Нахождение общего члена ряда по заданным первым членам. Первая часть.
Числовой ряд можно задать по-разному. Чаще всего просто используют запись вида $sumlimits_{n=1}^{infty}u_n$. Однако изредка указывают несколько первых членов ряда, по которым нужно восстановить общий член ряда. Честно говоря, подобные задачи не имеют единственного решения, и это будет продемонстрировано в примере №1. Впрочем, есть некие общие приёмы, которые применяют в стандартных случаях.
Для начала стоит запомнить несколько последовательностей. Например, квадраты натуральных чисел, т.е. последовательность $u_n=n^2$. Вот несколько первых членов этой последовательности:
$$
begin{equation}
1;; 4;; 9;; 16;; 25;; 36;; 49;; 64; ;81; ldots
end{equation}
$$
Как мы получили эти числа? показатьскрыть
Также стоит иметь в виду члены последовательности $u_n=n^3$. Вот несколько первых её членов:
$$
begin{equation}
1;; 8;; 27;; 64;; 125;; 216;; 343;; 512;;729; ldots
end{equation}
$$
Кроме того, для формирования общего члена ряда частенько используется последовательность $u_n=n!$, несколько первых членов которой таковы:
$$
begin{equation}
1;; 2;; 6;; 24;; 120;; 720;; 5040; ldots
end{equation}
$$
Что обозначает “n!”? показатьскрыть
Часто используются также арифметическая и геометрическая прогрессии. Если первый член арифметической прогрессии равен $a_1$, а разность равна $d$, то общий член арифметической прогрессии записывается с помощью такой формулы:
$$
begin{equation}
a_n=a_1+dcdot (n-1)
end{equation}
$$
Что такое арифметическая прогрессия? показатьскрыть
Стоит также отметить геометрическую прогрессию. Если первый член прогрессии равен $b_1$, а знаменатель равен $q$, то общий член геометрической прогрессии задаётся такой формулой:
$$
begin{equation}
b_n=b_1cdot q^{n-1}
end{equation}
$$
Что такое геометрическая прогрессия? показатьскрыть
Во всех изложенных ниже примерах члены рядов будем обозначать буквами $u_1$ (первый член ряда), $u_2$ (второй член ряда) и так далее. Запись $u_n$ будет обозначать общий член ряда.
Пример №1
Найти общий член ряда $frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+ldots$.
Решение
Суть таких задач состоит в том, чтобы заметить закономерность, которая присуща первым членам ряда. И на основании этой закономерности сделать вывод о виде общего члена. Что означает фраза “найти общий член”? Она означает, что необходимо найти такое выражение, подставляя в которое $n=1$ получим первый член ряда, т.е. $frac{1}{7}$; подставляя $n=2$ получим второй член ряда, т.е. $frac{2}{9}$; подставляя $n=3$ получим третий член ряда, т.е. $frac{3}{11}$ и так далее. Нам известны первые четыре члена ряда:
$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}.
$$
Давайте двигаться постепенно. Все известные нам члены ряда – дроби, поэтому резонно предположить, что и общий член ряда тоже представлен дробью:
$$
u_n=frac{?}{?}
$$
Наша задача – выяснить, что же скрывается под знаками вопроса в числителе и знаменателе. Сначала обратимся к числителю. В числителях известных нам членов ряда стоят числа 1, 2, 3 и 4. Заметьте, что номер каждого члена ряда равен числителю. У первого члена в числителе стоит единица, у второго – двойка, у третьего – тройка, у четвёртого – четвёрка.
Логично предположить, что у n-го члена в числителе будет стоять $n$:
$$
u_n=frac{n}{?}
$$
Кстати сказать, к этому выводу мы можем прийти и иным путём, более формальным. Что представляет собой последовательность 1, 2, 3, 4? Отметим, что каждый последующий член этой последовательности на 1 больше, чем предыдущий. Мы имеем дело с четырьмя членами арифметической прогрессии, первый член которой $a_1=1$, а разность $d=1$. Используя формулу (4), получим выражение общего члена прогрессии:
$$
a_n=1+1cdot (n-1)=1+n-1=n.
$$
Итак, угадывание или формальный расчёт – дело вкуса. Главное – мы записали числитель общего члена ряда. Перейдём к знаменателю.
В знаменателях мы имеем последовательность 7, 9, 11, 13. Это четыре члена арифметической прогрессии, первый член которой равен $b_1=7$, а разность $d=2$. Общий член прогрессии найдем, используя формулу (4):
$$
b_n=7+2cdot (n-1)=7+2n-2=2n+5.
$$
Полученное выражение, т.е. $2n+5$, и будет знаменателем общего члена ряда. Итак:
$$
u_n=frac{n}{2n+5}.
$$
Общий член ряда получен. Давайте проверим, подходит ли найденная нами формула $u_n=frac{n}{2n+5}$ для вычисления уже известных членов ряда. Найдём члены $u_1$, $u_2$, $u_3$ и $u_4$ по формуле $u_n=frac{n}{2n+5}$. Результаты, естественно, должны совпасть с заданными нам по условию первыми четырьмя членами ряда.
$$
u_1=frac{1}{2cdot 1+5}=frac{1}{7};; u_2=frac{2}{2cdot 2+5}=frac{2}{9};; u_3=frac{3}{2cdot 3+5}=frac{3}{11};; u_4=frac{4}{2cdot 4+5}=frac{4}{13}.
$$
Всё верно, результаты совпадают. Заданный в условии ряд можно записать теперь в такой форме: $sumlimits_{n=1}^{infty}frac{n}{2n+5}$. Общий член ряда имеет вид $u_n=frac{n}{2n+5}$.
В принципе, если речь идёт о стандартном примере, то можно считать, что ответ получен. Однако если вам интересно поисследовать вопрос более детально, то прошу читать далее. Вопрос вот в чём: является ли найденное выше представление общего члена единственным? Ответ на этот вопрос далеко не столь очевидный, как кажется на первый взгляд. Например, давайте продолжим заданный в условии ряд таким образом:
$$
frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+0+0+0+0+0+0+0+ldots
$$
Разве такой ряд не имеет право на существование? Ещё как имеет. И для этого ряда можно записать, что
$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}; ; u_n=0; (n≥ 5).
$$
Можно записать и иное продолжение. Например, такое:
$$
frac{1}{7}+frac{2}{9}+frac{3}{11}+frac{4}{13}+frac{1}{5}+frac{1}{6}+frac{1}{7}+frac{1}{8}+frac{1}{9}+frac{1}{10}+ldots
$$
И такое продолжение ничему не противоречит. При этом можно записать, что
$$
u_1=frac{1}{7};; u_2=frac{2}{9};; u_3=frac{3}{11};; u_4=frac{4}{13}; ; u_n=frac{1}{n}; (n≥ 5).
$$
Если первые два варианта показались вам чересчур формальными, то предложу третий. Давайте запишем общий член в таком виде:
$$
u_n=frac{n}{n^4-10n^3+35n^2-48n+29}.
$$
Вычислим первые четыре члена ряда, используя предложенную формулу общего члена:
begin{aligned}
& u_1=frac{1}{1^4-10cdot 1^3+35cdot 1^2-48cdot 1+29}=frac{1}{7};\
& u_2=frac{2}{2^4-10cdot 2^3+35cdot 2^2-48cdot 2+29}=frac{2}{9};\
& u_3=frac{3}{3^4-10cdot 3^3+35cdot 3^2-48cdot 3+29}=frac{3}{11};\
& u_4=frac{4}{4^4-10cdot 4^3+35cdot 4^2-48cdot 4+29}=frac{4}{13}.
end{aligned}
Как видите, предложенная формула общего члена вполне корректна. И таких вариаций можно придумать бесконечно много, их количество ничем не ограничено. В стандартных примерах, конечно, используется стандартный набор неких известных последовательностей (прогрессии, степени, факториалы и т.д.). Однако в таких задачах всегда присутствует неопределённость, и об этом желательно помнить.
Во всех последующих примерах эта неоднозначность оговариваться не будет. Решать станем стандартными способами, которые приняты в большинстве задачников.
Ответ: общий член ряда: $u_n=frac{n}{2n+5}$.
Пример №2
Записать общий член ряда $frac{1}{1cdot 5}+frac{1}{3cdot 8}+frac{1}{5cdot 11}+frac{1}{7cdot 14}+frac{1}{9cdot 17}+ldots$.
Решение
Нам известны первые пять членов ряда:
$$
u_1=frac{1}{1cdot 5};; u_2=frac{1}{3cdot 8}; ; u_3=frac{1}{5cdot 11}; ; u_4=frac{1}{7cdot 14}; ; u_5=frac{1}{9cdot 17}.
$$
Все известные нам члены ряда – дроби, значит и общий член ряда будем искать в виде дроби:
$$
u_n=frac{?}{?}.
$$
Сразу обратим внимание на числитель. Во всех числителях стоят единицы, поэтому и в числителе общего члена ряда будет единица, т.е.
$$
u_n=frac{1}{?}.
$$
Теперь обратимся к знаменателю. В знаменателях известных нам первых членов ряда расположены произведения чисел: $1cdot 5$, $3cdot 8$, $5cdot 11$, $7cdot 14$, $9cdot 17$. Первые из этих чисел таковы: 1, 3, 5, 7, 9. Данная последовательность имеет первый член $a_1=1$, а каждый последующий получается из предыдущего прибавлением числа $d=2$. Иными словами, это первые пять членов арифметической прогрессии, общий член которой можно записать с помощью формулы (4):
$$
a_n=1+2cdot (n-1)=1+2n-2=2n-1.
$$
В произведениях $1cdot 5$, $3cdot 8$, $5cdot 11$, $7cdot 14$, $9cdot 17$ вторые числа таковы: 5, 8, 11, 14, 17. Это элементы арифметической прогрессии, первый член которой $b_1=5$, а знаменатель $d=3$. Общий член этой прогрессии запишем с помощью всё той же формулы (4):
$$
b_n=5+3cdot (n-1)=5+3n-3=3n+2.
$$
Сведём результаты воедино. Произведение в знаменателе общего члена ряда таково: $(2n-1)(3n+2)$. А сам общий член ряда имеет следующий вид:
$$
u_n=frac{1}{(2n-1)(3n+2)}.
$$
Для проверки полученного результата найдём по формуле $u_n=frac{1}{(2n-1)(3n+2)}$ те четыре первых члена ряда, которые нам известны:
begin{aligned}
& u_1=frac{1}{(2cdot 1-1)(3cdot 1+2)}=frac{1}{1cdot 5};\
& u_2=frac{1}{(2cdot 2-1)(3cdot 2+2)}=frac{1}{3cdot 8};\
& u_3=frac{1}{(2cdot 3-1)(3cdot 3+2)}=frac{1}{5cdot 11};\
& u_4=frac{1}{(2cdot 4-1)(3cdot 4+2)}=frac{1}{7cdot 14};\
& u_5=frac{1}{(2cdot 5-1)(3cdot 5+2)}=frac{1}{9cdot 17}.
end{aligned}
Итак, формула $u_n=frac{1}{(2n-1)(3n+2)}$ позволяет точно вычислить члены ряда, известные из условия. При желании заданный ряд можно записать так:
$$
sumlimits_{n=1}^{infty}frac{1}{(2n-1)(3n+2)}=frac{1}{1cdot 5}+frac{1}{3cdot 8}+frac{1}{5cdot 11}+frac{1}{7cdot 14}+frac{1}{9cdot 17}+ldots
$$
Ответ: общий член ряда: $u_n=frac{1}{(2n-1)(3n+2)}$.
Продолжение этой темы рассмотрим в второй и третьей частях.
1.21. Основные понятия сходимости числовых рядов.
Числовым
рядом называется
выражение вида
,
где
являются членами
числового ряда
и представляют собой действительные
или комплексные числа.
Числовой
ряд задается с помощью формулы
общего члена ряда
,
описывающей зависимость члена ряда от
его номера.
Пример 1.Найти
общий член ряда
.
Решение.
Последовательные числители образуют
арифметическую прогрессии. 1,3,5,7,…;
й
член прогрессии находим по формуле
Здесь
,
поэтому
.
Последовательные знаменатели образуют
геометрическую прогрессии.
-й
член этой прогрессии
.
Следовательно, общий член ряда
Пример 2.
Найти общий член ряда
Решение.
Показатель степени каждого члена
совпадает с номером этого члена, поэтому
показатель степени
го
члена равен
.
Числители дробей 2/3,3/7,4/11,5/15,… образуют
арифметическую прогрессию с первым
членом 2 и разностью 1. Поэтому
-й
числитель равен
.
Знаменатели образуют арифметическую
прогрессию с первым членом 4 и разностью
4. Следовательно,
-й
знаменатель равен
.
Итак, общим членом ряда является
Сумма
первых
членов ряда называется
-й
частичной суммой
ряда.
Рассмотрим последовательность частичных
сумм числового ряда:
,
,
,
…
Определение.
Если существует конечный предел
последовательности частичных сумм
ряда, то говорят, что числовой ряд
сходится.
Этот предел называют суммой
ряда
.
Числовой
ряд называют расходящимся,
если
не существует или
.
Пример
1.
Рассмотрим ряд 1/2+1/4+1/8+1/16+…+
Сторона
квадрата равна единице, следовательно
площадь 1/2+1/4+1/16+1/32+…. . . = 1
Пример
2.
Числовой ряд
является сходящимся. Это легко доказать,
рассмотрев последовательность частичных
сумм. Действительно,
,
,
,
…,
.
Следовательно,
,
т.е. ряд сходится.
Пример 3.
Найти сумму ряда
.
Решение.
Разлагаем общий член ряда на простейшие
дроби:
Выписываем несколько
членов ряда так, чтобы было видно, какие
слагаемые сокращаются при вычислении
частичной суммы ряда:
.
Составляем
ю
частичную сумму ряда:
Вычисляем сумму ряда по формуле
, получаем
.
Ряд сходится и его сумма равна 1/2.
Пример 4.
Найти сумму ряда
.
Решение. Разложим
общий член ряда
на простейшие дроби с помощью метода
неопределенных коэффициентов:
.
Умножая на знаменатель левой части,
придем к тождеству
Полагая последовательно
находим: при
:
1=2A; A=1/2; при
:
при
Таким образом,
,
т.е.
.
Выписываем несколько членов ряда, чтобы
было видно, какие слагаемые сокращаются
при вычислении частичной суммы ряда:
.
Составляем
ю
частичную сумму ряда и сокращаем все
слагаемые, какие возможно:
Вычисляем сумму
ряда по формуле
,
получаем.
Числовой
ряд
расходится,
так как последовательность частичных
сумм
не имеет предела.
Известным числовым
рядом является геометрическая прогрессия:
Сумма
первых
членов прогрессии находится по формуле
,
.
Предел этой суммы равен:
,
если
,
так как
.
Если
,
то
,
поэтому
,
ряд расходится. Если
,
то ряд принимает вид
.
Последовательность частичных сумм
расходится,
,
следовательно, расходится и ряд. При
ряд принимает вид
– в этом случае
при четном
и
при нечетном
.
Следовательно,
не существует, а ряд расходится.
Пример 5.
Исследовать сходимость ряда
.
Решение.
Ряд составлен из членов бесконечно
убывающей геометрической прогрессии
и поэтому сходится. Найдем сумму ряда.
Здесь(знаменатель
прогрессии) Следовательно,
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Лучший ответ по мнению автора
|
|||||||||||||||
Другие ответы
|
||||||||
Содержание:
Числовые ряды:
При решении ряда математических задач, в том числе и в приложениях математики в экономике, приходится рассматривать суммы, составленные из бесконечного множества слагаемых. Из теории действительных чисел известно лишь, что означает сумма любого конечного числа чисел. Задача суммирования бесконечного множества слагаемых решается в теории рядов.
Основные понятия. Сходимость ряда
Определение. Числовым рядом называется бесконечная последовательность чисел
Числа называются членами ряда, а член — общим или -м членом ряда.
Ряд (13.1) считается заданным, если известен его общий член т.е. задана функция натурального аргумента. Например, ряд с общим членом имеет вид
Более сложной является обратная задача: по нескольким первым членам ряда написать общий член. Эта задача имеет бесконечно много решений, но иногда удается найти самое естественное решение.
Пример:
Найти в простейшей форме общий член ряда:
Решение:
Нетрудно убедиться, что для ряда а) общий член а для ряда б)
Рассмотрим суммы конечного числа членов ряда:
Сумма п первых членов ряда называется -й частичной суммой ряда.
Определение. Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, т.е.
Число называется суммой ряда. В этом смысле можно записать
Если конечного предела последовательности частичных сумм не существует, то ряд называется расходящимся.
Пример:
Исследовать сходимость геометрического ряда, т.е. ряда, составленного из членов геометрической профессии
Решение:
Необходимо установить, при каких значениях знаменателя профессии ряд (13.4) сходится и при каких — расходится.
Из школьного курса алгебры известно, что сумма первых членов геометрической профессии, т.е. -я частичная сумма ряда при равна
Возможно несколько случаев:
1) если
т.е. ряд сходится и его сумма
2) если следовательно, и ряд расходится;
3) если то ряд (13.4) примет вид его -я частичная сумма т.е. ряд расходится;
4) если то ряд (13.4) примет вид при четном и — при нечетном, следовательно, не существует, и ряд расходится.
Таким образом, геометрический ряд сходится к сумме при и расходится при
Пример:
Найти сумму ряда
Решение:
-я частичная сумма ряда
Учитывая, что
Отсюда т.е. сумма ряда
Свойства сходящихся рядов. 1. Если ряд сходится и имеет сумму , то и ряд (полученный умножением данного ряда на число ) также сходится и имеет сумму .
2. Если ряды сходятся и их суммы соответственно равны то и ряд (представляющий сумму данных рядов) также сходится, и его сумма равна
Свойства 1 и 2 непосредственно вытекают из свойств пределов числовых последовательностей.
3. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания (или приписывания) конечного числа членов.
Пусть в сходящемся ряде (13.1) отброшены членов (в принципе можно отбрасывать члены с любыми номерами, лишь бы их было конечное число). Покажем, что полученный ряд
имеющий частичную сумму также сходится.
Очевидно, что Отсюда следует, что при фиксированном конечный предел существует тогда и только тогда, когда существует конечный предел . А это и означает, что ряд (13.7) сходится. ■
Ряд (13.7), полученный из данного отбрасыванием его первых членов, называется -м остатком ряда.
Если сумму -го остатка ряда обозначить через т.е.
то сумму ряда (13.1) можно представить в виде
В результате мы подошли к свойству 4.
4. Для того чтобы ряд (13.1) сходился, необходимо и достаточно, чтобы при остаток ряда стремился к нулю, т.е. чтобы
Это свойство вытекает из теоремы о связи бесконечно малых с пределами функций (см. § 6.3).
Установить сходимость (расходимость) ряда путем определения и вычисления (как это сделано в примерах 13.2, 13.3) возможно далеко не всегда из-за принципиальных трудностей при нахождении (суммировании членов ряда). Проще это можно сделать на основании признаков сходимости, к изучению которых мы переходим.
Необходимый признак сходимости. Гармонический ряд
Теорема (необходимый признак сходимости). Если ряд сходится, то предел его общего члена при равен нулю, т.е.
Выразим -й член ряда через сумму его и членов, т.е. Так как ряд сходится, то и Поэтому
Пример №1
Проверить выполнение необходимого признака для ряда (13.6).
Решение:
Выше было доказано, что ряд (13.6) сходится, и действительно т.е. необходимый признак сходимости выполняется. ►
Следствие. Если предел общего члена ряда (13.1) при не равен нулю, т.е. то ряд расходится.
Предположим противное, т.е. ряд (13.1) сходится. Но в этом случае из приведенной выше теоремы следует , что противоречит условию, заданному в следствии, т.е. ряд (13.1) расходится. ■
Пример №2
Исследовать сходимость ряда
Решение:
т.е. необходимый признак сходимости не выполняется, следовательно, ряд расходится. ►
Замечание. Следует подчеркнуть, что рассмотренная теорема выражает лишь необходимый, но недостаточный признак сходимости ряда. Если то из этого еще не следует, что ряд сходится.
В качестве примера рассмотрим ряд
называемый гармоническим.
Необходимый признак сходимости выполнен: Докажем, что, несмотря на это, гармонический ряд расходится.
Вначале получим вспомогательное неравенство. С этой целью запишем сумму первых членов ряда:
Найдем разность
Заменяя в сумме каждое слагаемое наименьшим, равным придем к вспомогательному неравенству
Предположим противное, т.е. что гармонический ряд сходится, тогда и, переходя к пределу в неравенстве (см. § 6.5), получим, что
Мы пришли к противоречию, следовательно, наше предположение о сходимости гармонического ряда неверно, т.е. гармонический ряд расходится. ■
В следующих двух параграфах рассмотрим достаточные признаки сходимости.
Ряды с положительными членами
Теорема (признак сравнения). Пусть даны два ряда с положительными членами: причем члены первого ряда не превосходят членов второго, т.е. при любом
Тогда: а) если сходится ряд 2, то сходится и ряд 1; б) если расходится ряд 1, то расходится и ряд 2.
а) Пусть частичные суммы рядов 1 и 2 соответственно равны . По условию ряд 2 сходится, следовательно, существует так как члены ряда 2 положительны. Рассмотрим последовательность частичных сумм ряда 1. Эта последовательность является: возрастающей (так как с ростом увеличивается сумма положительных слагаемых) и ограниченной (так как в силу условия (13.11), т.е. ).
Следовательно, на основании признака существования предела (см. § 6.5) последовательность имеет предел, т.е. ряд 1 сходится.
б) Применим метод доказательства от противного. Предположим, что ряд 2 сходится. Тогда согласно первой части теоремы сходится и ряд 1, что противоречит предположению; т.е. ряд 2 расходится. ■
Замечание. Так как сходимость ряда не изменяется при отбрасывании конечного числа членов ряда, то условие (13.11) не обязательно должно выполняться с первых членов рядов и только для членов с одинаковыми номерами . Достаточно, чтобы оно выполнялось, начиная с некоторого номера или чтобы имело место неравенство где — некоторое целое число.
Пример №3
Исследовать сходимость ряда
Решение:
Сравним данный ряд со сходящимся геометрическим рядом (его знаменатель ).
Так как члены данного ряда, начиная со второго, меньше членов сходящегося геометрического ряда и вообще то на основании признака сравнения ряд сходится. ►
Пример №4
Исследовать сходимость ряда
Решение:
Сравним данный ряд с гармоническим , мысленно отбросив его первый член, равный 1 (что, естественно, не повлияет на расходимость ряда). Так как и вообще (ибо т.е. члены данного ряда больше членов расходящегося гармонического ряда, то на основании признака сравнения ряд расходится. ►
сходится при расходится при здесь же отметим, что при расходимость ряда (13.12) следует из признака сравнения, так как в этом случае члены ряда больше соответствующих членов гармонического ряда а в частном случае при сходимость ряда (13.12) может быть доказана сравнением этого ряда со сходящимся (13.6)).
Нестандартность применения признака сравнения заключается в том, что надо не только подобрать соответствующий «эталонный» ряд, но и доказать неравенство (13.11), для чего часто требуется преобразование рядов (например, отбрасывание или приписывание конечного числа членов, умножение на определенные числа и т.п.). В ряде случаев более простым оказывается предельный признак сравнения.
Теорема (предельный признак сравнения)
Теорема (предельный признак сравнения). Если — ряды с положительными членами и существует конечный предел отношения их общих членов то ряды одновременно сходятся либо расходятся.
Так как , то по определению предела числовой последовательности (см. § 6.1) для любого существует такой номер , что для всех выполняется неравенство
Если ряд сходится, то сходится ряд и в силу признака сравнения будет сходиться ряд аналогично, если сходится ряд сходится ряд и сходится . Таким образом, из сходимости одного ряда следует сходимость другого. Утверждение теоремы о расходимости рядов доказывается аналогично.
Пример №5
Исследовать сходимость ряда
Решение:
Сравним данный ряд с расходящимся гармоническим (выбор такого ряда для сравнения может подсказать то, что при больших ). Так как то данный ряд, так же как и гармонический, расходится. ►
Весьма удобным на практике является признак Даламбера.
Теорема (признак Даламбера)
Теорема (признак Даламбера). Пусть для ряда с положительными членами существует предел отношения -го члена к -му члену Тогда, если то ряд сходится; если то ряд расходится; если то вопрос о сходимости ряда остается нерешенным.
Из определения предела последовательности следует, что для любого существует такой номер , что для всех выполняется неравенство 1) Пусть Выберем настолько малым, что число
Последнее неравенство будет выполняться для всех , т.е. для
Получили, что члены ряда меньше соответствующих членов геометрического ряда сходящегося при Следовательно, на основании признака сравнения этот ряд сходится, а значит, сходится и рассматриваемый ряд отличающийся от полученного на первые членов.
2) Пусть Возьмем настолько малым, что Тогда из условия следует, что Это означает, что члены ряда возрастают, начиная с номера поэтому предел общего члена ряда не равен нулю, т.е. не выполнен необходимый признак сходимости, и ряд расходится. ■
Пример №6
Исследовать сходимость рядов:
Решение:
а) Так как то по признаку Даламбера ряд сходится.
б) Так как
то по признаку Даламбера ряд расходится. ►
Замечание 1. Если то ряд расходится.
Замечание 2. Если то, как отмечалось выше, признак Даламбера ответа о сходимости ряда не дает, и рекомендуется перейти к другим признакам сходимости.
Теорема (интегральный признак сходимости)
Теорема (интегральный признак сходимости). Пусть дан ряд члены которого положительны и не возрастают, т.е.а функция , определенная при непрерывная и невозрастающая и
Тогда для сходимости ряда необходимо и достаточно, чтобы сходился несобственный интеграл
Рассмотрим ряд
Его -й частичной суммой будет
Сходимость ряда (13.14) означает существование предела последовательности его частичных сумм (13.15), т.е. сходимость несобственного интеграла поскольку В силу монотонности функции на любом отрезке или, учитывая (13.13),
Интегрируя (13.16) на отрезке получим
откуда
Если ряд сходится, то по признаку сравнения рядов в силу первого неравенства (13.17) должен сходиться ряд (13.14), а значит, и несобственный интеграл Обратно, если сходится J/(jc)c&, т.е. ряд (13.14), то согласно тому же признаку сравнения на основании второго неравенства (13.17) будет сходиться ряд а следовательно, и данный ряд
Пример №7
Исследовать сходимость обобщенного гармонического ряда
Решение:
Пусть Функция при (а значит, и при ) положительная и невозрастающая (точнее убывающая). Поэтому сходимость ряда равносильна сходимости несобственного интеграла Имеем Если
Если то
Итак, данный ряд сходится при и расходится при
Ряды с членами произвольного знака
Знакочередующиеся ряды. Под знакочередующимся рядом понимается ряд, в котором члены попеременно то положительны, то отрицательны
Теорема (признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине и предел его общего члена при равен нулю, т.е.то ряд сходится, а его сумма не превосходит первого члена: .
Рассмотрим последовательность частичных сумм четного числа членов при
Эта последовательность возрастающая (так как с ростом увеличивается число положительных слагаемых в скобках) и ограниченная (это видно из того, что можно представить в виде
откуда следует, что ). На основании признака существования предела (см. § 6.5) последовательность имеет предел
Попутно заметим, что, переходя к пределу в неравенстве получим, что
Теперь рассмотрим последовательность частичных сумм нечетного числа членов при Очевидно, что поэтому, учитывая необходимый признак сходимости ряда,
Итак, при любом (четном или нечетном) т.е. ряд сходится. Рис. 13.1 иллюстрирует сходимость к числу слева при четном и справа при нечетном . ■
Из рис. 13.1 вытекает еще одна оценка для суммы сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница: при любом
Пример №8
Исследовать сходимость ряда
Решение:
Так как члены знакочередующегося ряда убывают по абсолютной величине и предел общего члена то по признаку Лейбница ряд сходится. ►
Замечание. В теореме Лейбница существенно не только условие но и условие Так, например, для ряда ,
второе условие нарушено и, хотя ряд расходится. Это видно, если данный ряд представить (после попарного сложения его членов) в виде
т.е. «удвоенного» гармонического ряда.
Следствие. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, по абсолютной величине не превышает абсолютной величины первого отброшенного члена.
По формуле (13.9) сумму сходящегося ряда можно представить как сумму членов ряда и суммы -гo остатка ряда, т.е. Полагая приближенно мы допускаем погрешность, равную Так как при четном -й остаток знакочередующегося ряда представляет ряд, удовлетворяющий условиям теоремы Лейбница, то его сумма не превосходит первого члена Так как при нечетном для -го остатка ряда его сумма то, очевидно, что при любом
Пример №9
Какое число членов ряда надо взять, чтобы вычислить его сумму с точностью до 0,001?
Решение:
По условию Учитывая следствие теоремы Лейбница (13.18), запишем более сильное неравенство или откуда и или т.е. необходимо взять не менее 31 члена ряда. ►
Знакопеременные ряды. Пусть знакопеременный ряд (13.1), в котором любой его член может быть как положительным, так и отрицательным.
Теорема (достаточный признак сходимости знакопеременного ряда). Если ряд, составленный из абсолютных величин членов данного ряда (13.1)
сходится, то сходится и данный ряд.
Обозначим суммы абсолютных величин членов данного ряда (13.1), входящих в него со знаком «плюс» и «минус».
Тогда частичная сумма данного ряда а ряда, составленного из абсолютных величин его членов, По условию ряд (13.19) сходится, следовательно, существует конечный предел
Последовательности являются возрастающими (так как с увеличением увеличиваются ) и ограниченными
значит, существуют пределы и и соответственно предел частичной суммы данного ряда
т.е. ряд (13.1) сходится. ■
Следует отметить, что обратное утверждение неверно. Ряд (13.19) может расходиться, а ряд (13.1) сходиться. Например, ряд сходится по признаку Лейбница, а ряд из абсолютных величин его членов (гармонический ряд) расходится.
Поэтому введем следующие определения.
Определение 1. Ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов.
Определение 2. Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.
Таким образом, рассмотренный выше ряд — абсолютно сходящийся, а ряд условно сходящимся.
Грубо говоря, различие между абсолютно сходящимися и условно сходящимися рядами заключается в следующем: абсолютно сходящиеся ряды сходятся в основном в силу того, что их члены быстро убывают, а условно сходящиеся — в результате того, что положительные и отрицательные слагаемые уничтожают друг друга.
Свойства абсолютно и условно сходящихся рядов существенно отличаются. Абсолютно сходящиеся ряды по своим свойствам напоминают конечные суммы, их можно складывать, перемножать, переставлять местами члены ряда.
Условно сходящиеся ряды такими свойствами не обладают.
Возьмем, например, ряд Переставим члены местами и сгруппируем их следующим образом:
Перепишем ряд в виде:
т.е. от перестановки членов ряда сумма его уменьшилась в 2 раза.
Можно показать (теорема Римана), что от перестановки членов условно сходящегося ряда можно получить ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.
Пример №10
Найти сумму ряда доказав его сходимость.
Решение:
Очевидно, что общий член ряда
Представим сумму членов ряда в виде Так как при последовательность имеет конечный предел, то ряд сходится, и его сумма
Пример №11
Исследовать сходимость ряда:
Решение:
а) Проверим выполнение необходимого признака сходимости, найдя предел общего члена:
Для вычисления предела отношения двух бесконечно больших функций натурального аргумента правило Лопиталя непосредственно применять нельзя, ибо для таких функций не определено понятие производной. Поэтому применяя теорему о «погружении» дискретного аргумента в непрерывный , получим
следовательно, ряд расходится.
б) Очевидно, что задан ряд с положительными членами, так как ибо аргумент синуса при любом . Так как члены данного ряда меньше членов сходящегося геометрического ряда со знаменателем
(ибо при ), то данный ряд сходится.
в) Представим общий член ряда в виде
Применим предельный признак сравнения, сравнив данный ряд со сходящимся «эталонным» рядом (13.12) при Так как предел отношения общих членов двух рядов
есть конечное число, не равное нулю, то данный ряд, так же как и «эталонный», сходится.
г) Применим признак Даламбера, заметив, что общий член ряда имеет вид
Тогда и т.е. данный ряд сходится.
д) Применим признак Даламбера:
т.е. вопрос о сходимости ряда остается открытым. Проверим выполнение необходимого признака (с этого можно было начать исследование): т.е. необходимый признак выполнен, но вопрос о сходимости ряда по-прежнему не решен.
Применим признак сравнения в более простой предельной форме. Сравним данный ряд, например, с гармоническим.
т.е. ответа о сходимости ряда нет. Аналогичная картина ( или ) наблюдается и при использовании других «эталонных» рядов (см. § 13.3). Применим, наконец, признак сравнения в обычной форме. Сравним данный ряд с тем же гармоническим рядом, у которого отброшен первый член:
Так как члены рассматриваемого ряда больше членов расходящегося гармонического ряда и вообще
что вытекает из очевидного неравенства ), то данный ряд расходится. ►
Пример №12
Исследовать сходимость ряда:
Решение:
а) Предел общего члена ряда так как знаменатель дроби стремится к нулю, а числитель колеблется, принимая значения 1 (при четном ) и —1 (при нечетном ). Следовательно, необходимый признак сходимости не выполнен, и ряд расходится.
б) Так как члены знакочередующегося ряда, начиная со второго, убывают по абсолютной величине —
и предел общего члена (это можно установить, например, с помощью правила Лопиталя), то по признаку Лейбница ряд сходится. Ряд составленный из абсолютных величин членов данного ряда, расходится, так как его члены больше членов расходящегося гармонического ряда, умноженного на Следовательно, данный ряд условно сходящийся.
в) Ряд, составленный из абсолютных величин членов данного ряда, сходится, так как его члены меньше членов сходящегося ряда (13.12) при следовательно, данный ряд сходится и притом абсолютно. ►
Определение ряда и его сходимость
Пусть
бесконечная последовательность чисел.
Определение 27.1.1. Выражение
называется числовым рядом, а элементы последовательности членами ряда.
Поскольку выражение (27.1.2) рассматривается как единое целое, то для задания ряда необходимо задать каждый его член Обычно член ряда задается как некоторая функция от своего номера. Аналитическое выражение этой функции называют общим членом ряда. Например, общим членом ряда геометрической прогрессии является
Припишем теперь определенный смысл выражению (27.1.2), т.е. введем определение.
Определение 27.1.2. Сумма n первых членов ряда (27.1.2) называется n-ой частичной суммой этого ряда.
Ясно, что первая, вторая, третья и т.д. частичные суммы ряда
составляют бесконечную последовательность:
Определение 27.1.3. Ряд (27.1.2) называется сходящимся, если последовательность его частичных сумм имеет конечный предел:
Значение S этого предела называется суммой ряда (27.1.2). Ряд (27.1.2) называется расходящимся, если последовательность его частичных сумм предела не имеет (например, если члены последовательности возрастают по модулю неограниченно).
Содержание теории числовых рядов состоит в установлении сходимости или расходимости тех или иных рядов и в вычислении сумм сходящихся рядов.
В принципе можно доказывать сходимость или расходимость каждого ряда, а также вычислять сумму сходящегося ряда, опираясь непосредственно на определения сходимости и суммы. Для этого в каждом случае составляется аналитическое выражение для n- ой частичной суммы ряда и находится предел этого выражения при возрастании n.
Пример:
Для ряда -я частичная сумма , и предел ее, поэтому этот ряд сходится и его сумма равна 1.
Пример:
Последовательность вида
называется геометрической прогрессией, где а – первый член, а
q – её знаменатель; выражение называется общим членом геометрической прогрессии.
Числовой ряд члены которого являются членами геометрической прогрессии, называется геометрическим рядом со знаменателем q .
Если в прогрессии (27.1.3) имеется только конечное число членов, то прогрессия называется конечной; в противном случае, если за каждым членом прогрессии следует ещё хотя бы один член, то прогрессия называется бесконечной.
В случае конечной прогрессии можно говорить о сумме всех её членов , которую можно назвать n- ой частичной суммой геометрического ряда.
Известно, что при , эта сумма равна . Из определения 27.1.3 следует, что суммой геометрического ряда
называется предел её частичных сумм при неограниченном возрастании n:
Так как а и q от n не зависят, то последнюю формулу представим в виде:
Если то предел равен нулю, и мы получаем
, т.е. при прогрессия (27.1.5) сходится. Следователь-
но, сходится и ряд (27.1.4). Если же , то предел справа в равенстве (27.1.5) не существует и, следовательно, ряд (27.1.4) расходится.
Итак, мы привели примеры, в которых исследование сходимости рядов проводили, применяя определение 27.1.3., т.е. вычисляли частичные суммы и находили предел их последовательностей. Ясно, что в общем случае, составление аналитического выражения для n- ой частичной суммы трудный вопрос. Кроме того, при исследовании рядов нередко значения сумм не представляют интереса, т.к. нужно определить только сходится ряд или нет. Поэтому представляют интерес методы анализа рядов, когда не требуется вычислять суммы рядов. Далее перейдем к изложению таких методов.
Свойства сходящихся рядов
Пусть дан ряд
Определение 27.2.1. Ряд называется n-м остатком ряда (27.2.1.)
Очевидно, m- я частичная суммаn -го остатка ряда равна разности частичных сумм самого ряда. Кроме того, , откуда, переходя к пределу по m при , получим
Предел слева есть сумма исходного ряда, а предел справа-сумма его n – го остатка: . Ясно, что из существования предела в левой части равенства следует существование другого предела в правой части и наоборот. Поэтому если сходится один из остатков ряда, то сходится и сам ряд. Точно так же из сходимости ряда следует сходимость каждого его остатка. Кроме того, справедлива следующая теорема.
Теорема 27.2.1. Если ряд (27.2.1) сходится, то сумма его n-го остатка с ростом n стремится к нулю.
Доказательство. Выше показано, что . Так как это равенство справедливо для любого n, то мы можем перейти в нем по n к пределу:
Но для сходящегося ряда , поэтому
Рассмотрим теперь свойства сходящихся рядов, которые позволяют действовать с ними, как с конечными суммами.
Теорема 27.2.2. Если ряд
имеет сумму S, то ряд
полученный из предыдущего умножением всех членов на одно и тоже число a, имеет сумму aS.
Доказательство. Обозначим последовательность частичных сумм ряда (27.2.2) Тогда последовательность частичных сумм ряда (27.2.3) очевидно будет иметь вид:. И поэтому . Так как ряд
(27.2.2) сходится, то существует и, следовательно, существует предел ив силу этого же равенства он равен aS.
Теорема 27.2.3. Если ряды
и сходятся, а их суммы соответственно равны, то и рядназываемый суммой данных рядов, также сходится и его сумма равна сумме сумм данных рядов , другими словами, сходящиеся ряды можно почленно складывать.
Доказательство. Пусть и
. Тогда n -ая частичная сумма ряда
будет равна и так как существуют, то
существует и равен, т.е.
Следствие. Разность двух сходящихся рядов-ряд сходящийся.
Теорема 27.2.4. Свойства сходимости или расходимости ря-,ki не нарушается, если в ряде исключить или приписать к нему любое конечное число членов.
Доказательство. Пусть два ряда, причём второй получается из первого исключением первых двух членов. Тогда, если – n-я частичная сумма первого ряда, а – n-я частичная сумма второго ряда, то, очевидно, что
Из этого равенства следует, что, если имеет предел, то также имеет предел. Ясно, что эти пределы будут различны, а, именно Если же не имеет предела, то также не имеет предела.
Теорема 27.2.5. (Необходимое условие сходимости ряда). Если ряд сходится, то его общий член стремится к нулю, т.е.
Доказательство. Пусть ряд сходится и его сумма равна S. Из определения n -ой частичной суммы следует, что общий член ряда можно представить в виде разности и-ой частичной суммы и (n-1)-ой частичной суммы: . Переходя к пределу в этом равенстве, получим утверждение теоремы:
Отметим, что условие (27.2.4) не является достаточным, т.е. общий член может стремиться к нулю, но ряд все же может быть расходящимся. Но если общий член ряда не стремится к нулю, то ряд будет расходящийся.
- Заказать решение задач по высшей математике
Пример №13
Исследуем на сходимость гармонический ряд
Решение:
Вначале находим предел общего члена: . Нетрудно, однако, показать, что сумма n первых членов гармонического ряда беспредельно возрастает. Для этого сгруппируем слагаемые, начиная со второго, в группы из 1, 2, 4, 8,… членов: так что в k – ой группе будет членов. Fx л и в каждой групп заменим все члены последним, то получим ряд:
сумма n первых членов которого, равна, очевидно, стремится к :
Но сумма n первых членов заданного гармонического ряда больше суммы n первых членов преобразованного ряда, т.е. . Тогда , что означает, что следовательно, гармонический ряд расходится.
Пример №14
Найти формулу для общего члена ряда
считая, что каждый его последующий член определяется по тому же закону, по которому образованы записанные члены, и найти ею сумму.
Решение:
Каждый член данного ряда представляет собой дробь, числитель которой равен 1, а знаменатель равен произведению двух последовательных натуральных чисел . Следовательно, искомая формула общего члена ряда имеет вид:
Для вычисления суммы ряда составим n -ую частичную сумму:
Представим выражение для общего члена в виде разности:
тогда
Переходя к пределу, получаем сумму ряда:
Пример №15
Исследовать сходимость ряда
Решение:
Общий член ряда определяется формулой
Вычислим предел модуля общего члена:
Так как предел общего члена не стремится к нулю, то ряд расходится.
Признаки сходимости числовых знакоположительных рядов
Рассмотрим числовые ряды с положительными членами. Существует много приёмов, называемых признаками сходимости, позволяющих установить сходимость или расходимость числовых рядов Так мы познакомились с методом исследования сходимости ряда на основании выяснения имеет ли предел последовательность частичных сумм. Стремление к нулю члена ряда по мерс роста его номера также является признаком сходимости, хотя только необходимым. Ниже мы приведём ряд достаточных признаков сходимости.
Признаки сравнения
Теорема 27.3.1. (I признак сравнения). Пусть
и
два ряда, причём члены первого ряда, начиная с некоторого номера k , не превосходят соответствующих членов второго
Тогда из сходимости ряда (27.3.2) следует сходимость ряда (27.3.1), а из расходимости ряда (27.3.1) следует расходимость ряда (27.3.2).
Доказательство. Так как исключение конечного числа членов ряда не влияет на его сходимость (теорема 27.2.4.), то достаточно доказать теорему для случая когда неравенства (27.3.3) выполняются для k = 1.
Пусть последовательности частичных сумм рядов (27.3.1) и (27.3.2) соответственно. Это возрастающие последовательности, так как члены рядов неотрицательные числа. В силу неравенств (27.3.3), имеем
Пусть ряд (27.3.2) сходится. Тогда сходится соответствующая последовательность частичных сумм ряда (27.3.2), т.е.
Поскольку выполняются неравенства (27.3.3), то члены последовательности частичных сумм ряда (27.3.1) удовлетворяют неравенству для всех т. Следовательно, последовательность возрастает и ограничена:
Поэтому, в силу признака Больцано-Всйсрштраса, последовательность частичных сумм ряда (27.3.1) сходится. По определению 27.1.3, сходится и ряд (27.3.1).
Пусть теперь ряд (27.3.1) расходится. Это значит, что его частичные суммы неограниченно возрастают. Но тогда, в силу неравенств (27.3.3), неограниченно возрастают и частичные суммы ряда (27.3.2), что означает, что этот ряд расходится.
Пример №16
Пусть дан ряд
Исследуем его сходимость.
Решение:
Необходимый признак выполняется, т.е.
Для исследования сходимости заданного ряда применим 1 признак
сравнения (теорему 27.3.1). Сравним заданный рядс гармоничсским рядом . Так как выполняются неравенствато ряд расходится, потому что расходится гармонический ряд.
Пример №17
Исследовать сходимость ряда
Решение:
Очевидно, что предел общего члена при возрастании т стремится к нулю.
Сравним данный ряд, общий член которого с гармоническим рядом который сходится, так как
Поскольку для т.е. выполняются неравенства (27.3.3), то на основании первого признака сравнения заключаем, что исследуемый ряд также сходится.
Теорема 27.3.2. (II признак сравнения). Если для рядов и отношение общих членов стремится к некоторому положительному и конечному пределу:
то ряды сходятся или расходятся одновременно.
Доказательство. Предельное соотношение (27.3.4), в силу определения означает, что, начиная с некоторою номера N ,
выполняется неравенство. Это неравенство равносильно неравенству:
Обозначив , неравенство (27.3.5) запишется в виде:
Предположим, что ряд сходится. Поскольку выполняется неравенство то, из первого признака сравнения, следует сходимость ряда в силу теоремы 27.2.2, и ряда . Если же ряд расходится, то расходится и ряд по теореме 27.2.2. Тогда, поскольку выполняется неравенство , расходится и ряд в силу I признака сравнения. Аналогично рассуждая можно показать, что из сходимости ряда следует сходимость ряда по I признаку сравнения с использованием теоремы 27.2.2. 13
Последовательность называется сходящейся, если существует такое вещественное число а , что для любого положительного числа найдется номер такой, что для всех выполняется неравенство
Пример №18
Исследовать сходимость ряда
Решение:
Очевидно, что . Поэтому, воспользуемся признаком сравнения, сравнив заданный ряд с гармоническим. Найдем предел отношения общих членов исследуемого ряда и гармонического:
Теорема 27.3.2 выполняется, поэтому из расходимости гармонического ряда следует расходимость исследуемого ряда.
Признаки Д’Аламбсра и Коши
Иногда вместо признаков сравнения оказываются полезными некоторые специальные признаки сходимости ряда. Отметим среди них признаки Д’Аламбсра и Коши, непосредственно получающиеся из признаков сравнения, если в качестве ряда сравнения взять соответствующим образом выбранную геометрическую прогрессию.
Теорема 27.3.3. (признак Д’Аламбера). Если для ряда
с положительными членами существует такой номер , начиная с которого, т.е. при , отношение последующего члена к предыдущему удовлетворяет неравенству: , то ряд (27.3.6) сходится. Если же существует номер , начиная с которого, т.е. при отношение последующего члена к предыдущему больше единицы: то ряд (27.3.6) расходится.
Доказательство. Пусть 0 q 1 и пусть существует такой номер , что при . выполняется неравенство:Перепишем это неравенство в виде: . Тогда, начиная с номера буду последовательно выполнятся неравенства:
Ряд , являясь суммой член геометрической прогрессии со знаменателем , сходите Из неравенств (27.3.7) следует, что по I признаку сравнения, сходится и ряд значит и весь ряд (27.3.6
т.к. на сходимость ряда не влияет исключение конечного числа е^ членов.
Если же существует такое , что выполняется неравенств для всех , то, переписав его в виде , можно для всех , последовательно записать следующие неравенство
Так как по предположению , то n-ный член ряда будучи ограниченным снизу положительной постоянной не стремится к нулю. Следовательно, не выполняется необходимое условие сходимости ряда, и поэтому ряд (27.3.6) расходится.
Следствие 1. Пусть существует предел отношения последующего члена ряда (27.3.6) к предыдущему равный r :
Тогда, если то ряд (27.3.6) сходится: если же то ряд (21.3.6) расходится.
Доказательство. Воспользовавшись определением предела, для фиксированного , можно утверждать, что начиная с некоторого номера , для всех , все отношения будут отличатся от значения предела r на число
Рассмотрим правую часть двойного неравенства: . Тогда сославшись на доказанную теорему 27.3.3, в случае если r 1, получаем сходимость ряда. Рассматривая левую часть неравенства
, получаем расходимость ряда приr > 1. Следствие доказано.
Пример №19
Рассмотрим ряд , сходимость которого исследуем, используя признак Даламбера, т.е. следствие 1.
Решение:
Выпишем вначале значения
Затем вычислим предел отношения последующего члена ряда к предыдущему:
Так как этот предел меньше 1, то, в силу следствия 1, данный ряд сходится.
Заметим, что при исследовании сходимости ряда обычно (как правило, но не всегда) применяют следствие 1 из теоремы 27.3.3.
Теорема 27.3.4. (признак Kouiu). Если для ряда
с положительными членами, начиная с некоторого номера . выполняется неравенство для всех , то ряд (27.3.6) сходится. Если же существует такой номер , начиная с которого выполняется неравенство для всех , то данный ряд расходится.
Доказательство. Пусть существует такой номер , что при всех выполняется неравенство Тогда, возводя обе части неравенства в степень n, получим . Так как сходится геометрический ряд , то на основании признака сравнения, получаем, что ряд сходится. Если же существует номер , такой что для всех , то ясно, что , и значит (не выполняется необходимый признак сходимости), поэтому ряд расходится.
Следствие 2. Пусть существует предел корня n -ой степени из n-го члена ряда (27.3.9):
Тогда, если , то ряд (27.3.9) сходится, если же, то ряд (27.3.9) расходится.
Доказательство. Из определения предела следует, что для фиксированного существует номер , начиная с которого выполняется неравенство Это неравенство равносильно неравенству. Из правой части неравенства следует, поскольку сколь угодно малое число. Тогда из теоремы 27.3.4, получаем сходимость ряда (27.3.9). Рассматривая левую часть неравенства, получим и если, то из теоремы 27.3.4 следует расходимость ряда (27.3.9). Следствие доказано.
Пример №20
Рассмотрим ряд , сходимость которого исследуем по признаку Коши, т.е. применим следствие 2.
Решение:
Выпишем значение n-го члена ряда н вычислим предел корня n -ой степени:
Так как этот предел меньше 1, то, согласно следствию 2, ряд сходится.
Замечание. Если пределы (27.3.8) и (27.3.10) равны 1, то для исследования сходимости ряда (27.3.9) нужно применять другие признаки, с которыми можно ознакомиться в [3].
Интегральный признак сходимости
Рассмотрим признак, достоинство которого состоит в исключительно высокой его чувствительности. Этим признаком проводится исследование сходимости там, где сформулированные признаки Д’Аламбсра и Коши «не работают».
Каждый член числового ряда можно рассматривать как значение функции f от его номера:
Эта функция определена пока только для целых положительных значений аргумента. Поэтому, доопределив значение функции f для всех нецелых значений аргумента, больших единицы, мы сможем, говорить о функции f(x), принимающей значения для любого и при х = n, равные членам числового ряда. Теорема 27.3.5. Пусть дан ряд
члены которого положительны и не возрастают Если функция f, определённая для всех , неотрицательна и монотонно убывает, то ряд (27.3.11) сходится или расходится тогда и только тогда, когда сходится или
расходится интеграл
Доказательство. Пусть члены ряда (27.3.11) удовлетворяют условиям теоремы. Изобразим их графически, откладывая по оси Ох независимую переменную, а по оси Оу – соответствующие значения .
При таком графическом изображении сумма n первых членов ряда представляет сумму площадей описанных прямоугольников, которая заключает внутри себя площадь, ограниченной кривой , осью Ох и прямыми и поэтому будет выполняться неравенство:
С другой стороны, криволинейная трапеция содержит сумму площадей вписанных прямоугольников, которая равна Поэтому, выполняется неравенство:
Из (27.3.12) и (27.3.13) следует неравенство:
Предположим, что несобственный интеграл сходится. Это означает, что является конечным числом. Тогда из неравенства (27.3.14) следует, что последовательность частичных сумм возрастающая и ограничена при всех n. Тогда в силу теоремы: “возрастающая последовательность, ограниченная сверху, сходится”, числовой ряд (27.3.11) сходится. Если же несобствснный интеграл расходится, т.е. , то из неравенства (27.3.12) следует, что последовательность частичных сумм не ограничена. Тогда в силу определения 27.1.3 ряд будет расходящимся.
Пример №21
Исследовать сходимость ряда
Решение:
Применим интегральный признак. Рассмотрим функцию которая положительна и убывает при х> 2, и исследуем сходимость несобственного интеграла:
Так как несобственный интеграл расходится, то расходится и ряд в силу инте1рального признака Коши.
Замечание. Исследовать сходимость данного ряда при помощи следствий 1 и 2 не представляется возможным, так как соответствующие пределы равны 1.
Пример №22
Исследовать сходимость ряда Дирихле
Решение:
Если , то общий член ряда не стремится к нулю. На основании следствия из необходимого признака сходимости, следует расходимость ряда Дирихле при .
Пусть а > 0, тогда необходимый признак, очевидно, выполняется. Применим интегральный признак Коши. Введем функцию
, которая положительная и не возрастает при и исследуем сходимость несобственного интеграла
Вычислим определенный интеграл, записанный под знаком предела:
Если существует и равен а при указанный предел не существует.
Таким образом, при a>1 несобственный интеграл сходится, следовательно, сходится и ряд Дирихле, а при несобственный интеграл расходится, следовательно, расходится и ряд Дирихле.
- Знакопеременные ряды
- Степенные ряды
- Элементы матричного анализа
- Уравнение линии
- Несобственные интегралы
- Дифференциальные уравнения первого порядка
- Линейные дифференциальные уравнения второго порядка
- Системы дифференциальных уравнений
Давно не было заданий на комбинаторику и основы теории чисел. Поэтому сегодня мы разберём задание №4915 из банка тестовых заданий для ЕГЭ ФИПИ. Это задание «высокого» уровня сложности.
Напоминаю, для подписчиков предусмотрена возможность получения решений в «вордовском» .DOCX формате со стандартными формулами и рисунками.
Кому требуется, делайте запросы в комментариях – я предоставлю файл.
Общий список заданий, разобранных на канале, приведён здесь.
Задание
Про возрастающую последовательность из десяти различных натуральных чисел известно, что каждый член последовательности больше предыдущего не более чем на 10. Среднее арифметическое пяти первых членов равно 10, а среднее арифметическое шести последних членов равно 40.
- A. Приведите пример такой последовательности, для которой среднее арифметическое четырёх первых членов равно 8,5.
- B. Может ли в такой последовательности среднее арифметическое четырёх первых членов быть равно 9,5?
- C. Найдите наибольшее возможное значение среднего арифметического всех членов такой последовательности.
Рассуждаем
При решении подобных задач со средними, удобнее работать не с дробными средними величинами, а с суммами. Таким образом, сперва надо переформулировать условие задачи, чтобы в нем речь шла не о средних, а о суммах соответствующих величин.
Далее, следует формализовать условие задачи. Поскольку в условии задаются границы разности между соседними членами, то удобно будет рассматривать только первый член, а остальные члены – выразить через этот первый член (через a) и разницы (через d):
Кроме того, важное значение в данном случае имеет пятый член – поскольку он входит в оба условия задания. Следовательно, оба условия будет удобно выразить как через первый член и разницы, так и через пятый.
Следующим шагом из исходных условий надо будет получить границы для первого и пятого членов, не забывая, что их значения должны быть натуральными.
После этого можно непосредственно переходить к ответам на вопросы:
- Для первого вопроса выразим сумму четырёх чисел, и условие, которое должно выполняться для этих четырёх чисел, чтобы первые пять чисел были в сумме равны заданному значению. Здесь придётся использовать подбор значений, однако, поскольку возможных значений немного – подбор будет несложным.
- Для ответа на второй вопрос необходимо оценить значение пятого члена, какое оно должно быть, исходя из вопроса. Если это значение входит в границы, полученные вначале – то ответ будет положительным. Если нет – отрицательным.
- Наконец, для ответа на третий вопрос необходимо выразить общую сумму ряда через суммы первых пяти и последних шести членов. В эту формулу также войдёт и пятый член, общий для обоих сумм. Исходя из этой формулы можно будет получить наибольшее значение суммы.
План решения
- Формализуем условие задания и переформулируем его так, чтобы ограничения касались не средних, а сумм.
- Из формализованных условий найдём возможные границы первого и пятого членов последовательности.
- Выведем формулу суммы четырёх первых членов и условие, которое должно выполняться при этом.
- Пользуясь формулой и условием, подберём первые четыре члена последовательности, которые будут ответом на первый вопрос.
- Для ответа на второй вопрос найдём необходимое значение пятого члена и проверим, возможно ли такое значение исходя из найденных границ.
- Для ответа на третий вопрос выразим общую сумму последовательности через суммы первых пяти и последних шести членов. Из полученной формулы найдём условие, при которых она будет максимальной.
Решение
Формализуем условие задания. Последовательность имеет вид:
Переформулируем условие задачи для сумм:
Надо привести пример такой последовательности, у которой сумма первых четырёх членов равна 34; надо выяснить, может ли являться сумма этих четырёх членов 38; надо найти наибольшую сумму всех членов.
Условия о двух средних выразим в виде сумм:
Пятый член входит в оба условия. Поэтому первое равенство полезно переписать, чтобы туда входил пятый член:
А последнем равенстве, наоборот, полезно выразить пятый член:
Теперь получим границы для первого члена. Подставив в условия минимальные разницы d получим максимальное значение:
Оба условия должны выполняться одновременно, следовательно (не забываем, что значение может быть только натуральным):
Найдём минимальное значение первого члена:
Учтём, что значение может быть только натуральным, в итоге получаем границы первого члена:
Теперь получим границы для пятого члена. Для максимальной границы в формулы условий подставляем минимальные остальные значения:
Учтём, что все значения натуральные, и окончательно получаем:
Для минимальной границы подставляем наибольшие остальные значения:
Оба условия должны выполняться одновременно. Учтём максимальную границу, полученную выше, натуральные значения и окончательно имеем:
Находим ответ на первый вопрос.
Сумма первых четырёх членов равна:
Подставим эту сумму в выражение для суммы пяти первых членов:
Переносим сумму влево, и получим условие, которое должно выполняться:
То есть, в первом вопросе требуется предложить последовательность, сумма четырёх первых элементов которой равна 34:
При условии, что:
Подберём возможные значения. Предположим, что три первых d равны единицам:
Откуда получим:
Проверяем условие:
Откуда:
Условие выполнено, следовательно, ответ А (приведём и пятый член):
Во втором вопросе требуется выяснить, возможна ли у последовательности четырёх членов сумма 38.
При такой сумме четырёх первых членов получается, что пятый член должен быть равен 12 (сумма пяти членов 50). Однако, как было установлено выше, это значение выходит за допустимые границы.
Следовательно, ответ В: Такого быть не может.
Для ответа на третий вопрос учтём, что у нас фиксированы суммы первых пяти и последних шести членов. Пересечением этих множеств является пятый член:
То есть, наибольшей сумме отвечает такая последовательность, где пятый член минимален. Выше было найдено, что минимальное значение 15. Следовательно, ответ С: максимальная сумма:
Такой сумме отвечает, например, последовательность: