издательство иностранной литературы, 1957. — С. 21. — 224 с.
- ↑ Атмосфера стандартная. Параметры. — М.: ИПК Издательство стандартов, 1981. — С. 158. — 180 с. Архивировано 5 февраля 2021 года.
- ↑ Смеркалов В. А. Спектральная яркость рассеянного излучения земной атмосферы (метод, расчёты, таблицы) // Труды Краснознамённой ордена Ленина Военно-воздушной академии им. проф. Жуковского Н. Е. Вып. 986, 1962. — С. 27, 49
- ↑ Анфимов Н. А. Обеспечение управляемого спуска с орбиты орбитального пилотируемого комплекса «Мир». Дата обращения: 25 сентября 2016. Архивировано 11 октября 2016 года.
- ↑ 1 2 3 4 Спутник на круговой орбите с такой начальной высотой
- ↑ 1 2 Иванов Н. М., Лысенко Л. Н. Баллистика и навигация космических аппаратов. — М.: Дрофа, 2004. — С. 113. — 544 с.
- ↑ Где начинается граница космоса? Дата обращения: 16 апреля 2016. Архивировано 25 апреля 2016 года.
- ↑ Кинг-Хили Д. Теория орбит искусственных спутников в атмосфере / Перевод с англ. Ю.А. Рябова.. — М.: Мир, 1966. — С. 21—22. — 189 с.
- ↑ Космонавтика. Маленькая энциклопедия. — М.: Советская энциклопедия, 1970. — С. 520—540. — 592 с.
- ↑ 1 2 Митрофанов А. Аэродинамический парадокс спутника // Квант : журнал. — 1998. — № 3. — С. 3—6. — ISSN 0130-2221.
- ↑ Инженерный справочник по космической технике / [Алатырцев А.А., Алексеев А.И., Байков М.А. и др.] ; Под ред. засл. деят. науки и техники РСФСР, проф., д-ра техн. наук А.В. Солодова. – 2-е изд., перераб. и доп. – Москва : Воениздат, 1977. – 430 с., С. 81
- ↑ Охоцимский Д Е, Энеев Т М, Таратынова Г П “Определение времени существования искусственного спутника Земли и исследование вековых возмущений его орбиты” УФН 63 33–50 (1957) — 1,18 оборота: посчитано по формуле на стр.
42 с использованием коэффициента 0,04, соответствующего на графике высоте орбиты 145—150 км - ↑ Федынский В. В. 3. Полёт метеоров в земной атмосфере // Метеоры. — М.: Государственное издательство технико-теоретической литературы, 1956. — (Популярные лекции по астрономии. Выпуск 4).
- ↑ Александров С. Г., Федоров Р. Е. Глава I. Общие сведения о космических аппаратах и ракетах. Особенности движения спутников // Советские спутники и космические корабли. — 2-е изд. доп. и перераб.. — М.: Издательство Академии Наук СССР, 1961.
- ↑ Space Environment and Orbital Mechanics. United States Army. Дата обращения: 24 апреля 2012. Архивировано из оригинала 2 сентября 2016 года.
- ↑ Hughes J. V., Sky Brightness as a Function of Altitude // Applied Optics, 1964,vol. 3, N 10, p. 1135—1138.
- ↑ Енохович А. С. Справочник по физике.—2-е изд / под ред. акад. И. К. Кикоина. — М.: Просвещение, 1990. — С. 213. — 384 с.
- ↑ Walter Dornberger. Peenemünde. Moewig Dokumentation (Том 4341). — Berlin: Pabel-Moewig Verlag Kg, 1984. — С. 297. — ISBN 3-8118-4341-9.
- ↑ Дорнбергер Вальтер. Фау-2. Сверхоружие Третьего Рейха. 1930-1945 = V-2. The Nazi Rocket Weapon / Пер. с англ. И. Е. Полоцка. — М.: Центрполиграф, 2004. — 350 с. — ISBN 5-9524-1444-3.
- ↑ Исаев С. И., Пудовкин М. И. Полярные сияния и процессы в магнитосфере Земли / под ред. акад. И. К. Кикоина. — Л.: Наука, 1972. — 244 с. — ISBN 5-7325-0164-9.
- ↑ Забелина И. А. Расчёт видимости звёзд и далёких огней. — Л.: Машиностроение, 1978. — С. 66. — 184 с.
- ↑ Атмосфера стандартная. Параметры. — М.: ИПК Издательство стандартов, 1981. — С. 168. — 180 с.
- ↑ Космонавтика. Маленькая энциклопедия. 2-е издание. — М.: Советская Энциклопедия, 1970. — С. 174. — 592 с.
- ↑ Большая Советская Энциклопедия, 3 том. Изд. 2-е. М., «Советская Энциклопедия», 1950. — С. 377
- ↑ Николаев М. Н. Ракета против ракеты. М., Воениздат, 1963. С. 64
- ↑ Adcock G. Gemini Space Program–Finally, Success. Дата обращения: 4 марта 2017. Архивировано 5 марта 2017 года.
- ↑ Бубнов И. Я., Каманин Л. Н. Обитаемые космические станции. — М.: Воениздат, 1964. — 192 с.
- ↑ Уманский С. П. Человек в космосе. — М.: Воениздат, 1970. — С. 23. — 192 с.
- ↑ Космонавтика. Маленькая энциклопедия. — М.: Советская Энциклопедия, 1968. — С. 451. — 528 с.
- ↑ Техническая энциклопедия. 2-е издание. — М.: ОГИЗ РСФСР, 1939. — Т. 1. — С. 1012. — 1184 с.
- ↑ Enciclopedia universal ilustrada europeo-americana. — 1907. — Т. VI. — С. 931. — 1079 с.
- ↑ Геокорона // Астрономічний енциклопедичний словник / За загальною редакцією І. А. Климишина та А. О. Корсунь. — Львів, 2003. — С. 109. — ISBN 966-613-263-X. (укр.)
- ↑ Koskinen, Hannu. Physics of Space Storms: From the Surface of the Sun to the Earth. — Berlin: Springer-Verlag Berlin Heidelberg, 2011. — С. 42. — ISBN ISBN 3-642-00310-9.
- ↑ Mendillo, Michael (November 8–10, 2000), The atmosphere of the moon, in Barbieri, Cesare & Rampazzi, Francesca, Earth-Moon Relationships, Padova, Italy at the Accademia Galileiana Di Scienze Lettere Ed Arti: Springer, с. 275, ISBN 0-7923-7089-9, <https://books.google.com/books?id=vpVg1hGlVDUC&pg=PA275> Архивная копия от 3 мая 2016 на Wayback Machine
- ↑ Межпланетная среда и физика магнитосферы : [Сборник статей / Редколлегия: Г.А. Скуридин (отв. ред.) и др.] ; АН СССР. Ин-т косм. исследований. – Москва : Наука, 1972. – 211 с., С. 112
- ↑ Космонавтика. Маленькая энциклопедия. — М.: Советская энциклопедия, 1970. — С. 292. — 592 с.
- ↑ Правовой режим космического пространства
- ↑ Попова С.М. — Регулирование добычи космических ресурсов: создание международного правового обычая // Право и политика. – 2022. – № 12. – С. 1 – 28
Литература[править | править код]
- Черняков И. H., Дмитриев M. Т., Непомнящий С. И. Атмосфера Земли // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1975. — Т. 2 : Антибиотики — Беккерель. — С. 336—342. — 608 с. : ил.
Ссылки[править | править код]
- Галерея фотографий, полученных при помощи телескопа Хаббл (англ.)
- Виртуальная обсерватория USAP (англ.)
Что известно о космосе. Как он пахнет и есть ли жизнь за пределами Земли
. Какие открытия перевернули наше представление о Вселенной
Обновлено 12 апреля 2023, 15:45
Hubble Space Telescope / Nasa via Getty Images
В астрономическом и астрофизическом поле только за последнюю декаду произошло немало грандиозных прорывов — от пролета мимо Плутона до фотографии черной дыры в галактике M87. РБК Life рассказывает, что на данный момент ученым известно о Вселенной и Солнечной системе.
Безмолвие и холод пустоты
Начнем с базовых знаний. Слоган «В космосе никто не услышит твой крик» легендарного фильма Ридли Скотта «Чужой» в 1979 году сигнализировал посетителю кинотеатра, что будет как минимум страшно. Однако это не просто предупреждение, создающее предвкушение леденящего зрелища, а факт. В космосе нет звука, поскольку нет воздуха — среды, необходимой для распространения звуковых волн. Поэтому любые космические баталии, будь они возможны, как в кино, проходили бы в полной тишине — не так эффектно, как можно представить.
Кроме того, космическая температура совершенно неблагоприятна для человека без защитной экипировки: абсолютный ноль (-273,15 °C) — это температура вакуума в открытом космосе. Но это вовсе не значит, что все космические объекты «висят» в ледяной пустоте: излучение звезд и горячих газовых гигантов обязательно их нагревает (именно поэтому обращенная к Солнцу сторона МКС раскаляется до +260 °С). Максимальные минусовые температуры космоса можно встретить в отдаленных и самых темных его уголках. Например, в туманности Бумеранг такой есть: там зафиксирована температура -272 °С.
ESA / NASA via Getty Images
К слову, благодаря этому самому излучению космос пахнет: астронавты и космонавты сообщали, что чувствовали запах жженого металла, как при сварке, пороховой гари и даже подгоревшего миндального печенья. Впрочем, во многом это зависело от окружающих материалов — обшивки космической станции или различных инструментов, раскаленных на Солнце и подверженных процессу окисления (в безвоздушном пространстве это почти что горение, но без дыма). Кроме этого, в космосе полно других запахов: молекулярные облака, туманности, в которых происходит рождение новых звезд, а также планеты и их спутники обладают самыми разными ароматами — от сероводорода и нафталина до этилового спирта.
Путешествия по Вселенной
В настоящее время за пределами Земли находятся десять человек. Для людей космос — недружелюбное место, и пока не изобретено удобной, безопасной в долгосрочной перспективе и экономически доступной системы, которая позволила бы его «бороздить». Скафандры все еще громоздкие, устаревшие и порой протекают (в шлеме астронавта Матиаса Маурера в 2022 году оказалась вода прямо во время выхода в открытый космос). Только в 2024-м НАСА получит новые скафандры от Collins Aerospace — заказ на $97,2 млн поступил компании в декабре прошлого года.
Что касается космических кораблей, ничего, близко подобного «Энтерпрайзу» из «Звездного пути», в ближайшие 50 и, возможно, 100 лет люди не построят: слишком дорого и ресурсозатратно. Но амбициозные проекты все же появляются: ракеты вроде Starship от SpaceX Илона Маска и Space Launch System (SLS) с космическим кораблем «Орион» от НАСА, запущенный в рамках новой лунной миссии «Артемида» в ноябре 2022 года. На строительство и испытание таких ракет выделяют огромные бюджеты (например, сумма контракта НАСА со SpaceX составила $2,89 млрд, а полноценное возвращение людей на Луну с высадками и работой на поверхности может стоить $93 млрд).
Жизни на Марсе нет
В том представлении, которое лелеяли писатели-фантасты. Исследования Марса специальными аппаратами начались в 1960-х: СССР, США и Европа запускали к нему межпланетные станции и корабли с марсоходами в поисках свидетельств существования грандиозной марсианской цивилизации, которая, возможно, породила и человеческую. Но экзистенциальная природа надежд на обретение «создателя» на соседней Красной планете разбилась о сухие научные факты. Марсианские «каналы», которые разглядел еще в 1877 году итальянский астроном Джованни Скиапарелли, оказались не искусственными сооружениями, а оптической иллюзией. «Марсианский сфинкс», или «Лицо на Марсе», — холм, снятый станцией «Викинг-1» в 1976 году, — не выдержал более качественного фотографирования и рассеялся в 2001-м, когда над ним пролетела станция Mars Global Surveyor с камерой.
NASA / Newsmakers via Getty Images
Этот снимок поверхности Марса, полученный в 2000 году орбитальным аппаратом Mars Global Surveyor , дал исследователям основания полагать, что планета могла быть покрыта водой в ранний период своего существования. Позднее эти основания подтвердились
Зато что точно есть на Марсе, так это пылевые бури, которые периодически окутывают планету целиком (вместе с роверами на ее поверхности, мешая им заряжать солнечные батареи и исправно работать). Штормы на Марсе тем не менее, несравнимы по силе с земными: они не перевернут тяжелый марсоход и не свалят с ног незадачливого астронавта (как в фильме «Марсианин» Ридли Скотта).
Планета на порядок легче Земли, лишенная магнитного поля и постоянно теряющая атмосферу из-за мощного солнечного ветра, все еще первая в списке на колонизацию у космических энтузиастов. Условия на ней крайне враждебны для человека: средняя температура -63 °С, атмосфера на 95% состоит из углекислого газа, почва требует тщательной подготовки для выращивания растений, но этот «запасной аэродром» все же возможен, пусть и теоретически. Если человек когда-нибудь высадится на Марсе со всеми инструментами для долгосрочного пребывания, спасаться от радиации, вероятнее всего, он будет в марсианских пещерах, глубину которых ученые оценивают в десятки метров.
Ткань Вселенной «волнуется»
В 1916 году физик-теоретик Альберт Эйнштейн сформулировал общую теорию относительности (ОТО), в которой предсказал существование гравитационных волн, испускаемых столкновениями очень тяжелых объектов в галактиках. Ровно через столетие американский детектор LIGO (Laser Interferometric Gravitational-wave Observatory) уловил сигнал от слияния двух черных дыр массами 36 и 29 солнечных масс, пришедший с расстояния 1,3 млрд световых лет. С помощью европейского детектора Virgo в дальнейшем были зафиксированы волны в созвездии Гидры, что в 130 млн световых лет от Земли: там столкнулись две нейтронные звезды 1,1 и 1,16 массы Солнца. Уже в 2019-м детекторы засекли 39 подобных событий, а в 2020-м — столкновение черных дыр на расстоянии 2,4 млрд лет от нас.
Gravitational Wave Open Science Center / GWOSC
18 апреля 2020 года американский детектор LIGO и европейский Virgo объявили об открытии гравитационных волн от слияния черных дыр. Событие получило обозначение GW190412
Для астрофизики эти доказательства имеют фундаментальное значение, это еще один шаг на пути к исследованию возникновения Вселенной, шанс проверить некоторые теории и уточнить модель космологии. В практическом смысле знания о гравитационных волнах пока никак не применимы (их пытались приспособить для дальней беспроводной связи, но тщетно). Однако открытие позволило астрофизикам убедиться, что математические модели черных дыр не обманывали: эти объекты реальны.
Фотографии черных дыр
До того как в 2019-м году проект Event Horizon Telescope получил первую в истории фотографию силуэта черной дыры, эти объекты существовали только в математических формулах и в представлении художников (к слову, в фильме «Интерстеллар» Кристофера Нолана благодаря консультации астрофизика Кипа Торна визуализировали максимально близкую к реальности модель такого объекта — так получилась впечатляющая черная дыра «Гаргантюа», в которую упал астронавт Купер и обнаружил в ней книжный шкаф).
National Science Foundation via Getty Images
Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо. 10 апреля 2019 года
В самом центре эллиптической галактики M87 на расстоянии 53,5 млн световых лет нашлась примерно такая: искали ее, объединив усилия по всему миру, более 200 ученых свыше 20 лет. Масса объекта превышала солнечную в 6,5 млрд раз, наблюдали его в 2017 году, но данные обрабатывали еще два года, чтобы получить в итоге изображение «тени» черной дыры — огненного кольца, окружающего чернеющую пустоту в центре, которая обладает такой чудовищной гравитацией, что ни один фотон не может ее покинуть.
В 2022 году миру явили вторую грандиозную фотографию — черной дыры Стрелец А* в центре нашей галактики, Млечного Пути. Ее масса — 4,3 млн солнечных масс, и ученым удалось разглядеть Стрельца А* за множеством звезд и пылевых облаков, из которых состоят галактические рукава.
Млечный Путь необъятен
По крайней мере для имеющихся у человечества технологий на данный момент. Протяженность нашей галактики — 100 тыс. световых лет, Солнце преодолевает вращение вокруг ее центра за 225–250 млн лет (то есть в последний раз, когда наша система находилась на противоположном краю галактического диска, по Земле гуляли динозавры). В ней содержится до 400 млрд звезд и по меньшей мере столько же планет. В настоящее время с помощью космических телескопов «Кеплер» и TESS (Transiting Exoplanet Survey Satellite) открыто свыше 5 тыс. экзопланет, некоторые находятся в звездных системах, обладающих условиями для зарождения жизни. Например, система Trappist-1 в созвездии Водолея с землеподобными планетами или Kepler 422 в созвездии Лиры.
Солнечная же система расположена в радиусе около 27 тыс. световых лет от центра Галактики, на внутреннем краю рукава Ориона, в отдалении от активного звездообразования, благодаря чему у земной жизни в распоряжении оказалось достаточно относительно спокойного времени для развития.
Ethan Miller / Getty Images
Чтобы оценить, насколько масштабны расстояния в галактике (и во Вселенной), достаточно того факта, что радиосигналы, испускаемые Землей в открытый космос больше столетия, разлетелись на «жалкие» 200 световых лет, а космический аппарат Voyager-1 за время путешествия, начавшегося в 1977 году со скоростью 61,2 тыс. км/ч, покинул Солнечную систему только в августе 2012 года, но все еще находится в пределах гелиосферы и сможет окончательно «вылететь» из нее через сотни тысяч лет.
Вода и воздух в Солнечной системе
Есть не только на Земле. Подледные океаны на спутниках Юпитера манят ученых: вот бы доставить к ним космический аппарат с мощной буровой установкой и запустить исследовательский зонд прямо в пучины. Европейское космическое агентство вовсю готовит к запуску в апреле 2023 года миссию JUICE (Jupiter Icy Moons Exprorer) по исследованию ледяных спутников Юпитера — Европы, Каллисто и Ганимеда. Станция будет летать по их орбитам и собирать данные. О приземлении речи пока не идет, но надежда есть — фантазии всегда так или иначе приближали наступление прогресса.
Не менее привлекателен для ученых и спутник Сатурна Титан. Он укутан плотными азотными облаками, которые плывут над метановыми и этановыми озерами и выпадают дождями. И хотя температура там очень низкая (до -180 °C), а гравитация в семь раз меньше земной (что опасно для мышц и костей), отправить туда хотя бы роботизированные механизмы человечество может. Зонд Huygens уже высаживался на поверхности Титана в 2005 году и передал Земле ценные данные о спутнике (в том числе записал, как гудит ветер на Титане).
ESA
JUICE, исследовательский аппарат Европейского космического агентства. В ходе миссии он будет наблюдать за Юпитером и его тремя спутниками — Ганимедом, Каллисто и Европой, на которых, как ученые предполагают, возможны формы жизни
Еще один спутник Сатурна, Энцелад, тоже обладает секретом: под ледяной коркой поверхности находится соленый океан, который согревается внутренним теплом в недрах и приливным тепловыделением и существует около 1 млрд лет — достаточно для зарождения жизни. Океан «выдал» себя через гейзеры, которые планета испускает далеко в космос: в молекулах выброшенной воды аппарат Cassini обнаружил свидетельство гидротермальной активности, необходимой для возникновения живых организмов (по крайней мере на Земле именно гидротермальные отверстия на дне океанов, где магма взаимодействовала с соленой водой, дали толчок для создания сложного химического состава, считают ученые).
Достоверно неизвестно, есть ли на Энцеладе жизнь, но Американское космическое агентство уже сообщило, что располагает инструментом для будущих исследований этого вопроса. Это устройство Ocean Worlds Life Surveyor (OWLS), которое может собирать образцы воды во время полета через гейзерные шлейфы на спутнике Сатурна.
Сегодня, где бы вы ни находились, вы можете получить доступ к множеству космических снимков прямо на своем рабочем столе и смартфоне. Эти красочные изображения гигантских галактик, туманностей и завораживающих газовых облаков не перестают нас ослеплять. Но действительно ли пространство выглядит так, как мы видим их на этих изображениях? Ну, мы здесь, чтобы это выяснить.
Электромагнитный спектр
Перед тем, как углубиться в эту тему, следует сначала взглянуть на электромагнитный спектр. Как вы должны знать, человек может видеть объекты только в видимом световом спектре, который представляет собой узкую полосу, простирающуюся от 390 до 700 нм, остальное невозможно обнаружить человеческим глазом.
Чтобы прочесать огромные просторы космоса, астрономы используют различные типы телескопов и спутников. Эти спутники настолько мощны, что могут наблюдать за тысячами и тысячами световых лет и получать качественные изображения с большими деталями для дальнейшего изучения.
Одним из примеров такого инструмента является космический телескоп Хаббла. Не только Хаббл может видеть в видимом свете, как и мы, но он также может наблюдать отдаленные объекты в инфракрасном и ультрафиолетовом диапазонах длин волн.
Вы никогда не задумывались, почему одна и та же галактика, изображенная в двух разных длинах волн, выглядит по-разному? Изображения одного астрономического объекта в разных длинах волн содержат ценную информацию о его составе, структуре и т. д. Например, чтобы исследовать существование воды на далекой планете, исследователи могут полагаться на инфракрасную спектроскопию.
Почти все оригинальные космические снимки сначала делаются в оттенках серого, то есть они не имеют цвета. Эти изображения затем обрабатываются с помощью различных фильтров, которые позволяют захватывать свет с разных основных длин волн. Каждая длина волны имеет цветовую кодировку и объединяется в одно изображение, чтобы создать то, что мы называем «космическим изображением».
Одним из ярких примеров такой техники является эта знаковая картина Столпов Творения.
Столпы Творения – это изображение межзвездного газа и пыли в туманности Орла, расположенной на расстоянии около 7000 световых лет в созвездии Змеи. С помощью длины волны инфракрасного излучения Хаббл смог глубоко взглянуть на звездообразование внутри этих гигантских структур, что было бы невозможно в видимом спектре.
Другой тип космического изображения, которое вы видите чаще; впечатление художника. Время от времени мы должны дать волю своему воображению, и в космических образах это очень важно. Давайте рассмотрим одно из самых известных художественных произведений TRAPPIST-1 f.
TRAPPIST-1 f – одна из четырех недавно открытых экзопланет, вращающихся вокруг карликовой звезды, называемой TRAPPIST-1, примерно в 40 световых годах от Земли.
На этом изображении художники попытались представить себе, как это выглядит, когда люди ступают на планету. Но что заставило художников думать, что это будет так. Давайте попробуем разобраться.
Во-первых, с помощью космического телескопа Спитцер НАСА астрономы смогли оценить его массу и плотность. Они пришли к выводу, что TRAPPIST-1 f, скорее всего, является каменистой планетой, и тот факт, что она может вращаться очень близко к своей родительской звезде, которая является ультрахолодным карликом, может находится жидкая вода.
И наконец, поскольку другие планеты в этой планетной системе тесно вращаются вокруг 1f, их можно было бы увидеть в небе. И ба-бах, вот она-художественная визуализация планетарного объекта.
Как и в TRAPPIST-1 f, существует множество увлекательных художников, визуализирующих экзопланеты, звезды и другие астрономические объекты, расположенные в сотнях и тысячах световых лет от Земли. Эти изображения, однако, не являются “научно-корректными”, дают нам уникальное представление о далеких планетах.
Они позволяют нам ощутить, каково это было бы на самом деле. Хотя эти изображения в основном основаны на научных знаниях, это не означает, что они полностью верны.