Приведенная ниже формула для расчета объема выборки используется в тех случаях, когда опрашиваемым (респондентам) задается только один вопрос, на который существует только два варианта ответа. Например: «Да» и «Нет», «Покупаю» и «Не покупаю», «Пользуюсь» и «Не пользуюсь». Конечно, данную формулу можно применять только при проведении простейших исследований. Если Вам нужно определить объем выборочной совокупности при проведении более масштабных исследований, например анкетирования, то следует использовать другие формулы.
Содержание:
- формула с пояснениями;
- пример расчета объема выборки;
- нормированное отклонение (таблица);
- область применения;
- особенности формулы.
Простая формула для расчета объема выборки
Ниже приведена простая формула для расчета объема выборки для тех случаев когда на заданный вопрос возможны лишь два варианта ответа:
где: n – объем выборки;
z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности (доверительного интервала, доверительной вероятности).
Этот показатель характеризует вероятность попадания ответов в специальный доверительный интервал — диапазон, границам которого соответствует определенный процент определенных ответов на некоторый вопрос.
Можно сказать, что уровень доверительности выражает вероятность того, что респонденты генеральной совокупности ответят так же, как и представители анализируемой выборки.
На практике доверительный интервал при проведении маркетинговых исследований часто принимают за 95% или 99%. Тогда значения z будут соответственно 1,96 и 2,58.
Также существует специальная таблица «Значение интеграла вероятностей», используя которую можно найти значение z для различных доверительных интервалов. Сокращенный вариант такой таблицы приведен ниже;
p – вариация для выборки, в долях.
Вариация характеризует величину схожести / несхожести ответов респондентов на вопрос. По сути, p — вероятность того, что респонденты выберут той или иной вариант ответа.
Допустим, если мы считаем, что четверть опрашиваемых выберут ответ «Да», то p будет равно 25%, то есть p = 0,25;
q = 1 – p.
Можно сказать, что q — это вероятность того, что респонденты не выберут анализируемый вариант ответа (в нашем примере ответят «Нет»). Например, если p = 0,25, то q = 1 – 0,25 = 0,75;
e – допустимая ошибка, в долях.
Значение допустимой ошибки заранее определяют исследователь и заказчик маркетингового исследования.
Пример расчета объема выборочной совокупности
Маркетинговая компания получила заказ на проведение социологического исследования с целью выявить долю курящих лиц в населении города. Для этого сотрудники компании будут задавать прохожим один вопрос: «Вы курите?». Возможных вариантов ответа, таким образом, только два: «Да» и «Нет».
Объем выборки в этом случае рассчитывается следующим образом. Уровень доверительности принимается за 95% (одно из стандартных значений для маркетинговых исследований), тогда нормированное отклонение z = 1,96. Проведя предварительный анализ населения города, вариацию принимаем за 50%, то есть условно считаем, что половина респондентов может ответить на вопрос о том, курят ли они — «Да». Тогда p = 0,5. Отсюда находим q = 1 – p = 1 – 0,5 = 0,5. исходя из требуемой заказчиком точности, допустимую ошибку выборки принимаем за 10%, то есть e = 0,1.
Подставляем эти данные в формулу и считаем:
Округлив расчетное значение, получаем объем выборки n = 96 человек.
Следовательно, для проведения исследования с заданными параметрами (уровень доверительности, допустимая ошибка) компании необходимо опросить 96 человек.
Значение нормированного отклонения для различных доверительных интервалов
В таблице приведены некоторые значения нормированного отклонения (z) для важнейших уровней доверительности, или, иначе, доверительной вероятности (α):
α (%) | 60 | 70 | 80 | 85 | 90 | 95 | 97 | 99 | 99,7 |
---|---|---|---|---|---|---|---|---|---|
z | 0,84 | 1,03 | 1,29 | 1,44 | 1,65 | 1,96 | 2,18 | 2,58 | 3,0 |
Конечно, в таблице приведены значения z только для основных уровней доверительности. Полную версию таблицы можно найти в интернете.
Область применения простой формулы выборки
При проведении простых исследований, когда нужно получить ответ всего на один простой вопрос. При этом шкала ответов, как правило, дихотомического характера. То есть предлагаются (или подразумеваются) варианты ответов по типу «Да» — «Нет», «Черное» — «Белое», «Куплю» — «Не куплю», и т. д. Иными словами возможны лишь два варианта ответа на заданный вопрос.
Особенности формулы расчета размера выборки
Для рассмотренной нами простой формулы определения объема выборки можно выделить несколько характерных особенностей:
- перед тем, как рассчитывать объем выборки в данном случае желательно предварительно провести качественный анализ изучаемой генеральной совокупности. В частности установить степень схожести, близости изучаемых единиц совокупности в части их социальных, демографических, географических, иных характеристик. Также полезно провести пилотное (разведочное) исследование, чтобы установить приблизительную величину p;
- нужно иметь в виду, что максимальная изменчивость (вариация ответов) соответствует значению p = 50%, так как тогда q = 50% и p × q = 0,5 × 0,5 = 0,25. Это наихудший случай, все другие значения p дадут изменчивость меньшего размера (например, при p = 80%, p × q = 0,8 × 0,2 = 0,16; а при p = 10%, p × q = 0,1 × 0,9 = 0,09). Впрочем, данный показатель влияет на объем выборки не очень сильно.
Также стоит отметить, что существует ряд иных формул для определения объема выборки в случаях с дихотомической шкалой ответов на единственный вопрос. Для более сложных маркетинговых исследований применяются другие формулы.
Источники
- Голубков Е. П. Маркетинговые исследования: теория, методология и практика. – М.: Издательство «Финпресс», 1998.
Статья дополнена и доработана автором 10 дек 2020 г.
© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.
Нашли опечатку? Помогите сделать статью лучше! Выделите орфографическую ошибку мышью и нажмите Ctrl + Enter.
Библиографическая запись для цитирования статьи по ГОСТ Р 7.0.5-2008:
Галяутдинов Р.Р. Формула выборки – простая // Сайт преподавателя экономики. [2020]. URL: https://galyautdinov.ru/post/formula-vyborki-prostaya (дата обращения: 16.05.2023).
Запуск рекламной кампании в маркетинге предполагает А/В-тестирование, однако не каждый проведенный тест будет показательным, а его результаты – значимыми для статистики. Одна из распространенных ошибок при проведении исследований – неправильное определение нормального размера выборки. Как следствие – запуск рекламы, которая не даст результатов, и зря потраченные деньги.
Что такое объем выборки
Объем выборки – это количество людей из общего числа целевой аудитории (ЦА) продукта или бренда, участвовавших в исследовании, или количество заполненных анкет, которые были учтены при подсчете результатов.
Термин «выборка» говорит о том, что из всей совокупности участников опроса проводится оценка лишь части ответов.
В зависимости от параметров проекта, которые были указаны изначально, выборка может быть разной. Например, при случайной выборке респонденты выбираются из целевой совокупности случайным образом.
Зачем необходимо рассчитывать
Объем выборки определяют перед запуском количественных исследований в маркетинге (например, контент-анализа), чтобы узнать, какое число представителей ЦА должно поучаствовать в тестировании, и получить достоверные результаты. Если данных о объеме выборки нет, это может стать причиной того, что исследователь получит некорректные результаты.
Для качественных исследований объем выборки не определяют. Также он неактуален, если речь идет о проведении пилотных, т. е. предварительных исследований.
Основные понятия определения
В определении размера выборки участвуют различные параметры:
- генеральная совокупность;
- выборочная совокупность;
- достоверность измерений;
- репрезентативность выборки;
- нулевая и альтернативная гипотезы;
- доверительная вероятность;
- уровень значимости;
- мощность;
- клинически важный размер эффекта;
- односторонний / двусторонний тест значимости;
- доверительный интервал;
- погрешность измерения;
- процент ответов.
Разберем, что означают основные из них.
Генеральная совокупность
Генеральной совокупностью называется общее количество объектов наблюдения, которые обладают определенными общими признаками (возраст, пол, оборот, численность, доход и пр.) и о которых будут сделаны заявления после обработки результатов исследования.
Объектами наблюдения могут быть люди, предприятия, домохозяйства, населенные пункты, отдельные малые социальные группы и т. д.
Если известно, что результаты опроса касаются всех жителей Москвы, то генеральная совокупность будет равна общей численности населения города, т. е. 13 млн человек (по данным 2021 года).
Оценивать свойства генеральный совокупностей, основываясь на выборочных методах, позволяет кривая нормального распределения.
Выборочная совокупность
Выборка или выборочная совокупность – это некоторая часть объектов из числа генеральной совокупности, отобранная для участия в исследовании с целью оценить распределение мнений и сделать итоговое заключение, которое будет распространяться на всю генеральную совокупность.
Характеристики выборочной совокупности должны корректно отражать параметры генеральной совокупности, т. е. обладать свойством репрезентативности. Только в данном случае заключение, сделанное исходя из результатов анализа выборки, будет с одинаковой вероятностью распространяться на представителей всей генеральной совокупности.
Выборка, состоящая из работников московских предприятий, не будет репрезентировать население города трудоспособного возраста и особенно все население столицы, т. к. не включает неработающих людей, женщин в декрете, удаленных сотрудников и т. д. Даже если мы будем увеличивать количество опрошенных работников столичных компаний, выборка все равно не сможет отразить характеристики генеральной совокупности, т. е. всего трудоспособного населения Москвы.
Погрешность измерений
Допустимая погрешность измерений – это процент возможной ошибки или отклонения результатов исследования, т. е. то значение, на которое истинный показатель может откланяться от значения, полученного в результате исследования.
Чем меньше погрешность, тем больше должна быть выборка.
Результаты опроса показали, что 60% опрощенных предпочитают делать покупки в сетевых магазинах. Предел погрешности 5% говорит о том, что в генеральной совокупности доля сторонников сетевых точек продаж может увеличиться или уменьшиться на 5% относительно уровня полученных 60%. Т. е. фактическое значение будет лежать в пределах значений от 55 до 65%.
Достоверность измерений
Уровень достоверности (надежности) измерений – это вероятность того, что полученные в результате исследования истинные результаты выбранного параметра генеральной совокупности находятся в пределах ее доверительного интервала (в примере выше это интервал 55-65%). Простыми словами, это степень уверенности в репрезентативности результатов.
Чем меньше доверительный интервал и выше заданный уровень достоверности, тем больше должна быть выборочная совокупность.
Если взять приведенный выше в статье пример с погрешностью в 5%, вы можете быть уверены в следующем: вероятность того факта, что от 55 до 65% людей предпочитают совершать покупки в сетевых магазинах, составляет не менее 95%.
Репрезентативность выборки
Под репрезентативностью понимают степень соответствия характеристик выборочной совокупности характеристикам генеральной совокупности, которые можно экстраполировать на всю популяцию.
- выборка, состоящая на 100% из автомобилистов Санкт-Петербурга, не репрезентирует всех жителей Санкт-Петербурга;
- выборка, состоящая только из российских фирм B2B с количеством сотрудников до 200 человек, не репрезентирует все компании страны, работающих в этом сегменте.
Исследование должно быть репрезентативным, если стоит задача по результатам количественного исследования сформировать представление о популяции в целом и правильно оценить ее. Если же исследование качественное или люди опрашиваются ради сбора мнений, предложений, идей, в этом случае репрезентативная выборка практически не играет роли.
Что влияет на результаты
Результаты тестирования могут изменяться под влиянием ряда факторов:
- количество вводных данных для анализа результатов;
- правильность постановки гипотезы;
- выбор той или иной метрики (показателя, переменных) для исследования;
- количество тестируемых вариантов;
- мощность исследования;
- уровень статистической значимости;
- стандартное отклонение (коэффициент) для количественных метрик;
- клинически значимый эффект;
- одно- / двусторонний тест значимости;
- наличие парных данных в тестировании;
- повторное измерение одних и тех же показателей;
- равенство численности групп, участвующих в исследовании;
- наличие иерархических данных.
Также расчет размера выборки может давать разные результаты, если анализ является:
- рандомизированным и контролируемым;
- рандомизированным и кластерным;
- нерандомизированным экспериментом вмешательства;
- исследованием эквивалентности;
- исследованием распространенности;
- обсервационным;
- изучением специфичности и чувствительности теста.
Нерандомизированные тестирования взаимосвязей или различий предполагают задействования в маркетинговых исследованиях выборки гораздо большего размера, чтобы при анализе было не сложно учесть влияние третьих факторов.
Типы выборок
Различают два типа выборок: вероятностные и невероятностные или детерминированные. Каждая группа включает в себя виды. Разберем, какие из них входят в каждый тип.
Вероятностные выборки:
- Случайная или простой случайный отбор – предполагает полный список элементов (отбираются при помощи таблицы случайных чисел), равную вероятность доступности всех из них и однородную генеральную совокупность;
- Механическая или систематическая – выступает в качестве разновидности случайной выборки, при этом упорядочивание происходит по тому или иному признаку, причем первый элемент отбирается случайно, затем с шагом n отбирается каждый последующий элемент;
- Стратифицированная или районированная – выборка используется при неоднородной генеральной совокупности, которая разделяется на страты (группы), в каждой из которых выполняется случайный отбор пропорционально их доле в генеральной совокупности;
- Серийная или кластерная, или гнездовая – единицами отбора выступают целые группы (гнезда или кластеры), которые могут попасть в выборку случайным образом, а все объекты внутри них подлежат сплошному исследованию.
Невероятностные (детерминированные) выборки:
- Квотная выборка – формируется несколько групп объектов, в каждой из которых зачастую пропорционально доле в генеральной совокупности задается определенное число объектов, которые нужно исследовать;
- Метод снежного кома – для формирования выборки каждый участник опроса предоставляет контакты своих знакомых; применяется для исследования труднодоступных групп респондентов;
- Стихийная выборка или выборка «первого встречного» – ее состав и размер заранее неизвестен и зависит от активности людей, опрос проводится среди самых доступных респондентов (интернет-опросы, опросы в журналах и газетах, анкеты на самозаполнение и т. д.);
- Выборка типичных случаев – для исследования отбираются отдельные представители генеральной совокупности, которым присуще среднее значение исследуемого признака.
Отбор в детерминированных выборках происходит не случайно, а по субъективным критериям: типичности, доступности, равного представительства каждой стороны и пр.
Расчет объема выборки
Расчет объема выборки – своего рода компромисс между требуемой мощностью исследования и возможностью реализовать его на практике с учетом имеющихся ресурсов и фокус-группы. При этом выбор метода расчета во многом определяется знаниями о параметрах и характеристиках изучаемых параметров.
Определить объем выборки можно двумя способами: по таблицам и с помощью формулы. Разберем эти методы.
По таблицам
Когда никаких данных о предстоящем исследовании нет, а сам эксперимент является инновационным, никто ранее ничего подобного не проводил и не предлагал решения, для определения объема выборки лучше выбрать табличный метод.
Ниже представлены различные методики. Выбор той или иной из них определяется имеющимися исходными данными или пожеланиями исследователя.
Таблица А. Определение объема выборки по методике К. А. Отдельновой
Уровень значимости |
Уровень точности |
||
Ориентировочное знакомство |
Исследование средней точности |
Исследование высокой точности |
|
0,01 |
100 |
225 |
900 |
0,05 |
44 |
100 |
400 |
Объем выборки указан в абсолютных значениях.
Таблица Б. Методика определения размера выборки В. И. Паниотто
Размер генеральной совокупности |
500 |
1000 |
2000 |
3000 |
4000 |
5000 |
10000 |
100000 |
∞ |
Объем выборки |
222 |
286 |
333 |
350 |
360 |
370 |
385 |
398 |
400 |
Данные указаны в единицах.
Таблица В. Методика N. Fox для определения объема выборки
Процент допускаемой ошибки |
Объем выборки в единицах |
10 |
88 |
5 |
350 |
3 |
971 |
2 |
2188 |
1 |
8750 |
Таблица Г. Определение размера согласно способу K. Mitra, S. Das, M. Mandal
Величина различий между основной и контрольной группами |
Уровень значимости |
Мощность |
Объем выборки |
0,2 |
0,5 |
80 |
586 |
0,2 |
0,1 |
80 |
773 |
0,2 |
0,5 |
90 |
746 |
0,4 |
0,5 |
80 |
146 |
0,4 |
0,1 |
80 |
193 |
0,4 |
0,5 |
90 |
186 |
0,6 |
0,5 |
80 |
65 |
0,6 |
0,1 |
80 |
86 |
0,6 |
0,5 |
90 |
83 |
По формулам
Объем выборки, достаточный для проведения новых исследований, определяется следующими параметрами:
- изменчивость признака;
- уровень доверия;
- размер эффекта.
Объем выборки всегда зависит от предполагаемой строгости эксперимента и изменчивости исследуемого признака.
Формула для оценки среднего значения размера выборки:
n = (z × σ / H)2, где:
n – размер выборки;
z – доверительный уровень (при р = 0,05 z = 1,96);
σ – стандартное отклонение;
Н – допустимая ошибка в натуральных величинах.
Формула для оценки доли выборки:
Где:
n – размер выборки;
z – доверительный уровень (при р = 0,05 z = 1,96);
p – доля признака (наибольшее значение достигается при р = 0,5);
H – допустимая ошибка в процентах.
Еще одна формула расчета объема выборки (чаще всего калькулятор размера выборки использует именно ее):
Где:
n – размер выборки;
z – нормированное отклонение;
p – вариация для выборки;
q = 1 – р;
е – допустимая ошибка.
Нормированное отклонение (z) определяется по таблице, зная основные значения доверительной вероятности (α).
α, % |
60 |
70 |
80 |
85 |
90 |
95 |
97 |
99 |
99,7 |
z |
0,84 |
1,03 |
1,29 |
1,44 |
1,65 |
1,96 |
2,18 |
2,58 |
3,0 |
Последняя формула расчета имеет особенности.
- Начинать считать размер выборки следует с проведения качественного анализа генеральной совокупности, чтобы выяснить степень схожести и близости исследуемых единиц совокупности относительно их географических, демографических, социальных и других характеристик.
- Рекомендуется предварительно выполнить пилотное исследование с целью определения приблизительного значения р.
- Если максимальная вариация р = 50%, то и значение q = 50%, что является наиболее худшим вариантом.
Пример расчета размера выборки
Маркетолог проводит исследование с целью определить, нужны ли компании визитки. Для этого промоутеру предстоит опросить потенциальных клиентов и задавать только один вопрос: «Вы пользуетесь визитками?». На что человек должен будет ответить «Да» или «Нет».
В таком случае размер выборки будет рассчитываться так. Принимаем, что уровень доверительности равен 95% (стандартное значение). При этом нормированное отклонение z составит 1,96. После предварительного анализа предположим, что 80% представителей генеральной совокупности дадут положительный ответ, а значит, р = 0,8. Соответственно, q = 1 – 0,8 = 0,2. Вероятность допустимой ошибки примем за 10%, т. е. e = 0,1. Теперь можно выполнить расчет.
Округлив значение, получаем размер выборки n = 62 человека. Соответственно, в опросе с заданными параметрами нужно задействовать 62 человека из числа целевой аудитории компании.
Подходы к определению размера выборки
Выделяют несколько подходов, которые позволяют установить объем выборки для проведения статистического исследования.
- Арбитражный подход. Объем выборки составляет определенный процент от генеральной совокупности. Например, 10% от общего количество потребителей.
- Традиционный подход. Выборка составляется на основе определенных норм, которые были выработаны в процессе проведенных ранее исследований. Подход игнорирует обстоятельства и условия, строгая логика отсутствует.
- Затратный подход. Объем выборки определяется в зависимости от стоимости сбора информации и возможных затрат на материалы для проведения исследования.
- Подход на основе использования доверительных интервалов. Размер выборки в этом случае рассчитывается по формуле, что обеспечивает высокую точность результата:
n = (p × q) / s2, где:
n – размер выборки;
p – вероятность того, что нужное событие наступит, %;
q = 100% – p;
s – стандартное отклонение, которое соответствует доверительному уровню.
Ошибки выборки
Объем выборки при массовом исследовании определяется двумя факторами:
- Точностью полученных данных или статистической погрешностью.
- Размером и количеством подгрупп, на которые будет разбита выборка при проведении анализа.
При любом исследовании, которое предполагает выборочный опрос респондентов из генеральной совокупности, может присутствовать погрешность данных или ошибка выборки. Выделяют два ее типа:
- случайная – обусловлена действием статистических законов, поэтому очень легко рассчитывается по формулам теории вероятности и математической статистики;
- систематическая – является следствием неточностей при проектировании выборки, определить ее степень смещения, направление и размер практически невозможно.
При расчете размера выборки важно так собрать данные, чтобы вероятность систематической ошибки в результате работы была минимальной.
Расчет случайной ошибки выборки зависит от объема последней, а также от степени однородности данных (дисперсии). Принцип такой: чем меньше дисперсия, тем меньше ошибка. Для расчета чаще всего используют онлайн калькуляторы.
Также выделяют:
- Ошибки первого рода – альфа-ошибка, при которой делается вывод о достоверности гипотезы, которая на самом деле неверна. Величина выбирается произвольно в диапазоне от 0 до 1, чаще всего это значение 0,05 или 0,01.
- Ошибки второго рода – бета-ошибка, при которой тот факт, что гипотеза неверна, остается не выявленным. Значение, как правило, устанавливается на уровне 0,2.
Расчет доверительного интервала
Для расчета доверительного интервала применяются достаточно простые формулы, выбор которых зависит от доли выборки в составе генеральной совокупности.
Если выборка значительно меньше генеральной совокупности:
Если выборка и генеральная совокупность сопоставимы:
В обеих формулах:
Δ – предельная ошибка выборки в процентах;
z – нормированное отклонение или z-фактор;
p – доля респондентов с наличием признака, который исследуется;
q – доля респондентов без исследуемого признака;
n – размер выборки;
N – объем генеральной совокупности (сколько всего респондентов).
Доверительный интервал удобно рассчитывать с помощью онлайн-калькулятора, который использует те же формулы, что мы привели выше. Просто введите необходимые переменные, и система рассчитает результат.
Расчет статистической значимости
Определить этот показатель проще всего с помощью онлайн-сервиса. Калькулятор позволяет проверить, существует ли статистически значимая разница между долями признака, которые были получены из независимых выборок.
Рассчитывать статистическую значимость можно только в том случае, если произведения (n × p) и (n × (1 – р)) превышают значение 5. При этом n – объем выборки, р – доля признака.
Часто задаваемые вопросы
Обычно размер выборки и ее статистическая значимость прямо пропорциональны, т. е. с ростом выборки получение случайных результатов сводится к минимуму. Важность статистической значимости зависит от определенной ситуации. Вот некоторые из них.
Ситуация |
Важность статистической значимости |
Опросы сотрудников |
Важна, т. к. повышает всесторонность выводов по итогам опроса. |
Опросы клиентов об уровне их удовлетворенности |
Не имеет значения, т. к. важен каждый ответ независимо от того, положительный он или отрицательный. |
Исследование рынка |
Имеет решающее значение, т. к. помогает сделать вывод о целевом рынке. |
Опросы об образовании |
Важна, если нужно использовать результаты исследования при внесении изменений в учебном заведении. |
Здравоохранение |
Помогает выявлять серьезные проблемы, делать выводы в исследованиях. Если же опрос проводится ради оценки удовлетворенности пациентов, то не имеет значения. |
Опросы для развлечения |
Не важна. |
Заданный размер выборки нужен для получения оценок с желаемым уровнем точности, если речь идет об исследовании распространенности в популяции конкретной характеристики.
- Мало просмотров.
- Узкая тематика.
- Низкий бюджет.
- Высокий бюджет.
Чтобы правильно рассчитать размер выборки и провести показательное исследование с учетом выдвинутых требований:
- наберитесь терпения и дождитесь, пока соберется требуемое количество респондентов;
- будьте последовательны и показывайте рекламу только ЦА в определенное время;
- устанавливайте высокий уровень достоверности при расчете выборки.
При определении объема выборки основную роль играет переменная исхода конкретного исследования. Если в расчет добавляются дополнительные важные переменные, то размер выборки должен позволять адекватно проанализировать их.
Это такое количество объектов исследования, которое позволит получить максимально точный и достоверный результат с предельно небольшой погрешностью. При этом его можно репрезентовать на более широкую аудиторию, в т. ч. по отношению к генеральной совокупности.
Заключение
Объем выборки – важный показатель, без которого невозможно провести адекватное исследование и сделать объективные выводы. Он отражает количество представителей целевой аудитории, которое будет принимать непосредственное участие в эксперименте, и требуется во всех случаях, когда стоит задача сделать определенные заключения по результатам опроса.
Нашли ошибку в тексте? Выделите нужный фрагмент и нажмите
ctrl
+
enter
Объем выборки и репрезентативность
Планируем исследования и эксперименты
Если суп хорошо перемешать, то достаточно одной ложки, чтобы сделать вывод о вкусе всей кастрюли — Д.Гэллоп.
Для того, чтобы оценить любое явление, не обязательно изучать все объекты (генеральную совокупность). Для оценки здоровья человека не нужно анализировать всю кровь, достаточно небольшой пробирки. Чтобы понять настроения россиян можно не опрашивать 146 миллионов, а ограничиться несколькими тысячами. Оценка не сильно потеряет в точности.
По части судить о целом
О возможности судить о целом по части миру рассказал российский математик П.Л. Чебышев. «Закон больших чисел» простым языком можно сформулировать так: количественные закономерности массовых явлений проявляются только при
достаточном числе наблюдений
. Чем больше выборка, тем лучше случайные отклонения компенсируют друг друга и проявляется общая тенденция.
А.М. Ляпунов чуть позже сформулировал центральную предельную теорему. Она стала фундаментом для создания формул, которые позволяют рассчитать вероятность ошибки (при оценке среднего по выборке) и размер выборки, необходимый для достижения заданной точности.
Строгие формулировки:
Еще раз: чтобы корректно оценивать популяцию по выборке, нам нужна не обычная выборка, а репрезентативная выборка достаточного размера. Начнем с определения этого самого размера.
Как рассчитать объем выборки
Достаточный размер выборки зависит от следующих составляющих:
- изменчивость признака (чем разнообразней показания, тем больше наблюдений нужно, чтобы это уловить);
- размер эффекта (чем меньшие эффекты мы стремимся зафиксировать, тем больше наблюдений необходимо);
- уровень доверия (уровень вероятности при который мы готовы отвергнуть нулевую гипотезу)
ЗАПОМНИТЕ
Объем выборки зависит от изменчивости признака и планируемой строгости эксперимента
Формулы для расчета объема выборки:
Формулы расчета объема выборки
Ошибка выборки значительно возрастает, когда наблюдений меньше ста. Для исследований в которых используется 30-100 объектов применяется особая статистическая методология: критерии, основанные на распределении Стьюдента или бутстрэп-анализ. И наконец, статистика совсем слаба, когда наблюдений меньше 30.
График зависимости ошибки выборки от ее объема при оценке доли признака в г.с.
Чем больше неопределенность, тем больше ошибка. Максимальная неопределенность при оценке доли — 50% (например, 50% респондентов считают концепцию хорошей, а другие 50% плохой). Если 90% опрошенных концепция понравится — это, наоборот, пример согласованности. В таких случаях оценить долю признака по выборке проще.
Репрезентативность
Репрезентативность — это степень соответствия характеристик выборки характеристикам генеральной совокупности. Только данные по репрезентативным выборкам можно экстраполировать на всю популяцию.
Репрезентативность достигается за счет случайного отбора. Случайный отбор — хорошо. Детерминированный отбор — плохо. Он искажает структуру выборки и как следствие результат измерений. Нельзя судить о среднем росте россиян по росту ста баскетболистов, которые тренируются во дворе вашего дома, просто потому что вам так удобно.
Идеальная выборка — это когда каждый человек имеет равную вероятность попасть в число опрошенных. Полностью случайный отбор трудно достижим (это очень дорого), но к нему нужно стремиться. Сам метод сбора данных может деформировать выборку (онлайн опросы отсекают пенсионеров, опрос по стационарным телефонам — экономических активных мужчин). Представьте, как будут различаться рейтинги, если провести электоральный опрос в «Вконтакте» и в бумажной газете «Лечебные письма».
Типы выборок
Существует методология, которая позволяет сократить детерминированность при формировании выборки и приблизиться к случайному отбору.
Стратифицированная выборка. Выделяются объективно существующие страты и из каждой страты отбираются единицы пропорционально их доле в генеральной совокупности. Например для опроса россиян страты могут быть определены пропорцией населения в регионах. После чего респонденты внутри каждого региона отбираются случайным образом.
Механический отбор. Все объекты сортируются по порядковым номерам, после чего осуществляется отбор с шагом n. Например, можно отсортировать телефонные номера потенциальных участников исследования и звонить каждому 100-му.
Серийная выборка (гнездовая, кластерная). Объективно существующие группы отбираются случайным образом. Объекты внутри групп обследуются полностью. Например вскрывается один контейнер продукции и каждый товар проверяется на брак.
Метод снежного кома. У каждого респондента запрашиваются контакты его знакомых, которые подходят под условия отбора. Условия случайности отбора грубо нарушается, но это один из способов провести исследование среди труднодостижимых групп. Как быть иначе, если ваша цель — опросить любителей стальных гоночных велосипедов выпущенных не позже 1987 года.
Стихийная выборка (выборка по удобству). Применяется, когда низкая цена получения данных — это главный приоритет. Для повышения качества стихийной выборки на неё накладываются квоты. Заранее рассчитываются пропорции признаков в выборке так, чтобы они соответствовали структуре генеральной совокупности. В социологии такими признаками служат пол, возраст, профессия, семейный статус, регион проживания…
Хотите систематизировать свои знания по аналитике?
Встречайте «Анализ данных для хулиганов»
Онлайн пособие о том, как создавать великолепные продукты и эффективно управлять маркетингом на основе данных⚡
Методики / Фреймворки / Шаблоны для скачивания
Определение размера выборки является
некоторым компромиссом между теорией
о точности результатов исследования
и возможностью ее практической реализации
по объему затрат на сбор информации.
Наиболее применимы следующие методы
определения объема выборки:
1. Произвольный метод расчета; в этом
случае объем выборки определяется на
уровне 5-10 % от генеральной совокупности.
2. Традиционный метод расчета; связан
с проведением периодических ежегодных
исследований, охватывающих, например,
500, 1000 или 1500 респондентов.
3. Статистический метод расчета;
основывается на определении статистической
надежности информации.
4. Метод расчета с помощью номограмм.
5. Эмпирический метод; в этом случае
выборка считается достаточной, когда
все новые сведения вносят лишь
незначительные изменения (которыми
можно пренебречь) в уже собранные
результаты исследования.
6. Затратный метод; основан на размере
расходов, которые допустимо затратить
на проведение исследования.
Статистический метод расчета объема
выборки
На объем статистической выборки влияют
следующие факторы:
1. Наличие сведений об объеме генеральной
совокупности и степени ее однородности.
2. Требуемая точность результатов,
регулируемая величиной максимально
допустимой ошибки репрезентативности
и величиной доверительной вероятности,
с которой делается заключение о
достоверности результатов исследования.
3. Наличие сведений о средних показателях
генеральной совокупности по исследуемому
признаку или об интервале варьирования
признака(дисперсии).
4. Возможность повторного попадания
единицы генеральной совокупности в
выборку.
При определении объема выборки для
больших совокупностей (когда объем
выборки составляет менее 5% генеральной
совокупности) могут использоваться
следующие формулы:
а)повторная выборка (при возможности
повторного попадания единицы генеральной
совокупности в выборку) при неизвестном
объеме генеральной совокупности, но
известном распределении контролируемого
признака:
(4.1)
где
t
— нормированное
отклонение, которое определяется по
выбранному
уровню доверительной вероятности (при
95% доверительной вероятности
t
=
1,96; при 99% доверительной вероятности t
=
2,58); р
— найденная
вариация генеральной совокупности, в
% или в долях; q
= 100
– р;
Δ
— допустимая ошибка, в % или в долях;
б)
повторная выборка при известной
дисперсии изучаемого признака
(σ):
(4.2)
в)бесповторная
выборка (при исключении возможности
повторного
попадания единицы генеральной
совокупности в выборку) при известном
объеме генеральной совокупности и
известном распределении
контролируемого признака:
(4.3)
где
N
—
объем генеральной совокупности;
г)
бесповторная выборка при известной
дисперсии изучаемого признака:
(4.4.)
Выборка
признается малой, если ее объем превышает
5% генеральной
совокупности, в этом случае объем
выборки может быть откорректирован:
(4.5)
где
п’—
объем
выборки для малой совокупности, п
— объем
статистической
выборки, N
— объем
генеральной совокупности.
Расчет
статистической выборки при нормированном
отклонении t
= 2 и
допустимой ошибке 5% (см. табл. 4.2)
показывает, что для больших совокупностей
объем выборки может быть определен
любым способом, поскольку используемые
практические приемы приводят скорее
к завышению объема обследуемой
совокупности.
Таблица 4.2.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
При планировании научного исследования представляет интерес получение оценки минимального объёма выборки. Как правило, объем выборки вычисляют для распределений случайных величин, близких к гауссовскому в соответствии со следующим выражением [1]:
Для случая негауссовского закона распределения в формуле [2] предложено другое выражение для оценки объема выборки:
Приведенные выше выражения применяются, в основном, при небольших объемах выборки (условно до 40-50) в случае оценивания выборочных моментов первого и второго порядков – среднего и дисперсии. При большом объеме выборки законы распределения выборочных среднего и дисперсии близки к гауссовскому, и оценка объема выборки может быть получена сравнительно просто из выражения для построения доверительного интервала.
Более подробно изучить этот вопрос помогут [3][4] и, конечно, наш курс математики для Data Science.
Список источников:
1 Койчубеков Б.К. Определение размера выборки при планирования научного исследования / Койчубеков Б.К., Сорокина М.А., Мхитарян К.Э. – Международный журнал прикладных и фундаментальных исследований. 2014. №4.
2 Дианов В.Н. Перспективные направления повышения надежности вычислительной техники и систем управления // Надежность. 2004. №3 (10). С. 33–47
3 Вентцель Е.С. Теория вероятностей. – М., 1964. – 576 с.
4 https://applied-research.ru/ru/article/view?id=5074