Найти значение частного это как

Вся математика состоит из арифметических действий. Все прекрасно знают их: сложение, вычитание, умножение, деление. Где же здесь место частному?

источник: Яндекс
источник: Яндекс

Ответ прост. Результатом сложения будет сумма, вычитания – разность, умножения – произведение, а деления – наше частное. Говоря другими словами:

Частное – это результат, полученный в результате деления одного числа на другое.

Число, которое делят – называется делимое, а число, на которое делят – делитель. Деление в более понятном варианте – это вычисление, сколько в делимом содержится значений делителя.

источник: Яндекс
источник: Яндекс

Например, нам нужно узнать, сколько бутылок по 2 литра нам понадобится, чтобы разлить 10 литров воды по ним. Мы считаем, сколько раз в 10 литрах содержится 2 литра, то есть делим 10 на 2 и получаем число 5 (частное). Итого, нам понадобится 5 бутылок.

10:2=5

Или можно обозначить деление как многократное вычитание. Возьмем тот же самый пример. Будем вычитать из 10 число 2, пока не останется ноль, а потом посчитаем, сколько раз мы вычли двойку, получится 5.

10-2=8 (1)

8-2=6 (2)

6-2=4 (3)

4-2=2 (4)

2-2=0 (5)

Реклама
Реклама

Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽. Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф

Свойства частного

  • Основное свойство гласит, что если мы умножим или разделим и делимое и делитель на одно и то же число (n), то значение частного не поменяется.

(a x n)/(b x n)=a/b

Проверяем: (10×3)/(5×3)=30/15=2, то же самое 10/5=2

(a/n)/(b/n)=a/n

Проверяем^ (20/2)/(10/2)=10/5=2, то же самое 20/10=2

  • Если мы возьмем некое число и разделим его само на себя, то в результате частное будет равно единице.

a/a=1

  • Если некое число разделить на единицу, то его частное будет равно этому же числу, то есть делимому.

a/1=a

  • При умножении или делении делимого на некоторое число (n), частное увеличится или уменьшится на это же число соответственно.

(a x n)/b=c x n

(a/n)/b=c/n

Реклама
Реклама

Напоминаем про сервис грант-на-вуз.рф. Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-вуз.рф!

  • При умножении или делении делителя на некоторое число (n), частное увеличится или уменьшится на это же число соответственно.

a/(b x n)=c x n

a/(b/n)=c/n

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:

https://zen.yandex.ru/fgbnuac — последние научные достижения и лучшие образовательные практики.

Хорошего дня и не болейте.

Что такое частное чисел

Определение

Частное — это результат процесса деления. Делением называется такая операция, которая обратна умножению, то есть показывает, сколько одинаковых чисел способно содержаться в другом.

Буквенный вид этого действия выглядит следующим образом: a: b = c, где:

  • a – это делимое (число, которое делят)
  • b – это делитель (число, которым делят)
  • с – это частное (результирующее число деления)
  • : — арифметический знак, с помощью которого обозначается деление

Важно! Число 0 никогда не может быть делителем

Нахождение значения частного чисел

Пример:

12 : 3 = 4 (в числе 12 4 раза содержится по 3)

15 : 5 = 3 (в числе 15 5 раз содержится по 5)

Нужно знать, что правильность определения частного от деления числа всегда можно проверить путем перемножения его на делитель, либо делимое поделить на частное и получить делитель.

Например:

20 : 4 = 5

Перемножим частное двух чисел на делитель и получим делимое:

4 * 5 = 20

Разделим делимое на частное и получим делитель:

20 : 5 = 4

Таким образом, мы доказали правильность определения частного.

Что такое частное значение чисел с остатком?

Иногда при делении от делимого остается остаток, который меньше делителя, но более нуля. Приведем выражение частного чисел:

8 : 3 = 2 (ост. 2)

Это значит, что делимое 8 поделилось 2 раза по 3 и остался остаток 2, который меньше трех, но больше нуля.

Таким образом: 0 < ост. <делитель

Основные понятия о частном суммы и разности чисел

Что такое частное суммы чисел? 

Определение

Частное от деления суммы чисел – это когда делимое либо делитель выступает в роли суммы двух слагаемых.

Общий вид: (a+b):(c+d), где сумма чисел (a+b) – делимое, а сумма (c+d) – делитель

Пример: (12+3):(3+2)=3

Важно, в подобных примерах последовательность решения определяется следующим образом: сначала решаются выражения в скобочках, потом выражения со знаками деления или умножения, после – вычитание или сложение.

Нет времени решать самому?

Наши эксперты помогут!

Поговорим о частном разности чисел

Аналогично, как и с частностью суммы, только в роли делимого или делителя выступает значение разности: (a-b):(c-d), где разность чисел (a-b) – делимое, а разность (c-d) – делитель

Пример нахождения разности чисел: (12-3):(5-2)=3, где

3 и 2 — это вычитаемое частное чисел

Также в математике находят сумму частного произведения чисел:

(12+3)*(1+2)=45

И произведение частного чисел:

(12*5):(5*2)=6

Основные правила при делении

  1. При делении одного числа на единицу – получаем в ответ делимое: 6 : 1 = 6
  2. При делении одного числа на само себя – получаем в ответ 1: 7 : 7 = 1
  3. Если произведение поделить на один из множителей, то получится другой множитель:

6*3=18, 18:6=3, 18:3=6.

При делении на десятки (10, 100…) у частной, запятой с левой стороны отделяется столько цифр, сколько нулей в делителе: 34:10=3,4, 34:100=0,34, 34:1000=0,034.

Содержание материала

  1. Определение частного чисел (деление)
  2. Видео
  3. Неполное частное
  4. Как найти частное чисел
  5. Проверка деления умножением
  6. Увеличение или уменьшение делимого
  7. Нахождение значения частного чисел
  8. Деление с остатком

Определение частного чисел (деление)

Частное чисел — это результат получаемый при определении количества содержания одного числа в другом. Проще говоря это обычное деление. При этом общепринятые оперируемые понятия для частного это делимое, делитель и само частное — результат.

 

Пример. Найти частное чисел:

1) 20:2=10;

2) 35:7=5.

Ответ: 20:2=10 и  35:7=5.

Это был самый простой пример. Все самое интересное впереди! Проблемы с делением начинаются тогда, когда числа становятся большими и выходят за рамки таблицы умножения. Здесь приходится делить большое число по определенному правилу. Такое деление еще называется деление в столбик. 

Пример. Найти частное чисел:

1) 894:3=298

-894| 3__ 6    |298-29  27— 24  24    0

Ответ: 894:3=298

Видео

Неполное частное

Неполное частное – результат, который получился после деления с остатком.

Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.

Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.

Например, 17 не делится без остатка на 5.

Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.

Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.

Как найти частное чисел

Пришли в цирк трое ребят: Вася, Коля и Оля. На входе их встречал клоун Бим, который дарил детям шарики. У него в руках было 6 шариков, но дарил он их за отгадки. Клоун спросил у ребят:

— Мне надо подарить вам шарики, какое математическое действие я буду применять?

— Деление! — быстро ответил Коля. — Ты же будешь делить шарики между нами.

Клоун хитро прищурился:

 — А как называются члены деления?

 — Мы недавно это изучали! — воскликнула Оля. — Всё количество шариков, которое ты будешь делить, называется делимое. У тебя сейчас 6 шариков, значит здесь делимое 6!

— А то, на сколько ребят ты их разделишь, называется делитель, — вмешался Вася. — Нас трое ребят, значит делитель 3!

Коля продолжил:

 — У каждого из нас будет часть шариков, и результат от деления называется частным.

— Какое же здесь будет частное? — спрашивает Бим.

Два! — не сговариваясь, хором ответили ребята.

 — Правильно, каждому из вас достанется по два шарика, это и есть частное.

Ребята ответили на все вопросы Бима, и каждый получил по два шарика — как результат деления:

6 (делимое) : 3 (делитель) = 2 (частное).

Запишем цифрами:

6:3=2

Делимое Делитель Частное
6 3 2

В этом выражении 6 (делимое) стоит самым первым, 3 (делитель) — на втором месте. А частное (2) — после знака равенства справа.

Итак, частное — это число, которое получается в результате деления делимого на делитель.

Проверка деления умножением

— Я что-то не пойму. Это уже умножение, а не деление! — говорит Бим. — Выходит, что деление — действие обратное умножению. То есть, мы можем проверить деление умножением?

— Да, — ответил Бом.

Деление — действие, обратное умножению. Для того чтобы проверить деление, надо провести умножение.

Центр образовательных технологий Advance 

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно. 

Изложенное правило имеет такой вид:

Приведём пример:

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

(12∗3) /2 = 6∗3 — увеличили делимое на 3, равенство верное: 36 / 2 = 18;

(12 / 3) / 2 = 6 / 3 — уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Нахождение значения частного чисел

Пример:

12 : 3 = 4 (в числе 12 4 раза содержится по 3)

15 : 5 = 3 (в числе 15 5 раз содержится по 5)

Нужно знать, что правильность определения частного от деления числа всегда можно проверить путем перемножения его на делитель, либо делимое поделить на частное и получить делитель.

Например:

20 : 4 = 5

Перемножим частное двух чисел на делитель и получим делимое:

4 * 5 = 20

Разделим делимое на частное и получим делитель:

20 : 5 = 4

Таким образом, мы доказали правильность определения частного.

Деление с остатком

Деление с остатком есть отыскание наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Искомое число называется неполным частным. Разность между делимым и произведением делителя на неполное частное называется остатком. Он всегда меньше делителя.

19 не делится нацело на 5.Числа 1, 2, 3 в произведение с 5 дают 5, 10, 15,не превосходящие делимое 19,но уже 4 дает в произведении с 5 число 20, большее, чем 19.Поэтому неполное частное есть 3.Разность между 19 и произведением 3 · 5 = 15 есть 1915 = 4;поэтому остаток есть 4.

Теги

Содержание

  1. Частное в математике — определение, свойства и формула
  2. Основное свойство частного
  3. Увеличение или уменьшение делимого
  4. Увеличение или уменьшение делителя
  5. Что значит найти значение частного чисел
  6. Что такое частное чисел (онлайн калькулятор на деление)
  7. Определение частного чисел (деление)
  8. Как делить столбиком (о правилах деления столбиком)
  9. Деление рациональных дробей
  10. Что такое частное в математике?
  11. Деление
  12. Наглядные примеры
  13. Проверка
  14. Полное и неполное частное
  15. Частное чисел

Частное в математике — определение, свойства и формула

Математика – царица наук. Она хоть и сложна, и многие боятся некоторых запутанных формул и вычислений, но все они состоят из простых арифметических действий сложения, вычитания, умножения и деления.

Производные операции от этих действий называются суммой, разностью, произведением и частным. Что такое частное в математике и каковы его главные свойства – будет подробно рассказано далее.

Основное свойство частного

Деление – это арифметическая операция, обратная умножению. С ее помощью можно просто узнать, сколько в первом числе содержится значений второго.

По аналогии с умножением, которое способно заменить собой многократное сложение, дробление способно заменить многократное вычитание.

Например, необходимо разделить 10 на 2. Это означает, что требуется узнать, сколько раз число 2 содержится в 10. Делая это вычитанием можно получить следующее:

10 — 2 — 2 — 2 — 2 — 2 = 0.

Проводя постепенное вычитание до нуля, можно определить, что двойка содержится в десятке ровно 5 раз и не образует остаток. Сделать это можно было однократно поделив два значения:

Частное чисел – это итог процесса деления одного значения на второе. Пример:

где 28 — делимое;

Одно из важнейших правил деления частного, называемое основным свойством частного, заключается в том, что если делимое и делитель умножить или разделить на одно и то же число, то итог этой операции и, соответственно частное, не изменится:

При делении числа самого на себя результатом всегда будет единица, то есть справедливо равенство:

Справедливо и другое правило: если разделить определенную величину на единицу, то итогом процесса будет сама эта величина, то есть делимое:

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно.

Изложенное правило имеет такой вид:

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

(12∗3) /2 = 6∗3 — увеличили делимое на 3, равенство верное: 36 / 2 = 18;

(12 / 3) / 2 = 6 / 3 — уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Увеличение или уменьшение делителя

Следующее правило звучит так: если увеличить или уменьшить делитель в n раз, то результат деления понизится или повысится в n-нное количество раз:

Для примера требуется взять частное двух значений 54 и 6:

a / b = c и пусть n = 3.

Проведём увеличение и уменьшение делителя:

54 / (6∗3) = 9 / 3 — увеличили делитель в 3 раза, равенство верное: 54 / 18 =3;

54 / (6 / 3) = 9∗3 — уменьшили делитель в 3 раза, получаем равенство: 54 / 2 = 27.

Увеличив делитель в 3 раза, во столько же раз уменьшили частное. Уменьшив делитель в три раза, делитель, напротив, увеличился в три раза.

Проверить эти «законы» можно в любом онлайн калькуляторе или вручную в уме или на бумаге.

Данные правила являются фундаментальными и составляют базу арифметики, с которой начинается математика и остальные области знаний.

Источник

Что значит найти значение частного чисел

Что такое частное чисел (онлайн калькулятор на деление)

Не знаю как вы, но я порой нет нет да и задаюсь вопросом, — что такое частное чисел? . вот в голове очень хорошо уложилось что такое сумма (произведение), разность (вычитание), произведение (умножение), а вот деление никак не ассоциируется со словом частное! Ведь подобное слово в нашей жизни в большинстве случаев применяется для определения какой-либо особенности, то есть скажем частного из общего, но никак не в качестве слова поделить что-то на что-то.
Ну да ладно, на вопрос о том, что такое частное можно сказать я уже ответил в своих рассуждениях! Сейчас осталось рассказать о частном из всех возможных простых математических операций, то есть о делении, однако уже в ключе математического мышления, с определением что такое частное и примерами деления для разных чисел.

Определение частного чисел (деление)

Частное чисел — это результат получаемый при определении количества содержания одного числа в другом. Проще говоря это обычное деление. При этом общепринятые оперируемые понятия для частного это делимое, делитель и само частное — результат.

Это был самый простой пример. Все самое интересное впереди! Проблемы с делением начинаются тогда, когда числа становятся большими и выходят за рамки таблицы умножения. Здесь приходится делить большое число по определенному правилу. Такое деление еще называется деление в столбик.

Как делить столбиком (о правилах деления столбиком)

1 -При подсчете столбиком необходимо записать делимое слева, а делитель в Т — образной повернутой скобке, смотрите выше. Далее определим сколько знаков будет в частном. Если первое число делимого позволяет поделить на него делитель, то условно принимаем, что с этого числа и начнется исчисление частного. Все остальные цифры делимого будут образовывать по одному знаку. То есть в нашем случае у частного — 8 есть возможность взять из него число 3, а значит она образует первый знак, а все остальные по 1 знаку, — всего 3! Если такой возможности нет, то постепенно слева направо добавляем по одной цифре, пока не сможем взять из набора этих цифр наш делитель. Все остальные знаки дадут как и в описании выше по одному знаку.

2 — Дальше смотрим сколько в нашем первом выделенном числе можно взять делителей. При этом надо брать их максимальное количество в делимом. То есть в 8 это 2 раза по 3, а итого 6. Далее из выделенного числа в нашем случае 8 вычитаем максимально возможное количество делителей, в нашем случае 6 и получаем — 2. Записываем в Т- образную повернутую скобку цифру 2.

3 — К получившемуся числу сносим цифру из цифр делимого выше. Это 9. Если получившееся число позволяет продолжить подбор по правилу выше, то проводим такой подбор. То есть в 29 цифра 3 содержится 9 раз, что равно числу 27. Записываем в Т- образную повернутую скобку цифру 9.
А оставшийся остаток 29-27 образует следующую цифру для оперирования с ней по этому же правилу. То есть 2 и сносим 4. Получается 24. Если вдруг получается так, что из оставшегося числа и снесенного сверху числа невозможно взять делитель ни разу, то в Т- образной повернутой скобке пишем 0 и сносим еще одну цифру, до тех пор пока не сможем взять из получившегося числа как минимум хотя бы 1 раз делитель.

4. Если в конце таких вычислений получается число которое невозможно поделить на делитель и сносить уже нечего, то это было деление с остатком. То есть оставшееся число или цифра, это остаток. Надо понимать, что остаток всегда должен быть меньше делителя. В этом вся соль остатка, он не позволяет взять из себя делитель даже одного раза!

Деление рациональных дробей

Для деления дробей используется следующее правило.

То есть если сказать без глубоких объяснений процессов происходящего, берем дробь, где в числителе произведение числителя делимого и знаменателя делителя, а в знаменателе этой дроби произведение знаменателя делимого и числителя делителя!

Что же, я думаю вы уже утомились воспринимать информацию и теперь вам лучше всего развеяться, поиграв с онлайн калькулятором на деление. А и тут сразу же в голове всплыло еще одно правило, на ноль делить нельзя, так как даже в самом маленьком числе нулей великое множество, то есть бесконечность, а наш курс все же для школьников начальных и средних классов, где о бесконечности знают лишь то, что можно бесконечно играть в компьютер и не более:) А как на деление с нолем отреагирует калькулятор, можете проверить сами.

Побалуемся с делением!?

Цифра которую будем делить (делимое)

Источник

Что такое частное в математике?

Математика – уникальная наука, которая привлекает точностью и последовательностью. Каждый, кто начал изучать эту важную дисциплину, должен разобраться, что такое частное в математике.

Деление

В математике есть четыре простейших операции:

Если мы говорим о частном, то нас будет интересовать такая операция, как деление.

Деление всегда обратно умножению. Это математическая величина, которую мы получим, разделив одно число на другое. Есть ряд символов, которые обозначают его:

  • Двоеточие (:)
  • Косая черта (/)
  • Обелюс (тире между двумя точками ÷)

В учебных пособиях для учеников 1 – 5 классов есть простое и точное определение этого понятия. Деление – это операция, в результате которой мы получаем число, которое при умножении на делитель дает делимое. Число, о котором говорится в первой части определения, и есть частное.

Частное рассказывает, во сколько раз одно число больше другого.

Наглядные примеры

Чтобы лучше понять, что такое частное чисел в математике, следует обратиться к примерам. Они помогут разложить знания по полочкам в вашей голове. Решение примеров – это лучший тренажер для усвоения новых знаний. Приступим к их решению.

Итак, частное получается, если делимое поделить на делитель. При помощи символов эту операцию можно записать следующим образом:

a:b=c

Запишем простой пример из математики:

80:2=40

80 – делимое (оно делится)

2 – это делитель (на него разделяют)

Восемьдесят больше, чем сорок, в два раза.

Другой пример выглядит так:

120:2=60

Сто двадцать больше, чем шестьдесят, в два раза.

Проверка

Если вы провели операцию деления и сомневаетесь в результате, на помощь придет проверка. Для этого умножьте делитель на частное. Если в результате вы получили делимое, то пример решен верно:

Если после знака равно вы увидели знакомое вам делимое, то можете поставить себе твердую пятерку. Вы научились находить частное чисел и делать проверку. Это очень важно, чтобы в дальнейшем освоить более сложные понятия в алгебре и геометрии.

Частное – это основа математики. Если ученик не смог понять его суть, то двигаться дальше просто бессмысленно. Обратитесь к учителю, если это понятие так и осталось для вас туманным. Педагог разъяснит все ошибки и укажет на подводные камни.

Полное и неполное частное

В результате проведения математических подсчетов частное может быть двух видов:

  • Полное. В результате деления мы получаем целое число:

100:2=50

50 – полное частное

  • Неполное. Если в результате мы получаем остаток:

51:2=25 (остаток 1)

25 – неполное частное

1 – остаток от деления

Если вы откроете учебник математики, то увидите, что частное в задачах обозначают при помощи различных символов (переменных). Для этого используют латинские буквы:

30:6=x

Чтобы найти частное, следует делимое разделить на делитель:

Ответ 5 – это частное в данном примере.

Абстрактные определения и туманные рассуждения плохо усваиваются мозгом школьника. Поэтому всегда держите под рукой задачник со списком упражнений по математике. Он поможет понять различные математические категории на практике. Конкретные цифры, записанные в тетради, станут главными помощниками.

Источник

Частное чисел

Вы будете перенаправлены на Автор24

Частным числа называется результат деления какого-либо числа, называемого делимым, на какое-либо другое число, называемое делителем.

Рисунок 1. Частное, делимое и делитель. Автор24 — интернет-биржа студенческих работ

Частное, может быть целым числом, такие числа записываются без каких-либо знаков после запятой, а также без знаков дроби или дробным. Также различают деление с остатком, в котором поимо частного получается ещё некоторый остаток, который дальше на делитель уже не делится. Обычно при делении с остатком сам остаток записывают отдельно.

Для частного, полученного после деления без остатка, характерно следующее свойство: если частное домножить на делитель, получится делимое.

При выполнении деления двух чисел, не являющихся дробями, можно воспользоваться способом получения значения частного в столбик, ниже приведён пример осуществления такого деления:

Рисунок 2. Частное при делении целого на целое. Автор24 — интернет-биржа студенческих работ

В случае же если необходимо получить частное от деления дробей с запятой, иначе называемых десятичными, сначала можно домножить делитель и делимое на $10$ в $n$-ой степени чтобы избавиться от запятой в делителе, а затем выполнить деление в столбик как для целых или дробных десятичных чисел.

Чтобы найти частное от деления $0,1232$ на $0,25$ сначала можно оба числа умножить на $100$ и затем разделить в столбик $12,32$ на $25$. Получающееся частное равно частному от деления $0,1232$ на $0,25$.

Рисунок 3. Частное от деления. Автор24 — интернет-биржа студенческих работ

Если необходимо найти частное от деления обыкновенной дроби на другую обыкновенную дробь, нужно перевернуть дробь-делитель «вверх ногами» и домножить перевёрнутую дробь на дробь-делимое:

Если одна из дробей-участниц деления имеет целую часть, то сначала эту дробь необходимо перевести в неправильную.

Узнайте, какое частное получится от деления $3frac<1><2>$ на $frac<5><7>$.

Решение:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 17 04 2021

Источник

Определение частного чисел

Определение

Частное чисел – это результат деления одного числа на другое. Таким образом, частное чисел
$a$ и
$b$ будет число
$c$, которое равно
$c = a : b$ . При этом число
$a$ будет делимым, а число
$b$ – делителем.

Пример

Задание. Найти частное чисел:

1) $39 : 3$   ;  
4) $124 : 4$  

Ответ.  $39 : 3 = 13$

             $124 : 4 = 31$

Для нахождения частного больших чисел или
десятичных дробей используют способ
деления в столбик.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти частное чисел:

1) $564 : 12$   ;  
2) $0,567 : 0,21$  

Решение. Для нахождения частного в первом примере выполним деление в столбик.
Для этого запишем делимое и делитель следующим образом

Берем первую цифру слева, она не делится на 12, значит, берем две цифры: 56 и делим их на 12 с остатком.
Возьмем по $4 : 4 cdot 12 = 48$ . Записываем 48 под 56 и находим остаток:
$56 – 48 = 8$ . Восьмерку записываем под чертой и сносим к ней следующее
число из делимого, получим 84. Делим 84 на 12, получаем 7. остаток от деления 0 и цифр в делимом больше нет. Деление окончено.

Таким образом, $564 : 12 = 47$

Для нахождения частного во втором примере, сведем деление десятичных дробей к делению десятичной дроби на целое число.
Для этого будем передвигать запятую вправо у делимого и делителя до тех пор, пока делимое не станет целым числом. Далее
запишем полученные числа в столбик, как и в первом примере:

Берем в делимом первые две цифры слева и делим их на делимое с остатком. Получаем $56 : 21$ , можно взять по 2. Двойку записываем в частное.
И так как целая часть делимого закончилась, ставим в частном запятую. Умножаем $2 cdot 21 = 42$ , записываем 42 под 56 и вычитаем:
$56 – 42 = 14$ . Остаток 14 списываем к нему следующую
незадействованную цифру делимого 7. Полученное число 147 делим на 12, получаем 7. Записываем семерку в частное,
и, так как на этом делимое закончилось, а остаток после последнего деления 0, деление окончено.

Таким образом $0,567 : 0,21 = 2,7$

Ответ.  $564 : 12 = 47$

             $0,567 : 0,21 = 2,7$

Частное рациональных дробей находится по правилу

$$frac{m}{n}: frac{p}{q}=frac{m cdot q}{n cdot p}$$

Пример

Задание. Найти частное рациональных дробей:

1) $frac{2}{3}: frac{1}{3}$   ;  
2) $1 frac{1}{14}: 1 frac{3}{7}$  

Решение. 1) Воспользуемся правилом вычисления частного рациональных дробей:

$$frac{2}{3}: frac{1}{3}=frac{2 cdot 3}{3 cdot 1}=2$$

Для вычисления частного во втором примере, сначала запишем дроби в виде неправильных дробей. Для этого целую часть
умножим на знаменатель и прибавим к числителю. Затем применим правило вычисления частного рациональных дробей:

$$1 frac{1}{14}: 1 frac{3}{7}=frac{1 cdot 14+1}{14}: frac{1 cdot 7+3}{7}=frac{15}{14}: frac{10}{7}=$$
$$=frac{15 cdot 7}{14 cdot 10}=frac{15}{2 cdot 10}=frac{15}{20}=frac{3}{4}$$

Ответ.  $frac{2}{3}: frac{1}{3}=2$

             $1 frac{1}{14}: 1 frac{3}{7}=frac{3}{4}$

Читать дальше: что такое иррациональное число.

Добавить комментарий