Нок что это в математике как найти

Математика

5 класс

Урок № 44

Наименьшее общее кратное (НОК)

Перечень рассматриваемых вопросов:

– делители числа;

– кратные числа;

– признаки делимости;

– разложение на простые множители;

– НОК.

Тезаурус

Кратное число – это число, делящееся на данное целое число без остатка.

Простое число – это такое натуральное число, которое больше 1 и делится только на 1 и само на себя.

Составные числа – это непростые натуральные числа, большие 1.

Взаимно простые числа – это числа, которые не имеют общих простых делителей

Наименьшее общее кратное (НОК) двух натуральных чисел m и n – это наименьшее натуральное число, которое делится на m и n без остатка.

Обязательная литература

1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Ранее мы узнали, что такое кратное, ввели понятие делителя, научились находить наибольший общий делитель, а можно ли каким-либо способом найти общее кратное нескольких чисел? Оказывается, можно, этим сегодня мы и будем заниматься. Но находить не просто общее кратное нескольких чисел, а их наименьшее общее кратное – НОК.

Итак, для начала вспомним, что называется кратным. Это число, делящееся на данное натуральное число без остатка.

Теперь найдём, например, общие кратные чисел 12 и 15. Для этого выпишем все кратные чисел 12 и 15.

12 – его кратные 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, …

15 – его кратные 15, 30, 45, 60, 75, 90, 105, 120, 135, …

Из представленных чисел общие кратные – это числа 60 и 120. Меньшее из них – 60. Это и есть наименьшее общее кратное чисел.

Наименьшее общее кратное (НОК) двух натуральных чисел m и n – это наименьшее натуральное число, которое делится на m и n без остатка.

Для нахождения наименьшего общего кратного двух чисел можно использовать несколько способов. Один из них мы рассмотрели на примере нахождения НОК 12 и 15. Этот способ заключается в том, что выписываются все кратные двух чисел и затем находится наименьший общий из них.

Узнаем ещё одно правило нахождения НОК.

Во-первых, разложим числа на простые множители. Далее подчеркнём одинаковые множители этих чисел. Затем перемножим общие множители одного из чисел и добавим произведение всех остальных множителей от каждого числа. Это и будет НОК заданных чисел.

Найдём НОК (15; 16). Разложим числа на простые множители:

Видно, что из всех множителей общий лишь единица, значит, это взаимно простые числа.

НОК взаимно простых чисел – это произведение всех их множителей или произведение этих чисел.

В данном случае НОК равен 240.

Т. е. НОК любых двух простых чисел или двух соседних натуральных чисел будет равен произведению этих чисел.

Найдём НОК (10; 100). Разложим числа на простые множители:

Выделим общие делители у этих чисел, это 2 и 5.

Умножим их, а результат умножим ещё на оставшиеся простые множители от чисел 100 и 10.

НОК (10; 100) = 2 · 5 · 2 · 5 = 100

Обратите внимание на то, что 100 делится нацело на 10, и НОК тоже равен 100. Поэтому можно сделать вывод: если одно из двух чисел делится нацело на другое, то НОК этих чисел равен большему из них.

Некоторые задачи можно решить при помощи НОК проще, чем каким-либо другим способом. Например, рассмотрим такую задачу.

Девочка решила купить несколько плиток шоколада по 38 руб. , но у неё только 5-рублёвые монеты, а в магазине нет сдачи. Какое наименьшее количество плиток шоколада она сможет купить?

Решение: чтобы решить эту задачу, нужно найти НОК (5;38).

Разложим числа на множители:

Мы видим, что НОК (5; 38) = 5 · 38 = 190 – это будет сумма покупки за шоколад.

Теперь найдём, сколько девочка купит плиток.

Для этого сумму покупки разделим на стоимость одной плитки шоколада.

190 : 38 руб. = 5 – наименьшее количество плиток шоколада, которые сможет купить девочка.

Ответ: 5 плиток.

Тренировочные задания

№ 1. Какую цифру нужно подставить в число НОК (7; 2_) вместо пропуска, чтобы получить НОК = 21?

Варианты ответов: 1; 2; 3.

Решение: для решения этой задачи, надо разложить на множители оба числа, при этом вместо пропуска нужно подставить по порядку все цифры. А далее найти подходящий НОК этих чисел, равный 21.

Из всех разложений на множители под НОК (7; 2_) = 21 подходит только число 21.

НОК (7; 21) =21

НОК (7; 22) =154

НОК (7; 23) =161

Ответ: искомая цифра – 1.

№ 2. Какой наименьшей длины должен быть рулон ткани, чтобы от него без остатка можно было отрезать куски по 3 м и 7 м?

Решение: чтобы решить эту задачу, нужно найти НОК заданных чисел, он и будет являться искомым ответом, т. е. наименьшей длиной рулона ткани.

НОД (3; 7) = 7 · 3 = 21 м

Ответ: 21 м.

Наименьшее о́бщее кратное (HOK) двух целых чисел — это наименьшее натуральное число, которое делится на оба без остатка, то есть кратно им обоим. К примеру, для чисел 6 и 4, наименьшим общим кратным будет 12.

Как найти НОК?

Способов найти НОК несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОК при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Примеры нахождения наименьшего общего кратного

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОК 4 и 6

1. Раскладываем 6 и 4 на простые множители:

2. Возьмем первую группу множителей: 2 · 3.

3. Смотрим вторую группу (2 · 2) и видим, что из двух двоек, одна присутствует в первом разложении. Таким образом, берем только одну двойку. Добавляем к первому разложению и получаем: 2 · 3 · 2

4. Вычисляем произведение: 2 · 3 · 2 = 12.

Ответ: НОК (6; 4) = 12

Пример 2: найти НОК 32 и 20

1. Раскладываем 32 и 20 на простые множители:

2. Возьмем первую группу множителей: 2 · 2 · 2 · 2 · 2.

3. Смотрим вторую группу (2 · 2 · 5) и видим, что из двух двоек и пятерки, обе двойки присутствуют в первом разложении. Таким образом, берем только пятерку. Добавляем к первому разложению и получаем: 2 · 3 · 2

4. Вычисляем произведение: 2 · 2 · 2 · 2 · 2 · 5 = 160.

Ответ: НОК (32; 20) = 160

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод. 

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Определение 1

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).

Пример 1

Необходимо найти НОК чисел 126 и 70.

Решение

Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).

Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.

Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.

Ответ: NOC(126, 70)=630.

Пример 2

Найдите нок чисел 68 и 34.

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.

Ответ: НОК(68, 34)=68.

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение. 

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.

Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.

Пример 4

Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

44114749713377

700350175357122557

Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.

Ответ: НОК(441, 700)= 44 100.

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.
Пример 5

Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.

Пример 6

Необходимо вычислить НОК чисел 84 и 648.

Решение

Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648​​​​​​ ​.

Ответ: НОК(84, 648)=4 536.

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.

Решение задания

Введем обозначения: a1=140, a2=9, a3=54, a4=250.

Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.

Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.

Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.

НОК четырех чисел из условия примера равно 94500.

Ответ: НОК(140, 9, 54, 250)=94 500.

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий: 

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.
Пример 8

Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.

Решение

Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК(84, 6, 48, 7, 143)=48 048.

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).

Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то  множество кратных числа a совпадает со множеством кратных числа −a.

Пример 10

Необходимо вычислить НОК отрицательных чисел −145 и −45.

Решение

Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел −145 и −45 равно 1 305.

Ответ: НОК(−145, −45)=1 305.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Наиме́ньшее о́бщее кра́тное ({displaystyle mathrm {HOK} }) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

Пример: {displaystyle mathrm {HOK} (16,20)=80}.

Наименьшее общее кратное для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Одно из наиболее частых применений {displaystyle mathrm {HOK} } — приведение дробей к общему знаменателю.

Свойства[править | править код]

Нахождение НОК[править | править код]

{displaystyle mathrm {HOK} (a,b)} можно вычислить несколькими способами.

1. Если известен наибольший общий делитель, можно использовать его связь с {displaystyle mathrm {HOK} }:

operatorname {lcm}(a,b)={frac  {|acdot b|}{operatorname {gcd}(a,b)}}

2. Пусть известно каноническое разложение обоих чисел на простые множители:

a=p_{1}^{{d_{1}}}cdot dots cdot p_{k}^{{d_{k}}},
b=p_{1}^{{e_{1}}}cdot dots cdot p_{k}^{{e_{k}}},

где p_{1},dots ,p_{k} — различные простые числа, а d_{1},dots ,d_{k} и e_{1},dots ,e_{k} — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда {displaystyle mathrm {HOK} (a,b)} вычисляется по формуле:

{displaystyle operatorname {lcm} (a,b)=p_{1}^{max(d_{1},e_{1})}cdot dots cdot p_{k}^{max(d_{k},e_{k})}.}

Другими словами, разложение {displaystyle mathrm {HOK} } содержит все простые множители, входящие хотя бы в одно из разложений чисел a,b, причём из показателей степени этого множителя берётся наибольший. Пример для бóльшего количества чисел:

{displaystyle 56;,;,=2^{3}cdot 3^{0}cdot 7^{1}}
{displaystyle 9;,;,=2^{0}cdot 3^{2}cdot 7^{0}}
{displaystyle 21;,=2^{0}cdot 3^{1}cdot 7^{1}.}
{displaystyle operatorname {lcm} (56,9,21)=2^{3}cdot 3^{2}cdot 7^{1}=8cdot 9cdot 7=504.}

Вычисление наименьшего общего кратного нескольких чисел может быть также сведено к нескольким последовательным вычислениям {displaystyle mathrm {HOK} } от двух чисел:

  • operatorname {lcm}(a,b,c)=operatorname {lcm}(operatorname {lcm}(a,b),c);
  • operatorname {lcm}(a_{1},a_{2},ldots ,a_{n})=operatorname {lcm}(operatorname {lcm}(a_{1},a_{2},ldots ,a_{{n-1}}),a_{n}).

См. также[править | править код]

  • Наибольший общий делитель

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. — М.Л.: ГИТТЛ, 1952. — 180 с.

Ссылки[править | править код]

  • Weisstein, Eric W. Least Common Multiple (англ.) на сайте Wolfram MathWorld.

Делимость

До того как начать разбирать эти две аббревиатуры, рассмотрим сначала понятие делимости. Что значит фраза “число А делится на число Б”? Например, 24 делится на 6. И что значит “не делится”? Например, 27 не делится на 2.

Когда мы говорим о делимости, то речь идет о целочисленном делении целых чисел. И делимость означает, что число делится на делитель нацело, без остатка.

24 делится на 6, частное равно 4, а остаток нулю.

27 не делится на 2, частное равно 13, а остаток равен одному.

Апельсин делится по количеству его долек
Апельсин делится по количеству его долек

Признаки делимости

Проверить, делится ли одно число на заданное, можно просто выполнив деление. Но если число большое, а результат самого деления нам не так чтобы нужен? Можно ли не находя частное, определить, делится ли число?

Существуют несколько признаков делимости, когда по внешнему вида числа мы можем определить, делится ли оно на заданное. Рассмотрим только некоторые из них, те, которые легко проверяются.

По последней цифре

Число делится на 2, если его последняя цифра – четная.

Число делится на 5, если его последняя цифра – 5 или 0.

Число делится на 10, если его последняя цифра – 0.

Например, 234 делится на 2, так как 4 – четная.

235 делится на 5, так как последняя цифра – 5.

190 делится на 10 и на 5, так как последняя цифра – 0.

По сумме цифр числа

Число делится на 3, если сумма цифр этого числа делится на 3.

Число делится на 9, если сумма цифр этого числа делится на 9.

Например, 393 делится на 3, так как сумма цифр этого числа 3+9+3=15 делится на 3.

180 делится на 9, так как сумма цифр этого числа 1+8+0=9 делится на 9.

Число делится на 6, если оно делится на 2 и на 3 одновременно.

Например, 36 делится на 2 (6 четная) и на 3 (3+6=9 – делится на 3), поэтому оно делится на 6.

Простые и составные числа

Среди натуральных чисел выделяют такие числа, которые делятся только на 1 и на самого себя. Такие числа называются простыми. Остальные числа, имеющие больше двух делителей, называют составными. Отдельно выделяют 1, у нее только один делитель.

Пример простого числа – 2, 3, 5, 7, 11, 13, 17, 19 и так далее. Существуют специальные таблицы простых чисел, но многие проблемы простых чисел до сих пор не решены.

Разложение на простые множители

Для составных чисел можно найти такие множители, которые будут только простыми числами, а произведение этих множителей будет равно исходному числу.

Например, 24=2*2*2*3.

Это произведение и называется разложением на простые множители. Если множители отсортированы по возрастанию, то для каждого конкретного числа это разложение будет единственным.

Для построения такого разложения существует четкий алгоритм.

  1. Записываем в левый столбец исходное число, проводим вертикальную черту, отделяя правый столбец.
  2. Проверяем, делится ли число на 2. Если да, то записываем 2 в правый столбец, в левый столбец в следующей строке записываем кратное исходного числа и 2.
  3. Проверяем, делится ли полученное число на 2, если да, то действуем как в пункте 2.
  4. Если нет, то проверяем, делится ли наше число на 3. Если да, то 3 записываем в правый столбец, а в левый столбец строчкой ниже пишем кратное от деления на 3 и переходим к пункту 3.
  5. Если число не делится на 3, то переходим к следующему числу в списке простых чисел – 5.
  6. Каждый раз начинаем проверку делимости с 2, постепенно переходя к все большим и большим простым числам, если это необходимо.
  7. Так действуем до тех пор, пока число в левом столбце не станет равно 1. Тогда останавливаемся.
  8. В правом столбце у нас записаны все простые множители числа.

Наибольший общий делитель

НОД или наибольший общий делитель для нескольких чисел – это такое наибольшее число, на которое делятся все эти числа.

Например, НОД(12, 18)=6.

Зная разложение чисел на простые множители, легко найти их НОД. Выписываем совпадающие множители, их произведение и даст нам НОД.

Наименьшее общее кратное

НОК или наименьшее общее кратное нескольких чисел – это такое наименьшее число, которое делится на все эти числа.

Например, НОК(4, 6)=12.

Зная разложение чисел на простые множители, легко найти их НОК. К множителям меньшего числа дописываем несовпадающие множители. Это произведение и даст нам НОК.

Найдем НОД и НОК для 60 и 75, зная их разложение на множители
Найдем НОД и НОК для 60 и 75, зная их разложение на множители

Взаимно простые числа

Если у двух составных чисел нет общих простых множителей, то такие числа называются взаимно простыми. НОК таких чисел равен их произведению, а НОД равен 1.

Добавить комментарий