Найти значение выражения как решать огэ

Здравствуйте, дорогие читатели, подписчики и гости канала. В этой статье рассмотрим различные вычисления с дробями, которые встречаются в шестом задании ОГЭ по математике. В июле 2.07.2021 года состоится последняя пересдача по математике в основной этап. Дополнительный этап будет уже в сентябре.

Давайте начнем разбор заданий.

1) Умножение дробь на дробь. Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, знаменатель на знаменатель, при возможности сократить.

6 и 4 сокращаем на 2 (6:2=3; 4:2=2)
6 и 4 сокращаем на 2 (6:2=3; 4:2=2)

2) Деление дроби на дробь. При делении дробь на дробь, первая дробь переписывается, вторая дробь переворачивается, а деление заменяется на умножение.

Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)
Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)

3) Вычитание и умножение дробей. Несколько действий.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №1. Находим общий знаменатель при вычитании. Чтобы найти общий знаменатель, нужно найти такое число, которое будет делиться на первое и второе число. В нашем случае это числа 10 и 20. Общий знаменатель 20.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №2. Распределительный закон умножения. Чтобы умножить число на сумму можно умножить это число на каждое слагаемое, и результат сложить. Также это действует и при вычитании.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Также встречаются выражения, в которых не стоит находить общий знаменатель, поскольку это будет сложно. Приведу два примера:

Пример №1

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Пример №2

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

4) Умножение целого числа на дробь. При умножении целого числа на дробь, целое число умножается на числитель, а знаменатель остается без изменений.

1, Общий знаменатель 12, т.к. 12 - это наименьшее число, которое делится на 4 и 6.            2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000.....  Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25
1, Общий знаменатель 12, т.к. 12 – это наименьшее число, которое делится на 4 и 6. 2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000….. Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25

5) Сложение, деление и умножение смешанных чисел.

При сложении, вычитании, умножении и делении смешанных чисел иногда легче перевести смешанное число в неправильную дробь. Чтобы смешанное число перевести в неправильную дробь, нужно целую часть умножить на знаменатель, к полученному значению прибавить числитель дробной части и записать это в числитель, а знаменатель оставить прежним.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

6) Вынесение общего множителя за скобку.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

7) Действия с десятичными дробями

Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.

В итоге у нас получилось, что числитель дроби умножили на 100 (10*10=100), значит и знаменатель дроби тоже умножаем на 100, чтобы значение дроби не изменилось.

И еще один пример:

Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.
Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.

8) Десятичные дроби и действия со степенями

В таких задания, в первую очередь нужно возводить числа в степень.
В таких задания, в первую очередь нужно возводить числа в степень.
Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

При возведении отрицательного числа в четную степень, получится число положительное. При возведении отрицательного числа в нечетную степень, получится число отрицательное.

В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.
В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.

И последнее выражение

В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.
В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.

Для отработки этих примеров, можно воспользоваться сайтом. Там много аналогичных задания, а эта статья вам будет в помощь при их решений.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Каталог заданий
Задания 8. Числа, вычисления и алгебраические выражения. Степени и корни


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 8 № 137285

i

Найдите значение выражения 5 корень из: начало аргумента: 11 конец аргумента умножить на 2 корень из: начало аргумента: 2 конец аргумента умножить на корень из: начало аргумента: 22 конец аргумента .

Аналоги к заданию № 137285: 357566 392840 392866 … Все

Решение

·

Помощь


2

Тип 8 № 311383

i

Найдите значение выражения a в степени левая круглая скобка 12 правая круглая скобка умножить на левая круглая скобка a в степени левая круглая скобка минус 4 правая круглая скобка правая круглая скобка в степени 4   при a = минус дробь: числитель: 1, знаменатель: 2 конец дроби .

Аналоги к заданию № 311383: 394128 Все

Источник: ГИА-2013. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 2.(1 вар)

Решение

·

Помощь


3

Тип 8 № 311467

i

Упростите выражение  дробь: числитель: a в степени левая круглая скобка минус 11 правая круглая скобка умножить на a в степени 4 , знаменатель: a в степени левая круглая скобка минус 3 правая круглая скобка конец дроби   и найдите его значение при a= минус дробь: числитель: 1, знаменатель: 2 конец дроби . В ответе запишите полученное число.

Аналоги к заданию № 311467: 424905 424968 424993 … Все

Источник: ГИА-2013. Ма­те­ма­ти­ка. Тре­ни­ро­воч­ная ра­бо­та № 4.(1 вар.)

Решение

·

Помощь


4

Тип 8 № 318630

i

Чему равно значение выражения  левая круглая скобка 3 корень из: начало аргумента: 2 конец аргумента правая круглая скобка в квадрате ?

Решение

·

Помощь


5

Тип 8 № 337339

i

Найдите значение выражения  корень из: начало аргумента: 11 умножить на 2 в квадрате конец аргумента умножить на корень из: начало аргумента: 11 умножить на 3 в степени 4 конец аргумента .

Аналоги к заданию № 337339: 337320 341347 352680 … Все

Решение

·

Помощь

Пройти тестирование по этим заданиям

При выполнении задания 8 ОГЭ по математике необходимо: знать свойства степеней и корней, уметь сравнивать рациональные и иррациональные числа, применять формулы сокращённого умножения.

Пример 1. Найдите значение выражения  sqrt{3cdot 7^2}cdot sqrt{3cdot 2^4}. В ответе укажите номер правильного варианта.

1)  84        2) 2352         3) 28sqrt{3}        4) 252

Решение. Произведение корней равно корню из произведения, т. е. sqrt{a}cdot sqrt{b}=sqrt{acdot b} . Тогда

sqrt{3cdot 7^2}cdot sqrt{3cdot 2^4}=sqrt{3cdot 7^2cdot 3cdot 2^4}=sqrt{3^2cdot 7^2cdot 4^2}=3cdot 7cdot 4=84 .

Ответ: 1.

Пример 2. Найдите значение выражения  {(sqrt{40}+4)}^2.  В ответе укажите номер правильного варианта.

1) 56+4sqrt{40}     2) 24     3) 56+8sqrt{40}     4) 24+8sqrt{40}

Ответ: 3.

Пример 3. На рулоне обоев имеется надпись, гарантирующая, что длина полотна обоев находится в пределах 10 ± 0,05 м. Какую длину не может иметь полотно при этом условии?

В ответе укажите номер правильного варианта.

1) 10,03       2) 10,05       3) 9,96       4) 10,08

Решение. Длина рулона находится в интервале от 10  – 0,05 = 9,95 м до 10 + 0,05 = 10,05 м. Таким образом, только число 10,08 не попадает в этот диапазон.

Ответ: 4.

Пример 4. Сравните числа sqrt{52}+sqrt{46} и 14. В ответе укажите номер правильного варианта.

1) sqrt{52}+sqrt{46} textless 14     2) sqrt{52}+sqrt{46}=14     3) sqrt{52}+sqrt{46} textgreater 14

Решение. Очевидно, что равенство между заданными числами невозможно. Предположим, что справедливо неравенство sqrt{52}+sqrt{46} textgreater 14 . Возведём обе части неравенства в квадрат и проведём соответствующие преобразования:

{(sqrt{52}+sqrt{46})}^2 textgreater {14}^2 = textgreater {sqrt{52}}^2+2cdot sqrt{52}cdot sqrt{46}+{sqrt{46}}^2 textgreater 196 = textgreater  52+2cdot sqrt{52cdot 46}+46 textgreater 196
= textgreater  2cdot sqrt{2392} textgreater 98 = textgreater  sqrt{2392} textgreater 49 = textgreater  {sqrt{2392}}^2 textgreater {49}^2 = textgreater  2392 textgreater 2401.

Полученное неравенство неверно, а это значит, что предположение неверно. Тогда верно неравенство sqrt{52}+sqrt{46} textless 14.

Ответ: 1.

Пример 5. Укажите наименьшее из чисел. В ответе укажите номер правильного варианта.

1) sqrt{35}     2) 2sqrt{7}     3) 6     4) sqrt{6}+sqrt{7}

Решение. Сравним сначала первые три числа, представив их в виде корней:

1) sqrt{35}     2) 2sqrt{7}=sqrt{4}cdot sqrt{7}=sqrt{28}     3) 6=sqrt{36}

Из этих чисел наименьшим является sqrt{28}=2sqrt{7}. Осталось сравнить его с четвёртым значением.

2sqrt{7}=sqrt{7}+sqrt{7} textgreater sqrt{6}+sqrt{7} .

Результат очевиден. Наименьшим оказалось число под номером 4.

Ответ: 4.

Пример 6. Представьте выражение frac{m^{-9}cdot m^3}{m^{-2}} в виде степени с основанием m. В ответе укажите номер правильного варианта.

1) m^{-3}     2) m^{-4}     3) m^{-8}     4) m^{-5}

Решение. Используем свойства степеней:

frac{m^{-9}cdot m^3}{m^{-2}}=frac{m^{-9+3}}{m^{-2}}=frac{m^{-6}}{m^{-2}}=m^{-6-(-2)}=m^{-6+2}=m^{-4} .

Ответ: 2.

Пример 7. Вычислите frac{7^6cdot {(7^{-9})}^2}{7^{-10}}. В ответе укажите номер правильного варианта.

1) 49     2) -49     3) frac{1}{49}     4) -frac{1}{49}

Решение. Используем свойства степеней:

frac{7^6cdot {(7^{-9})}^2}{7^{-10}}=frac{7^6cdot 7^{-9cdot 2}}{7^{-10}}=frac{7^6cdot 7^{-18}}{7^{-10}}=frac{7^{6+(-18)}}{7^{-10}}=frac{7^{-12}}{7^{-10}}=7^{-12-(-10)}=7^{-12+10}=7^{-2}=frac{1}{7^2}=frac{1}{49} .

Ответ: 3.

Пример 8. Какое из чисел sqrt{0,25} , sqrt{2,5} , sqrt{2500} является иррациональным? В ответе укажите номер правильного варианта.

1) sqrt{0,25}      2) sqrt{2,5}      3) sqrt{2500}     4) все числа иррациональны

Решение. Если в результате вычислений или преобразований всё равно остаётся корень, то число является иррациональным:

1) sqrt{0,25}=sqrt{frac{25}{100}}=frac{sqrt{25}}{sqrt{100}}=frac{5}{10}=0,5  (рациональное число)

2) sqrt{2,5}=sqrt{2frac{5}{10}}=sqrt{frac{25}{10}}=frac{sqrt{25}}{sqrt{10}}=frac{5}{sqrt{10}}  (иррациональное число)

3) sqrt{2500}=50  (рациональное число)

Ответ: 2.

Пример 9. Какое из числовых выражений является рациональным?  В ответе укажите номер правильного варианта.

1) sqrt{13}cdot sqrt{20}      2) sqrt{18}-2sqrt{2}      3) frac{sqrt{24}}{sqrt{8}}     4) (sqrt{16}-sqrt{5})cdot (sqrt{16}+sqrt{5})

Решение. Если в результате вычислений корень «исчезнет», то число является рациональным:

1) sqrt{13}cdot sqrt{20}=sqrt{13}cdot sqrt{4cdot 5}=sqrt{13}cdot sqrt{4}cdot sqrt{5}=2sqrt{13cdot 5}=2sqrt{65} (иррациональное число)

2) sqrt{18}-2sqrt{2}=sqrt{9cdot 2}-2sqrt{2}=3sqrt{2}-2sqrt{2}=sqrt{2} (иррациональное число)

3) frac{sqrt{24}}{sqrt{8}}=sqrt{frac{24}{8}}=sqrt{3} (иррациональное число)

4) left(sqrt{16}-sqrt{5}right)cdot left(sqrt{16}+sqrt{5}right)={sqrt{16}}^2-{sqrt{5}}^2=16-5=11 (рациональное число)

Ответ: 4.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 8 ОГЭ по математике. Числа, вычисления и алгебраические выражения.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

В задании № (6) ОГЭ нужно найти значение числового выражения.

Пример:

найди значение выражения

1,2×(18+0,015)

.

За правильное выполнение задания даётся (1) первичный балл. За неправильное ставится (0) баллов.

Алгоритм выполнения задания

  1. Определяем порядок вычислений, если нужно выполнить несколько математических действий.

    Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

  2. Проводим вычисления строго по порядку, не округляя.
  3. Записываем ответ.

    Обрати внимание!

    Ответом является число или последовательность цифр, которую необходимо записать без пробелов, запятых и других дополнительных символов. Если получилась обыкновенная дробь, то ответ запиши в виде десятичной.  

Как решить задание из примера?

  1. Определим, в каком порядке выполним вычисления 1,2×(18+0,015).
    Сначала — действие в скобках (сложение), а затем — умножение.
     
  2. Чтобы выполнить сложение, переведём 18 в десятичную дробь (нужно числитель разделить уголком на знаменатель без остатка). 1,0−8¯8¯0,12520−16¯40−40¯018=0,125.
     
  3. Выполним сложение двух десятичных дробей. 0,125+0,015 (=) 0,14.
  4. Выполним умножение. 1,2
    ·0,14=0,168.
  5. Запишем ответ в виде десятичной дроби, не округляя.

    Ответ: 0,168.

Восьмое задание в модуле алгебре проверяет знания в области обращения со степенями и подкоренными выражениями. При выполнении задания №8 ОГЭ по математике проверяются не только навыки выполнения вычисления и преобразований числовых выражений, но и умение преобразовывать алгебраические выражения. Возможно, потребуется выполнить действия со степенями с целым показателем, с многочленами, тождественные преобразования рациональных выражений. В соответствии с материалами проведения основного экзамена могут быть задания, в которых потребуется выполнение тождественных преобразований рациональных выражений, разложение многочленов на множители, использование процентов и пропорций, признаков делимости. Ответом в задании №8 является одна из цифр 1; 2; 3; 4 соответствующая номеру предложенного варианта ответа к заданию.

Теория к заданию №8

Из теоретического материала нам пригодятся правила обращения со степенями:

степени

Правила работы с подкоренными выражениями:koren

Кроме этого, нам понадобятся формулы сокращенного умножения:

Квадрат суммы

(a + b)2 = a2 + 2ab + b2

Квадрат разности

(a – b)2 = a2 – 2ab + b2

Разность квадратов

a2 – b2 = (a + b)(a – b)

Куб суммы

(a + b)3 = a3 + 3a2b + 3ab2 + b3

Куб разности

(a – b)3 = a3 – 3a2b + 3ab2 – b3

Сумма кубов

a3 + b3 = (a + b)( a2 – ab + b2)

Разность кубов

a3 – b3 = (a – b)( a2 + ab + b2)

Правила операций с дробями:

операции с дробями

Задание 8OM21R

Найти значение выражения

(38)73785

 


В числителе дроби возведем в степень каждый множитель:

(38)737 85=37873785

Теперь сократим (выполним деление степеней), сократятся 37 полностью, а при сокращении на 85 по свойству степеней останется 82, возведем 8 во вторую степень, получим 64, т.е.

 (38)737 85=37873785=82=64

Ответ: 64

pазбирался: Даниил Романович | обсудить разбор

Задание OM1306o

Найдите значение выражения:


Упрощение заданного выражения нужно начать с преобразований в скобках. Здесь следует привести дроби к общему знаменателю:

теперь переходим от деления дробей к их умножению:

затем 1) сокращаем дроби на 5ab; 2) в числителе первой дроби раскладываем выражение, используя формулу сокращенного умножения для разности квадратов:

сокращаем выражение на (a–5b):

Представим числовые значения для a и b в виде неправильных дробей (для удобства вычислений):

Подставим полученные значения в выражение и найдем конечный результат:

Ответ: 39

pазбирался: Даниил Романович | обсудить разбор

Задание OM1305o

Найдите значение выражения при x = 12:


Выполним тождественные преобразования выражения, чтобы упростить его. 1-й шаг – переход от деления дробей к их умножению:

далее в знаменателе второй дроби сворачиваем выражение по формуле сокращенного умножения (используем ф-лу для квадрата суммы):

теперь сокращаем выражение (в числителе первой дроби и в знаменателе второй) и приходим к окончательно упрощенному виду:

Подставляем числовое значение для х в полученное выражение и находим результат:

Ответ: 0,6

pазбирался: Даниил Романович | обсудить разбор

Задание OM1304o

Найдите значение выражения

7

где a = 9, b = 36


В первую очередь в заданиях такого типа необходимо упростить выражение, а затем подставить числа. Приведем выражение к общему знаменателю – это b, для этого умножим первое слагаемое на b, после этого получим в числителе:

9b² + 5a – 9b²

Приведем подобные слагаемые – это 9b² и  – 9b², в числителе остается 5a. Запишем конечную дробь:

5a/b

Вычислим её значение, подставив числа из условия:

5•9/36 = 1,25

Ответ: 1,25

pазбирался: Даниил Романович | обсудить разбор

Задание OM1303o

Найдите значение выражения:

Решение 8 задания ОГЭ по математике

при x = √45 , y = 0,5


Итак, в данном задании при вычитании дробей нам необходимо привести их к общему знаменателю. Общий знаменатель – это 15 x y, для этого необходимо первую дробь домножить на 5 y – и числитель и знаменатель, естественно:

Решение 8 задания ОГЭ по математике

Далее, после того как дроби приведены к общему знаменателю, можно производить вычисления. Вычислим числитель:

5 y – (3 x + 5 y) = 5 y – 3 x – 5 y = – 3 x

Тогда дробь примет вид:

Решение 8 задания ОГЭ по математике

Выполнив простые сокращения числителя и знаменателя на 3 и на x, получим: – 1/5 y

Подставим значение y = 0,5:  – 1 / (5 • 0,5) = – 1 / 2,5 =  – 0,4

Ответ: -0,4

pазбирался: Даниил Романович | обсудить разбор

Задание OM1302o

Найдите значение выражения:

Решение 7 задания ОГЭ по математике

при a = 13, b = 6,8


В данном случае, в отличие от первого, мы будем упрощать выражение вынося за скобки, а не раскрывая их.

Сразу можно заметить, что b присутствует у первой дроби в числителе, а у второй – в знаменателе, поэтому можем их сократить. Семь и четырнадцать тоже сокращаются на семь:

Решение 7 задания ОГЭ по математике

Далее выносим из числителя второй дроби a:

Решение 7 задания ОГЭ по математике

 Сокращаем (a-b):

Решение 7 задания ОГЭ по математике

 И получаем:

a/2

Подставляем значение a = 13:

13 / 2 = 6,5

Ответ: 6,5

pазбирался: Даниил Романович | обсудить разбор

Задание OM1301o

Найдите значение выражения: (x + 5)2 – x (x- 10) при x = – 1/20


В данном случае необходимо сначала упростить выражение, для этого раскроем скобки:

(x + 5)2 – x (x – 10) = x2 + 2 • 5 • x + 25 – x+ 10x

Затем приведем подобные слагаемые:

x2 + 2 • 5 • x + 25 – x2 + 10x = 20 x + 25

Далее подставим x из условия:

20 x + 25 = 20 • (-1/20) + 25 = – 1 + 25 = 24

Ответ: 24

pазбирался: Даниил Романович | обсудить разбор

Задание OM0807o

Найдите значение выражения:


Используем правило умножения и деления степеней с одинаковым основанием. Заключается оно в том, что при их умножении показатели степеней суммируются, а при делении вычитаются (от показателя в числителе вычитается показатель, стоящий в знаменателе). Тогда получаем:

Ответ: 81

pазбирался: Даниил Романович | обсудить разбор

Задание OM0806o

Найдите значение выражения:


В 1-м корне представляем 4900 в виде произведения 49·100. Оба эти числа являются точными квадратами: 49=72 и 100=102. И, значит, число под корнем можно полностью вынести из-под него, применив правила работы с подкоренными выражениями. В целом получаем:

 

По аналогии извлекаем и 2-й корень:

В итоге получаем:

Ответ: 70,7

pазбирался: Даниил Романович | обсудить разбор

Задание OM0805o

Значение какого из выражений является рациональным числом?

  1. √6-3
  2. √3•√5
  3. (√5)²
  4. (√6-3)²

В данном задании у нас проверяют навыки операций с иррациональными числами.

Разберем каждый вариант ответа в решении:

1) √6-3

√6 само по себе является иррациональным числом, для решения подобных задач достаточно помнить, что рационально извлечь корень можно из квадратов натуральных чисел, например, 4, 9, 16, 25…

При вычитании из иррационального числа любого другого, кроме его же самого, приведет вновь к иррациональному числу, таким образом, в этом варианте получается иррациональное число.

2) √3•√5

При умножении корней, мы можем извлечь корень из произведения подкоренных выражений, то есть:

√3•√5 = √(3•5) = √15

Но √15 является иррациональным, поэтому данный вариант ответа не подходит.

3) (√5)²

При возведении квадратного корня в квадрат, мы получаем просто подкоренное выражение (если уж быть точнее, то подкоренное выражение по модулю, но в случае числа, как в данном варианте, это не имеет значения), поэтому:

(√5)² = 5

Данный вариант ответа нам подходит.

4) (√6-3)²

Данное выражение представляет продолжение 1 пункта, но если √6-3 иррациональное число, то никакими известными нам операциями перевести в рациональное его нельзя.

Ответ: 3

pазбирался: Даниил Романович | обсудить разбор

Задание OM0804o

Какое из данных ниже чисел является значением выражения?

Разбор и решение задания №3 ОГЭ по математике

Разбор и решение задания №3 ОГЭ по математике


Заметим, что в знаменателе присутствует разность (4 – √14), от которой нам необходимо избавиться. Как же это сделать?

Для этого вспоминаем формулу сокращенного умножения, а именно разность квадратов! Чтобы правильно её применить в этом задании необходимо помнить правила обращения с дробями. В данном случае вспоминаем, что дробь не изменяется, если числитель и знаменатель домножить на одно и то же число или выражение. Для разности квадратов нам не хватает выражения (4 + √14), значит, домножим на него числитель и знаменатель.

После этого в числителе получим 4 + √14, а в знаменателе разность квадратов: 4² – (√14)². После этого знаменатель легко вычисляется:

16 – 14 = 2

Суммарно наши действия выглядят так:

Разбор и решение задания №3 ОГЭ по математике

Ответ: 4

pазбирался: Даниил Романович | обсудить разбор

Задание OM0803o

Какое из данных чисел является рациональным?

  1. √810
  2. √8,1
  3. √0,81
  4. все эти числа иррациональны

Для решения этой задачи нужно действовать следующим образом:

Сначала разберемся, степень какого числа рассмотрена в данном примере — это число 9, так как его квадрат 81, и это уже чем-то похоже на выражения в ответах. Далее рассмотрим формы числа 9 — это могут быть:

0,9

90

Рассмотри каждое из них:

0,9 = √(0,9)² = √0,81

90 = √(90²) = √8100

Следовательно, число √0,81 является рациональным, остальные же числа

  • √810
  • √8,1

хотя и похожи на форму 9 в квадрате, не являются рациональными.

Таким образом, правильный ответ третий.

Ответ: √0,81

pазбирался: Даниил Романович | обсудить разбор

Задание OM0802o

Значение какого из данных ниже выражений является наибольшим?

  1. 3√5
  2. 2√11
  3. 2√10
  4. 6,5

Для решения данного задания нужно привести все выражения к общему виду — представить выражения в виде подкоренных выражений:

  • 3√5

Переносим 3 под корень:

3√5 =  √(3² •5) = √(9•5) =  √45

  • 2√11

Переносим 2 под корень:

2√11 = √(2² • 11) = √(4 • 11) =√44

  • 2√10

Переносим 2 под корень:

2√10 = √(2² • 10) = √(4 • 10) =√40

  • 6,5

Возводим 6,5 в квадрат:

6,5 = √(6,5²) = √42,25

3-2

Посмотрим на все получившиеся варианты:

  1. 3√5 =  √45
  2. 2√11 = √44
  3. 2√10 = √40
  4. 6,5 = √42,25

Следовательно, правильный ответ первый.

Ответ: 3√5

pазбирался: Даниил Романович | обсудить разбор

Задание OM0801o

Какое из данных ниже выражений при любых значениях n равно произведению 121 • 11?

  1. 121n
  2. 11n+2
  3. 112n
  4. 11n+3

Для решения данной задачи необходимо вспомнить следующие правила обращения со степенями:

  • при умножении степени складываются
  • приделении степени вычитаются
  • при возведении степени в степень степени перемножаются
  • при извлечении корня степени делятся

Кроме того, для решения необходимо представить 121 как степень 11, а именно это 112.

121 • 11= 112 • 11n

С учетом правила умножения, складываем степени:

  112 • 11= 11n+2

Следовательно, нам подходит второй ответ.

Ответ: 2

pазбирался: Даниил Романович | обсудить разбор

Добавить комментарий