Напряженность как можно найти

Напряжённость электрического поля
vec E
Размерность LMT−3I−1
Единицы измерения
СИ В/м
Примечания
векторная величина

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и равная отношению силы {vec {F}}, действующей на неподвижный малый по величине точечный заряд, помещённый в данную точку, к величине этого заряда {displaystyle q^{*}}[1]:

{displaystyle {vec {E}}={frac {vec {F}}{q^{*}}}.}

Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.

В каждой точке в данный момент времени существует своё значение вектора vec E (вообще говоря — разное[3]
в разных точках пространства), таким образом, vec E — это векторное поле. Формально это отражается в записи

{vec  E}={vec  E}(x,y,z,t),

представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, суть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Напряжённость электрического поля в классической электродинамике[править | править код]

Напряжённость электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики сопоставимыми с ней по значимости являются только вектор магнитной индукции (совместно с вектором напряжённости электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя безусловно важны и содержательны, по сути оказываются вторичными или производными.

Ниже выделены основные контексты классической электродинамики в отношении напряжённости электрического поля.

Сила воздействия электромагнитного поля на заряженные частицы[править | править код]

Полная сила, с которой электромагнитное поле (включающее электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

{displaystyle {vec {F}}=q^{*}{vec {E}}+q^{*}[{vec {v}}times {vec {B}}]},

где {displaystyle q^{*}} — электрический заряд частицы, {vec {v}} — её скорость,
{vec {B}} — вектор магнитной индукции; косым крестом times обозначено векторное произведение. Формула приведена в единицах СИ.

Эта формула является более общей по сравнению с формулой, данной в определении напряжённости электрического поля, так как включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

Частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — если воспользоваться обычным для физики приёмом разбиения сложного тела на маленькие (математически — бесконечно малые) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы Лоренца. Разумеется, для того, чтобы эта формула была применена (даже в простых случаях, таких, как расчёт силы взаимодействия двух точечных зарядов), необходимо уметь рассчитывать vec E и {vec {B}}.

Остальные формулы, применяемые для расчёта электромагнитных сил (например, формулу для силы Ампера) можно считать следствиями[5] фундаментальной формулы силы Лоренца или частными случаями её применения.

Уравнения Максвелла[править | править код]

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряжённости электрического поля:

{displaystyle {begin{aligned}operatorname {div} {vec {E}}&={frac {rho }{varepsilon _{0}}},&operatorname {rot} {vec {E}}&=-{frac {partial {vec {B}}}{partial t}},\operatorname {div} {vec {B}}&=0,&operatorname {rot} {vec {B}}&=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}.end{aligned}}}

Здесь rho  — плотность заряда, vec j — плотность тока, varepsilon _{0} — электрическая постоянная, mu _{0} — магнитная постоянная, c — скорость света (уравнения записаны в системе СИ). В приведённом виде уравнения Максвелла являются «уравнениями для вакуума» (их более общий вариант, применимый и для описания поведения электромагнитного поля в среде, а также иные формы записи уравнений — см. в статье Уравнения Максвелла).

Этих четырёх уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (не квантовую) электродинамику, то есть они представляют её полные законы. Для решения реальных задач с их помощью необходимы ещё уравнения движения «материальных частиц» (в классической механике это законы Ньютона), а также дополнительная информация о конкретных свойствах рассматриваемых физических тел и сред (их упругости, электропроводности, поляризуемости и др.) и о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

«Материальные уравнения»[править | править код]

Дополнительными формулами (обычно не точными, а приближёнными или иногда даже эмпирическими), которые используются в классической электродинамике при решении практических задач и носят название «материальных уравнений», являются

  • закон Ома;
  • закон поляризации;
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами[править | править код]

Связь напряжённости электрического поля с потенциалами в общем случае такова:

{displaystyle {vec {E}}=-nabla varphi -{frac {partial {vec {A}}}{partial t}},}

где varphi ,{vec  A} — скалярный и векторный потенциалы,

{displaystyle {vec {B}}=operatorname {rot} {vec {A}}.}

В частном случае стационарных (не меняющихся со временем) полей первое уравнение упрощается до

{vec  E}=-nabla varphi .

Это выражение связывает электростатическое поле с электростатическим потенциалом.

Электростатика[править | править код]

Теоретически и практически важным случаем является ситуация, когда заряженные тела неподвижны (например, исследуется состояние равновесия) или скорость их движения достаточно мала, чтобы можно было приближённо воспользоваться способами расчета, справедливыми для неподвижных тел. Этим случаем занимается раздел электродинамики, называемый электростатикой.

Как указано выше, напряжённость электрического поля в этом случае выражается через скалярный потенциал как

{vec  E}=-nabla varphi

или, покомпонентно,

{displaystyle E_{x}=-{frac {partial varphi }{partial x}},quad E_{y}=-{frac {partial varphi }{partial y}},quad E_{z}=-{frac {partial varphi }{partial z}},}

то есть электростатическое поле оказывается потенциальным полем.
(varphi в этом случае — случае электростатики — принято называть электростатическим потенциалом).

Правомерно и обратное соотношение:

{displaystyle varphi =-int {vec {E}}cdot {vec {dl}}.}

Уравнения Максвелла при этом также сильно упрощаются (уравнения с магнитным полем можно вообще исключить, а в уравнение с дивергенцией можно подставить {displaystyle -nabla varphi }) и сводятся к уравнению Пуассона:

Delta varphi =-{frac  {rho }{varepsilon _{0}}},

а в областях, свободных от заряженных частиц, — к уравнению Лапласа:

Delta varphi =0.

Учитывая линейность этих уравнений, а следовательно, применимость к ним принципа суперпозиции, достаточно найти поле одного точечного заряда, чтобы потом получать потенциал или напряжённость поля, создаваемого любым распределением зарядов (суммируя решения для точечных зарядов).

Теорема Гаусса[править | править код]

В электростатике широко используется теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

oint limits _{S}{vec  E}cdot {vec  {dS}}={frac  {Q}{varepsilon _{0}}},

где интегрирование проводится по любой замкнутой поверхности S (вычисляется поток
vec E через эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема даёт удобный способ расчета напряжённости электрического поля в случае, когда источники поля имеют высокую симметрию: сферическую, цилиндрическую или зеркальную + трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда[править | править код]

Для точечного заряда в электростатике верен закон Кулона, который в системе СИ записывается:

varphi ={frac  {1}{4pi varepsilon _{0}}}cdot {frac  {q}{r}},

или

{displaystyle {vec {E}}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q}{r^{2}}}cdot {frac {vec {r}}{r}}quad left(E={frac {1}{4pi varepsilon _{0}}}cdot {frac {q}{r^{2}}}right)}.

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего, исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление vec E будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: 4pi r^{2}, имеем {displaystyle 4pi r^{2}E=q/varepsilon _{0}}, откуда сразу получаем ответ для E.

Ответ для varphi получается интегрированием E:

{displaystyle varphi =-int {vec {E}}cdot {vec {dl}}=-int E,dr.}

Для системы СГС формулы и их вывод аналогичны, отличие от СИ лишь в константах:

varphi ={frac  {q}{r}},
{displaystyle {vec {E}}={frac {q}{r^{2}}}{frac {vec {r}}{r}}quad left(E={frac {q}{r^{2}}}right)}.

Электрическое поле произвольного распределения зарядов[править | править код]

По принципу суперпозиции для напряжённости поля совокупности дискретных источников имеем:

{displaystyle {vec {E}}={vec {E}}_{1}+{vec {E}}_{2}+{vec {E}}_{3}+dots ,}

где каждое

{displaystyle {vec {E}}_{i}={frac {1}{4pi varepsilon _{0}}}{frac {q_{i}}{(Delta {vec {r}}_{i})^{2}}}{frac {Delta {vec {r}}_{i}}{|Delta {vec {r}}_{i}|}}quad left(Delta {vec {r}}_{i}={vec {r}}-{vec {r}}_{i}right)}.

Подставив, получаем:

{vec  E}({vec  r})=sum limits _{i}{frac  {1}{4pi varepsilon _{0}}}{frac  {q_{i}}{(Delta {vec  r}_{i})^{2}}}{frac  {Delta {vec  r}_{i}}{|Delta {vec  r}_{i}|}},.

Для непрерывного распределения аналогично:

{displaystyle {vec {E}}({vec {r}})=int limits _{V}{frac {1}{4pi varepsilon _{0}}}{frac {rho ({vec {hat {r}}}),dV}{({vec {r}}-{vec {hat {r}}})^{2}}}{frac {{vec {r}}-{vec {hat {r}}}}{|{vec {r}}-{vec {hat {r}}}|}},}

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство,
{vec {r}} — радиус-вектор точки, для которой считаем vec E,
{displaystyle {vec {hat {r}}}} — радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объёма. Можно подставить {displaystyle x{vec {i}}+y{vec {j}}+z{vec {k}}} вместо {vec {r}};
{displaystyle {hat {x}}{vec {i}}+{hat {y}}{vec {j}}+{hat {z}}{vec {k}}} вместо {vec  {hat  r}};
{displaystyle d{hat {x}},d{hat {y}},d{hat {z}}} вместо dV.

Системы единиц[править | править код]

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское обозначение: В/м; международное: V/m).

Измерение напряженности электрического поля[править | править код]

Измерения напряженности электрического поля в электроустановках сверхвысокого напряжения произ­водят приборами типа ПЗ-1, ПЗ-1 м и др.

Измеритель напряженности электрического поля работает следующим образом: в антенне прибора электри­ческое поле создает ЭДС которая усиливается с помо­щью транзисторного усилителя, выпрямляется полупро­водниковыми диодами и измеряется стрелочным микро-амперметром. Антенна представляет собой симметрич­ный диполь, выполненный в виде двух металлических пластин, размещенных одна над другой. Поскольку на­веденная в симметричном диполе ЭДС. пропорцио­нальна напряженности электрического поля, шкала мили-амперметра отградуирована в киловольтах на метр (кВ/м).

Измерение напряженности должно производиться во всей зоне, где может находиться человек в процессе вы­полнения работы. Наибольшее измеренное значение напряженности является определяющим. При размеще­нии рабочего места на земле наибольшая напряженность обычно бывает на высоте роста человека.

Точки измерения выбираются по ГОСТ 12.1.002 зависимости от расположения рабочего места и от оснащения его средствами защиты согласно таблице:

Точки измерений напряженности электрического поля

Расположение рабочего места Средства защиты Точки измерений
Без поднятия на оборудование и конструкции Без средств защиты На высоте 1,8 м от поверхности земли
То же Средства коллективной защиты На высоте 0,5; 1,0 и 1,8 м от поверхности земли
С поднятием на оборудование и конструкции Независимо от наличия средств защиты На высоте 0,5; 1,0 и 1,8 м от площадки рабочего места и на расстоянии 0,5 м от заземленных токоведущих частей оборудования

Литература[править | править код]

  • Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..

Примечания[править | править код]

  1. Напряжённость электрического поля // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 246. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Для любой частицы её электрический заряд постоянен. Измениться он может только если от частицы что-то заряженное отделится или если к ней что-то заряженное присоединится.
  3. Иногда его значения могут оказываться и одинаковыми в разных точках пространства; если vec E одинаков всюду в пространстве (или в какой-то области), говорят об однородном электрическом поле — это частный, наиболее простой, случай электрического поля; в реальности электрическое поле может быть однородным лишь приближённо, то есть различия vec E в разных точках пространства есть, но иногда они небольшие и ими можно пренебречь в рамках некоторого приближения.
  4. Электромагнитное поле может быть выражено и по-другому, например через электромагнитный потенциал или в несколько иной математической записи (в которой вектор напряжённости электрического поля вместе с вектором магнитной индукции входит в тензор электромагнитного поля), однако все эти способы записи тесно связаны между собой, таким образом, утверждение о том, что поле vec E — одна из основных составляющих электромагнитного поля, не утрачивает смысла.
  5. Хотя исторически многие из них были открыты раньше.

См. также[править | править код]

  • Электрическая индукция
  • Уравнения Максвелла
  • Закон Кулона

Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о
    линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении
    несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности
электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на
    отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.


Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.

В системе СИ
Н·м2/Кл2,

где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.

Напряженность электрического поля

Напряженность электрического поля в данной точке пространства — это физическая величина равная отношению силы действующей на пробный заряд, помещённый в данную точку поля, к величине этого заряда. Напряжённость поля является векторной величиной.

напряженность электрического поля формула E = F/Q
E = F/Q
Где:
E — Напряжённость электрического поля
F — Сила, действующая на положительный точечный заряд
Q — Величина пробного заряда

Сила (F) измеряется в ньютонах (Н), заряд (Q) измеряется в кулонах (Кл), а напряжённость электрического поля (E) измеряется:

  • либо в ньютонах на кулон (Н/Кл),
  • либо в вольтах на метр (В/м).

Пример:

Какую силу (F) оказывает электрическое поле (E) равное 7,2 × 10^5 Н/Кл на точечный заряд −0,250 мкКл (микрокулонов)?

Формула: E = F/Q или F = Q × E

Q = −0,250 мкКл = − 0,250 ×10^(−6) Кл (отрицательное)

E = 7,2 × 10^5 Н/Кл

F = (0,250 ×10^(−6) Кл) × (7,2 × 10^5 Н/Кл) = 0,180 Н

Сила направлена противоположно направлению поля, т.к. Q является отрицательным.

Что такое электрическое поле?

Электрический заряд создаёт вокруг себя электрическое поле, оно действует с некой силой и на другие находящиеся вокруг него заряды. Электрическое поле может возникнуть и в веществе, и в вакууме, т.е. ему не нужна какая-либо специфическая среда.

Электростатическое поле можно изобразить в виде силовых линий (или линий напряжённости). Силовая линия — это воображаемая линия, проведённая таким образом, что касательная к ней в каждой точке поля указывает направление вектора напряжённости электрического поля в этой точке.

силовые линии или линии напряжённости
Изображение силовых линий

Что такое напряженность поля точечного заряда?

Напряженность поля точечного заряда определяется формулой:

E = (k × |Q|)/r²

Где:

k = 9×(10^9) (в единицах Н.м²/Кл²)

Q – заряд, создающий поле,

r – расстояние точки А от заряда Q

Пример:

Вычислите силу и направление электрического поля (E) от точечного заряда 2,00 нКл (нанокулонов) на расстоянии 5 мм от заряда.

Формула: E = (k × |Q|)/r²

Решение:

Q = 2 × 10^(−9) Кл

r = 5 × 10^(−3) м

Помним, что k = 9×(10^9) (в единицах Н.м²/ Кл²)

Значит:

E = (9×(10^9) Н.м²/ Кл²) × (2 × 10^(−9) Кл) / ((5 × 10^(−3) м)²) ≈ 7,19 × 10^5 Н/Кл

Вектор напряжённости

Векторы напряженности поля точечного заряда
Векторы напряженности поля точечного заряда можно изобразить таким образом.

Вектор напряжённости в данной точке направлен вдоль прямой, соединяющей точку с зарядом, и важно учитывать, что:

  1. направление зависит от q: от заряда при q > 0 и к заряду при q < 0;
  2. удаляясь от заряда, модуль напряжённости поля убывает прямо пропорционально квадрату расстояния от точки до заряда.

Узнайте также про:

  • Магнитное поле Земли
  • Магнитную индукцию
  • Уравнения Максвелла
  • Закон сохранения энергии
  • Модуль Юнга
  • Резонанс
  • Энтропию

Содержание:

  • Определение и формула напряженности электрического поля
  • Принцип суперпозиции напряженностей электрических полей
  • Напряженность поля в диэлектрике
  • Напряженность поля точечного заряда
  • Связь напряженности и потенциала
  • Единицы измерения напряженности электрического поля
  • Примеры решения задач

Определение и формула напряженности электрического поля

Определение

Вектор напряженности $bar{E}$ – это силовая характеристика электрического поля. В некоторой точке поля, напряженность равна
силе, с которой поле действует на единичный положительный заряд, размещенный в указанной точке, при этом направление силы и напряженности
совпадают. Математическое определение напряженности записывается так:

$$bar{E}=frac{bar{F}}{q}$$

где $bar{F}$ – сила, с которой электрическое поле действует на
неподвижный, «пробный», точечный заряд q, который размещают в рассматриваемой точке поля. При этом считают, что «пробный» заряд
мал на столько, что не искажает исследуемого поля.

Если поле является электростатическим, то его напряженность от времени не зависит.

Если электрическое поле является однородным, то его напряженность во всех точках поля одинакова.

Графически электрические поля можно изображать при помощи силовых линий. Силовыми линиями (линиями напряженности) называют
линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке поля.

Принцип суперпозиции напряженностей электрических полей

Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:

$$bar{E}=sum_{i=1}^{n} bar{E}_{i}(2)$$

Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:

$$bar{E}=int d bar{E}(3)$$

интегрирование в выражении (3) проводят по всей области распределения заряда.

Напряженность поля в диэлектрике

Напряженность поля $bar{E}$ в диэлектрике равна векторной сумме
напряженностей полей, создаваемых свободными зарядами $bar{E}_0$ и
связанными (поляризационными зарядами) $bar{E}_p$:

$$bar{E}=bar{E}_{0}+bar{E}_{p}(4)$$

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность
$bar{E}$ равна:

$$bar{E}=frac{bar{E}_{0}}{varepsilon}(5)$$

где $varepsilon$ – относительная диэлектрическая проницаемость вещества в исследуемой точке
поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном
диэлектрике меньше, чем в вакууме в $varepsilon$ раз.

Напряженность поля точечного заряда

Напряженность поля точечного заряда q равна:

$$bar{E}=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{3}} bar{r}(6)$$

где $varepsilon_{0}=8,85 cdot 10^{-12}$ Ф/м (система СИ) – электрическая постоянная.

Связь напряженности и потенциала

В общем случае напряженность электрического поля связана с потенциалом как:

$$bar{E}=-operatorname{grad} varphi-frac{partial bar{A}}{partial t}(7)$$

где $varphi$ – скалярный потенциал,
$bar{a}$ – векторный потенциал.

Для стационарных полей выражение (7) трансформируется в формулу:

$$bar{E}=-operatorname{grad} varphi(8)$$

Единицы измерения напряженности электрического поля

Основной единицей измерения напряженности электрического поля в системе СИ является: [E]=В/м(Н/Кл)

Примеры решения задач

Пример

Задание. Каков модуль вектора напряженности электрического поля
$bar{E}$ в точке, которая определена радиус- вектором
$bar{r}_{2}=7 bar{i}+3 bar{j}$ (в метрах), если электрическое поле создает положительный точечный
заряд (q=1Кл), который лежит в плоскости XOY и его положение задает радиус вектор
$bar{r}_{1}=bar{i}-5 bar{j}$, (в метрах)?

Решение. Модуль напряжения электростатического поля, которое создает точечный заряд, определяется формулой:

$$E=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{2}}(1.1)$$

r- расстояние от заряда, создающего поле до точки в которой ищем поле.

$$bar{r}=bar{r}_{2}-bar{r}_{1}=6 bar{i}-8 bar{j}(1.2)$$

Из формулы (1.2) следует, что модуль $bar{r}$ равен:

$$r=|bar{r}|=sqrt{36+64}=10(mathrm{~m})$$

Подставим в (1.1) исходные данные и полученное расстояние r, имеем:

$$E=9 cdot 10^{9} frac{1}{100}=9 cdot 10^{7}left(frac{B}{m}right)$$

Ответ. $E=9 cdot 10^{7}left(frac{B}{m}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Запишите выражение для напряженности поля в точке, которая определена радиус – вектором
$bar{r}$, если поле создается зарядом, который распределен по объему V с плотностью
$rho=rho(r)$ .

Решение. Сделаем рисунок.

Проведем разбиение объема V на малые области с объемами
$Delta V_{i}$ заряды этих объемов
$Delta q_{i}$, тогда напряженность поля точечного заряда в точке А (рис.1) будет равна:

$$bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.1)$$

Для того чтобы найти поле, которое создает все тело в точке А, используем принцип суперпозиции:

$$bar{E}_{A}=sum_{i=1}^{N} bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.2)$$

где N – число элементарных объемов, на которые разбивается объем V.

Плотность распределения заряда можно выразить как:

$rholeft(bar{r}_{i}right)=frac{Delta q_{i}}{Delta V_{i}}(2.3)$

Из выражения (2.3) получим:

$Delta q_{i}=rholeft(bar{r}_{i}right) Delta V_{i}(2.4)$

Подставим выражение для элементарного заряда в формулу (2.2), имеем:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{rholeft(bar{r}_{i}right) Delta V_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.5)$$

Так ка распределение зарядов задано непрерывное, то если устремить
$Delta V_i$ к нулю, то можно перейти от суммирования к интегрированию, тогда:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$$

Ответ. $bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$

Читать дальше: Формула пути.

Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества  и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.

Тогда логика электромагнитного взаимодействия такова: заряд displaystyle q создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд displaystyle q, находящийся на любом расстоянии от источника.

Закон Кулона описывает взаимодействие между двумя зарядами:

displaystyle left| {{F}_{k}} right|=kfrac{left| Q right|left| q right|}{{{r}^{2}}} (1)

  • где

Закон Кулона. Пробный заряд

Рис. 1. Закон Кулона. Пробный заряд

Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд displaystyle left| Q right| — некий малый заряд, который не будет искажать поле исследуемого нами заряда displaystyle left| Q right|. Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

displaystyle vec{E}=frac{{{{vec{F}}}_{k}}}{q} (2)

  • где
    • displaystyle vec{E} — вектор напряжённости электрического поля.

Подставим силу Кулона в (1):

displaystyle vec{E}=kfrac{Qq}{q{{r}^{3}}}vec{r}=kfrac{Q}{{{r}^{3}}}vec{r} (3)

Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

Напряжённость электрического поля

Рис. 2. Напряжённость электрического поля

Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность displaystyle vec{E} — В/м.

Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

displaystyle left| {vec{E}} right|=kfrac{left| Q right|}{{{r}^{3}}}left| {vec{r}} right|=kfrac{left| Q right|}{{{r}^{2}}} (4)

Напряжённость электрического поля (направление)

Рис. 3. Напряжённость электрического поля (направление)

Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

displaystyle {{vec{E}}_{o}}=sumlimits_{i}{{{{vec{E}}}_{i}}} (5)

Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.

Принцип суперпозиции напряжённости

Рис. 4. Принцип суперпозиции напряжённости

Проиллюстрируем: пусть в системе присутствует 3 заряда (displaystyle {{q}_{2}}, displaystyle {{q}_{3}}, displaystyle {{vec{r}}_{1}}), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (displaystyle {{vec{r}}_{2}}, displaystyle {{vec{r}}_{3}}, displaystyle {{vec{r}}_{3}}) (рис. 4).

Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый displaystyle {{vec{E}}_{o}}.

Напряжённость поля бесконечной заряженной плоскости.

Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

Напряжённость бесконечной плоскости

Рис. 5. Напряжённость бесконечной плоскости

Напряжённость такой плоскости вблизи её:

displaystyle E=frac{sigma }{2varepsilon {{varepsilon }_{0}}} (6)

В (6) использовалось определение поверхностной плотности заряда:

displaystyle sigma =frac{Q}{S} (7)

Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.

Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).

Напряжённость двух бесконечных плоскостей

Рис. 6. Напряжённость двух бесконечных плоскостей

Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:

displaystyle {{E}_{0}}=frac{sigma }{2varepsilon {{varepsilon }_{0}}}+frac{sigma }{2varepsilon {{varepsilon }_{0}}}=frac{sigma }{varepsilon {{varepsilon }_{0}}}=frac{q}{varepsilon {{varepsilon }_{0}}S} (8)

Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).

Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.

Добавить комментарий