Область определения как найти по графику производной

Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.

Содержание:

Что такое исследование функции

Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).

Применение производной к исследованию функции с примерами решения

Правильными будут следующие утверждения.

  • Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
  • Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
  • Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.

Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.

Следовательно, чтобы определить промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения нужно решить неравенства Применение производной к исследованию функции с примерами решения или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.    

Пример:

Найдите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Уравнение Применение производной к исследованию функции с примерами решения имеет корни Применение производной к исследованию функции с примерами решения Это — критические точки. Область определения данной функции — множество Применение производной к исследованию функции с примерами решения — они разбивают на три промежутка: Применение производной к исследованию функции с примерами решения (рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, данная функция на промежутках Применение производной к исследованию функции с примерами решения возрастает, а на Применение производной к исследованию функции с примерами решения убывает.

Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция Применение производной к исследованию функции с примерами решения в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках  Применение производной к исследованию функции с примерами решения на Применение производной к исследованию функции с примерами решения — убывает.

Пример:

Найдите промежутки убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Критические точки: Применение производной к исследованию функции с примерами решения Они всю область определения функции разбивают на интервалы: Применение производной к исследованию функции с примерами решения (рис. 73). Производная Применение производной к исследованию функции с примерами решения на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, функция убывает на промежутках Применение производной к исследованию функции с примерами решения Поскольку в точках Применение производной к исследованию функции с примерами решения данная функция непрерывна, то ответ можно записать и так: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример:

Найдите критические точки функции Применение производной к исследованию функции с примерами решения 

Решение:

Применение производной к исследованию функции с примерами решения Найдем произвольную функции: Применение производной к исследованию функции с примерами решения
Найдём точки, в которых производная равна нулю или не существует: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения — не существует, если знаменатель равен нулю, отсюда Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точка Применение производной к исследованию функции с примерами решения не входит в область определения функции. Следовательно, функция имеет две критические точки: Применение производной к исследованию функции с примерами решения

Ответ. 0 и 4.

Пример:

Докажите, что функция Применение производной к исследованию функции с примерами решения возрастает на Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения При любом значении Применение производной к исследованию функции с примерами решения выражение Применение производной к исследованию функции с примерами решения имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве Применение производной к исследованию функции с примерами решения

Пример:

Установите, на каком промежутке функция Применение производной к исследованию функции с примерами решения возрастает, а на каком убывает.

Решение:

Способ 1. Применение производной к исследованию функции с примерами решения Найдём производную функции:

Применение производной к исследованию функции с примерами решения

Найдём критические точки функции:

Применение производной к исследованию функции с примерами решения

Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них. 

Применение производной к исследованию функции с примерами решения

Следовательно, функция Применение производной к исследованию функции с примерами решения возрастает на промежутке Применение производной к исследованию функции с примерами решения а убывает на Применение производной к исследованию функции с примерами решения

Способ 2. Решим неравенство Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Ответ. Возрастает, если Применение производной к исследованию функции с примерами решения убывает если Применение производной к исследованию функции с примерами решения

Применение второй производной к исследованию функций и построению их графиков

При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.

Пусть функция Применение производной к исследованию функции с примерами решения является дифференцируемой, Применение производной к исследованию функции с примерами решения её производная Применение производной к исследованию функции с примерами решения — функция, которая также дифференцируема. Тогда можно найти производную Применение производной к исследованию функции с примерами решения Это производная второго порядка, или вторая производная функции Применение производной к исследованию функции с примерами решения

Например, найти производную 2-го порядка функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решенияозначает найти производную этой функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и полученную функцию продифференцировать: Применение производной к исследованию функции с примерами решения

Кривая Применение производной к исследованию функции с примерами решения называется выпуклой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).

Кривая Применение производной к исследованию функции с примерами решения называется вогнутой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).

Применение производной к исследованию функции с примерами решения

Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.

Интервалы выпуклости и вогнутости находят при помощи такой теоремы.

Теорема. Если вторая производная дважды дифференцируемой функции Применение производной к исследованию функции с примерами решения отрицательна Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения то кривая Применение производной к исследованию функции с примерами решениявыпуклая на данном интервале; если вторая производная функции Применение производной к исследованию функции с примерами решенияположительная Применение производной к исследованию функции с примерами решения то кривая вогнутая на Применение производной к исследованию функции с примерами решения

Из теоремы следует, что точками перегиба кривой Применение производной к исследованию функции с примерами решения могут быть только точки, в которых вторая производная Применение производной к исследованию функции с примерами решения равна нулю или не существует. Такие точки называют критическими точками второго рода.

Установим до статочное условие существования точки перегиба.

Теорема. Пусть Применение производной к исследованию функции с примерами решения — критическая точка второго рода функции Применение производной к исследованию функции с примерами решения Если при переходе через точку Применение производной к исследованию функции с примерами решения производная Применение производной к исследованию функции с примерами решения меняет знак, то точка Применение производной к исследованию функции с примерами решенияявляется точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:

  1. найти область определения функции;
  2. найти критические точки второго рода;
  3. определить знак второй производной на образованных интервалах. Если Применение производной к исследованию функции с примерами решения то кривая выпуклая; если Применение производной к исследованию функции с примерами решения — кривая вогнутая;
  4. если производная Применение производной к исследованию функции с примерами решения меняет знак при переходе через точку Применение производной к исследованию функции с примерами решения то точка Применение производной к исследованию функции с примерами решения является точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Пример №1

Найдите интервалы выпуклости, вогнутости и точки перегиба кривой Применение производной к исследованию функции с примерами решения

Решение:

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Найдём вторую производную: Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решенияКритические точки второго рода: Применение производной к исследованию функции с примерами решения Других критических точек нет.

3)    Разбиваем область определения на интервалы Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и определяем знак второй производной на каждом из них.

Если Применение производной к исследованию функции с примерами решения поэтому кривая вогнутая.

Если Применение производной к исследованию функции с примерами решения поэтому кривая выпуклая.

Если Применение производной к исследованию функции с примерами решения — кривая вогнутая.

Следовательно, точки Применение производной к исследованию функции с примерами решения — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).

Применение производной к исследованию функции с примерами решения

Напомним, что прямая Применение производной к исследованию функции с примерами решения будет вертикальной асимптотой кривой Применение производной к исследованию функции с примерами решения если при Применение производной к исследованию функции с примерами решения (справа или слева) значение функции Применение производной к исследованию функции с примерами решения стремится к бесконечности, т.е. выполняется одно из условий: Применение производной к исследованию функции с примерами решения

Уравнение наклонной асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен Применение производной к исследованию функции с примерами решения то кривая наклонной асимптоты не имеет.

Если Применение производной к исследованию функции с примерами решения поэтому Применение производной к исследованию функции с примерами решенияуравнение горизонтальной асимптоты.

Замечание: Рассмотренные пределы могут быть односторонними, а под символом Применение производной к исследованию функции с примерами решения следует понимать и Применение производной к исследованию функции с примерами решения При этом указанные пределы могут быть разными при Применение производной к исследованию функции с примерами решения

Пример №2

Найдите асимптоты кривых:

Применение производной к исследованию функции с примерами решения

Решение:

а) Применение производной к исследованию функции с примерами решения Найдём вертикальные асимптоты. Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вертикальные асимптоты.

Найдём наклонную асимптоту: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения Кривая имеет горизонтальную асимптоту, её уравнение: Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет три асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Найдем вертикальные асимптоты.

Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вергикальные асимптоты.

Для наклонной асимптоты Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Значит прямая Применение производной к исследованию функции с примерами решения — наклонная асимптота. Горизонтальной асимптоты нет.

Итак, асимптоты кривой: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Будем искать наклонные асимптоты:

Применение производной к исследованию функции с примерами решения

Следовательно, Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

2) если Применение производной к исследованию функции с примерами решения (проверьте самостоятельно), отсюда Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет две асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.

Нахождение промежутков возрастания и убывания функции

Интервалы возрастания и убывания функции

возрастающая функция

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения то на этом промежутке функция возрастающая.

убывающая

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения на этом промежутке функция убывающая.

Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.

Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения возрастает.

Применение производной к исследованию функции с примерами решения

Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения убывает.

Применение производной к исследованию функции с примерами решения

Промежутки возрастания и убывания функции

Пусть на определенном промежутке производная функции Применение производной к исследованию функции с примерами решения положительна, т. е. Применение производной к исследованию функции с примерами решения Так как Применение производной к исследованию функции с примерами решения то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график “поднимается “, т. е. функция возрастает. Если Применение производной к исследованию функции с примерами решения тогда касательная с положительным направлением оси абсцисс образует тупой угол, график “спускается”, т. е. функция убывает.

Теорема. Если функция Применение производной к исследованию функции с примерами решения дифференцируема в каждой точке заданного промежутка, то:

Примечание: если функция Применение производной к исследованию функции с примерами решениянепрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

По графику функции Применение производной к исследованию функции с примерами решения исследуйте промежутки возрастания и убывания функции.

Применение производной к исследованию функции с примерами решения

На интервалах Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения угловой коэффициент касательной положительный, поэтому на каждом из промежутков Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решениявозрастает.

На интервале Применение производной к исследованию функции с примерами решения угловой коэффициент касательной отрицателен, поэтому на промежутке Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решения убывает.

Пример №3

При помощи производной определите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Решение: 1. Алгебраический метод.

Найдем производную функции

Применение производной к исследованию функции с примерами решения

Функция Применение производной к исследованию функции с примерами решения на промежутке удовлетворяющем неравенству Применение производной к исследованию функции с примерами решения т. е. Применение производной к исследованию функции с примерами решения возрастает.

Для решения неравенства сначала надо решить соответствующее уравнение

Применение производной к исследованию функции с примерами решения

Значит, при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точки Применение производной к исследованию функции с примерами решения разбивают область определения функции на три интервала: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.

Применение производной к исследованию функции с примерами решения

Из таблицы и непрерывности функции Применение производной к исследованию функции с примерами решения видно, что данная функция возрастает на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения и убывает на промежутке Применение производной к исследованию функции с примерами решения Из графика так же видно, что задания решение верно.

Применение производной к исследованию функции с примерами решения

2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной

Применение производной к исследованию функции с примерами решения

График производной Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположен выше оси Применение производной к исследованию функции с примерами решения значит, Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения график производной расположен ниже оси Применение производной к исследованию функции с примерами решения значит Применение производной к исследованию функции с примерами решения Так как функция Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения непрерывна, то на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения она возрастает, а на промежутке Применение производной к исследованию функции с примерами решения убывает.

Пример №4

Изобразите схематично график непрерывной функции согласно еле дующим условиям:

a) при Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

b) при Применение производной к исследованию функции с примерами решения или Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Решение:

а) при Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит,

функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 5.

Применение производной к исследованию функции с примерами решения

b) При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит, функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 0.

Применение производной к исследованию функции с примерами решения

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

Применение производной к исследованию функции с примерами решения

1. Для значений Применение производной к исследованию функции с примерами решения равных Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения угловой коэффициент касательной к графику равен 0. Т. e.Применение производной к исследованию функции с примерами решенияЭти точки являются критическими точками функции.

2. В точках Применение производной к исследованию функции с примерами решения функция не имеет производной. Эти тоже критические точки функции.

3. Для рассматриваемой нами функции критические точки Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Применение производной к исследованию функции с примерами решения – критические точки, которые не изменяют возрастание и убывание (или наоборот).

Применение производной к исследованию функции с примерами решения

По графику видно, что в точках внутреннего экстремума(Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения) производная функции равна нулю, а в точке Применение производной к исследованию функции с примерами решения производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Применение производной к исследованию функции с примерами решения производная функции Применение производной к исследованию функции с примерами решения равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Применение производной к исследованию функции с примерами решения

Достаточное условие существования экстремума

Пусть функция Применение производной к исследованию функции с примерами решения непрерывна на промежутке Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Если Применение производной к исследованию функции с примерами решения является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

  1. Применение производной к исследованию функции с примерами решения слева от точки Применение производной к исследованию функции с примерами решения положительна, а справа – отрицательна, то точка Применение производной к исследованию функции с примерами решения является точкой максимума.
  2. Применение производной к исследованию функции с примерами решения слева от Применение производной к исследованию функции с примерами решения отрицательна, а справа – положительна, то точка Применение производной к исследованию функции с примерами решения является точкой минимума
  3. Применение производной к исследованию функции с примерами решения с каждой стороны от точки Применение производной к исследованию функции с примерами решения имеет одинаковые знаки, то точка Применение производной к исследованию функции с примерами решения не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения записываются как Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Применение производной к исследованию функции с примерами решения

Пример №5

Для функцииПрименение производной к исследованию функции с примерами решения определите максимумы и минимумы и схематично изобразите график.

Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки функции: Применение производной к исследованию функции с примерами решения

3. Точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения разбивают область определения функции на три промежутка.

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки:

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решениямаксимум

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения минимум

4. Используя полученные для функции Применение производной к исследованию функции с примерами решения данные и найдя координаты нескольких дополнительных точек, построим график функции.

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №6

Найдите наибольшее и наименьшее значение функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения

Решение: Сначала найдем критические точки.

Так как Применение производной к исследованию функции с примерами решения то критические точки можно найти из уравнения Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Критическая точка Применение производной к исследованию функции с примерами решения не принадлежит данному отрезку Применение производной к исследованию функции с примерами решения и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Применение производной к исследованию функции с примерами решения и на концах отрезка.

Применение производной к исследованию функции с примерами решения

Из этих значений наименьшее – 4, наибольшее 12. Таким образом:

Применение производной к исследованию функции с примерами решения

Пример №7

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

3. Интервалы, на которые критические точки делят область определения функции:

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки.

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Используя полученную для функции Применение производной к исследованию функции с примерами решения информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Применение производной к исследованию функции с примерами решения

Пример №8

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная Применение производной к исследованию функции с примерами решения

2. Критические точки: для этого надо решить уравнение Применение производной к исследованию функции с примерами решения или найти точки, в которых производная не существует. В точке Применение производной к исследованию функции с примерами решения функция не имеет конечной производной. Однако точка Применение производной к исследованию функции с примерами решения принадлежит области определения. Значит, точка Применение производной к исследованию функции с примерами решения является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Определим знак Применение производной к исследованию функции с примерами решения выбрав пробные точки для каждого промежутка:

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №9

По графику функции производной Применение производной к исследованию функции с примерами решения схематично изобразите график самой функции.

Применение производной к исследованию функции с примерами решения

Решение:

Производная Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения равна нулю, а при Применение производной к исследованию функции с примерами решения отрицательна, значит, на интервале Применение производной к исследованию функции с примерами решения функция убывающая. При Применение производной к исследованию функции с примерами решения производная положительна, а это говорит о том, что функция/на промежутке Применение производной к исследованию функции с примерами решения возрастает. Точкой перехода от возрастания к убыванию функции является точка Применение производной к исследованию функции с примерами решения Соответствующий график представлен на рисунке.

  • Заказать решение задач по высшей математике

Построение графиков функции с помощью производной

Функция – многочлен определена и непрерывна на всей числовой оси.

Чтобы построить график функции- многочлен надо выполнить следующие шаги.

  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания функции.
  • Найдите максимумы и минимумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Точки пересечения с осями координат :

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

2) Критические точки ( точки, в которых производная равна нулю): Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

значит, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположены на графике.

Применение производной к исследованию функции с примерами решения

3) Промежутки возрастания и убывания. Экстремумы.

Критические точки Применение производной к исследованию функции с примерами решения деляг область определения функции на четыре промежутка. Проверим знаки производной Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

4) Используя полученную информацию, построим график функции.

Применение производной к исследованию функции с примерами решения

Чтобы построить график рациональной функции надо выполнить следующие шаги.

  • Найдите область определения.
  • Найдите асимптоты (если они есть).
  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания и экстремумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Асимптоты: Применение производной к исследованию функции с примерами решения

Прямая Применение производной к исследованию функции с примерами решения вертикальная асимптота функции.

Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее: Применение производной к исследованию функции с примерами решения

условии Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения т. е. график функции Применение производной к исследованию функции с примерами решения бесконечно приближается к прямой Применение производной к исследованию функции с примерами решения В этом случае прямая Применение производной к исследованию функции с примерами решения является наклонной асимптотой функции Применение производной к исследованию функции с примерами решения Вообще, если степень многочлена Применение производной к исследованию функции с примерами решения на 1 единицу больше степени многочлена Применение производной к исследованию функции с примерами решениято рациональная функция Применение производной к исследованию функции с примерами решения имеет наклонную асимптоту.

3) Точки пересечения с осями координат: Применение производной к исследованию функции с примерами решения

4) Критические точки:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

5) Промежутки возрастания и убывания: в точке Применение производной к исследованию функции с примерами решения функция не определена, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения являются критическими точками функции. Определим знаки производной в каждом полученном интервале.

Применение производной к исследованию функции с примерами решения

6) Построим график. Отметим на координатной плоскости точки Применение производной к исследованию функции с примерами решения относящиеся к графику. Проведем вертикальную асимптоту Применение производной к исследованию функции с примерами решения и наклонную асимптоту Применение производной к исследованию функции с примерами решения Используя полученные результаты, изобразим график функции.

Применение производной к исследованию функции с примерами решения

Обратите внимание! В области, близкой к точке Применение производной к исследованию функции с примерами решения график функции ведет себя как парабола Применение производной к исследованию функции с примерами решения

Задачи на экстремумы. Оптимизации

В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.

Замечание 1: На интервале Применение производной к исследованию функции с примерами решения должны учитываться предельные значения функции на концах.

Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума – наименьшее значение.

Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Применение производной к исследованию функции с примерами решения Найдите размеры коробки, при которых она будет иметь наибольший объем?

Применение производной к исследованию функции с примерами решения

Решение:

Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Применение производной к исследованию функции с примерами решения Используя другие данные задачи, выразим объем только через одну переменную Применение производной к исследованию функции с примерами решенияВычислим площадь поверхности коробки. Она равна Применение производной к исследованию функции с примерами решения и состоит из 4 площадей боковых граней + площадь основания.

Применение производной к исследованию функции с примерами решения

Тогда выразим Применение производной к исследованию функции с примерами решения подставим в формулу Применение производной к исследованию функции с примерами решения Зависимость объема коробки от переменной Применение производной к исследованию функции с примерами решения можно выразить следующим образом:

Применение производной к исследованию функции с примерами решения

Теперь найдем область определения функции Применение производной к исследованию функции с примерами решения согласно условию задачи.

Понятно, что длина не может быть отрицательной, т. е. Применение производной к исследованию функции с примерами решения Площадь квадрата в основании коробки должна быть меньше 192, т. е. Применение производной к исследованию функции с примерами решения

или Применение производной к исследованию функции с примерами решенияЗначит, Применение производной к исследованию функции с примерами решения

Найдем максимальное значение функции Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения

Для этого используем производную первого порядка:

Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения имеем, что Применение производной к исследованию функции с примерами решения

Однако. Применение производной к исследованию функции с примерами решения Значит, в рассматриваемом интервале критической точкой является Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения функция

Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения принимает максимальное значение.

Если длина основания коробки будет 8 см, то высота будет равна

Применение производной к исследованию функции с примерами решения

Значит, максимальный объем будет иметь коробка с размерами Применение производной к исследованию функции с примерами решения

Построив при помощи графкалькулятора график функции Применение производной к исследованию функции с примерами решения также можно увидеть, что при Применение производной к исследованию функции с примерами решения объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.

Применение производной к исследованию функции с примерами решения

Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.

Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.

Применение производной к исследованию функции с примерами решения

2) Аналитически выразим зависимость между переменными.

По теореме Пифагора:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

зависимость функции Применение производной к исследованию функции с примерами решения от переменной Применение производной к исследованию функции с примерами решения будет

Применение производной к исследованию функции с примерами решения

Производная функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Найдем критические точки функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Сравнивая значения функции Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения (это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при Применение производной к исследованию функции с примерами решения (метр)

При решении задач на экстремумы обратите внимание на следующее!

1. Внимательно читайте условие. Сделайте соответствующий рисунок.

2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.

3. Выберите соответствующий параметр Применение производной к исследованию функции с примерами решения и выразите искомую величину функцией Применение производной к исследованию функции с примерами решения Найдите экстремумы данной функции.

4. Полученные значения объясните экспериментально.

Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250 Применение производной к исследованию функции с примерами решения

a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?

b) Для круглого основания используется материал, цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?

Решение: а) По условию задачи объем равен 250 Применение производной к исследованию функции с примерами решения Эти данные дают нам возможность найти зависимость между Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении Применение производной к исследованию функции с примерами решения где Применение производной к исследованию функции с примерами решения функция имеет наименьшее значение. Найдем производную функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Критическая точка функции: Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Значит, Применение производной к исследованию функции с примерами решения

Подставим значение Применение производной к исследованию функции с примерами решения в формулу для высоты Применение производной к исследованию функции с примерами решения получим Применение производной к исследованию функции с примерами решения

Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Размеры, при которых затраты на материал будут минимальными

Применение производной к исследованию функции с примерами решения

  • Приложения производной
  • Производные высших порядков
  • Дифференциал функции
  • Дифференцируемые функции
  • Касательная к графику функции и производная
  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности

Для того, чтобы понять, что такое область определения функции, необходимо знать области определения основных элементарных функций. Для этого нужно разбираться в определенных понятиях и находить весомые аргументы и методы решения, что и предложено данной статьей. Будут рассмотрены  различные сложнейшие комбинации функций вида y=x+x-2 или y=5·x2+1·x3, y=xx-5 или y=x-15-3. Рассмотрим теорию  и решим несколько примеров с подобными заданиями, чтобы вам больше не нужно было определять все это онлайн.

Что значит найти область определения

После того как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y=f(x) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Область определения и область значения можно найти и для кубического корня (куб. √), к примеру, для x+2. 

Ограничение области определения

Область определения функции или ООФ рассматривается еще в школьном курсе алгебры. У действительных чисел она может быть (0, +∞) или такой [−3, 1)∪[5, 7). Еще по виду функции можно визуально узнавать ее ОДЗ. Рассмотрим, на что может указывать наличие области определения:

Определение 1
  • при имеющемся знаменателе необходимо производить деление такого типа функции как y=x+2·xx4-1;
  • при наличии переменной под знаком корня необходимо обращать внимание на сложение корня четной степени типа y=x+1 или y=23·x+3x;
  • при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как y=5·(x+1)-3, y=-1+x113, y=(x3-x+1)2, которые определены не для всех чисел;
  • при наличии переменной под знаком логарифма или в основании вида y=lnx2+x4 или y=1+logx-1(x+1) причем основание является числом положительным, как и число под знаком логарифма;
  • при наличии переменной, находящейся под знаком тангенса и котангенса вида y=x3+tg2·x+5 или y=ctg(3·x3-1), так как они существуют не для любого числа;
  • при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида y=arcsin(x+2)+2·x2, y=arccosx-1+x, область определения которых определяется ни интервале от -1 до 1.

При отсутствии хотя бы одного признака, область определения приходится искать другим образом (и это не с калькулятором). Рассмотрим пример функции вида y=x4+2·x2-x+12+223·x. Видно, что никаких ограничений она не имеет, так как в знаменателе нет переменной.

Правила нахождения области определения

Для примера рассмотрим функцию типа y=2·x+1. Для вычисления ее значения можем определить x. Из выражения 2·x+1 видно, что функция определена на множестве всех действительных чисел. Рассмотрим еще один пример для подробного определения.

Если задана функция типа y=3x-1, а необходимо найти область определения, тогда понятно, что следует обратить внимание на знаменатель. Известно, что на ноль делить нельзя. Отсюда получаем, что 3x-1знаменатель равняется нулю при х=1, поэтому искомая область определения данной функции примет вид (−∞, 1)∪(1, +∞) и считается числовым множеством.

На рассмотрении примера y=x2-5·x+6 видно, что имеется подкоренное выражение, которое всегда больше или равно нулю. Значит запись примет вид x2−5·x+6≥0. После решения неравенства получим, что имеются две точки, которые делят область определения на отрезки, которые записываются как (−∞, 2]∪[3, +∞).

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно иметь следующее утверждение:

Когда функция ff считается суммой n функций f1, f2, …, fn, иначе говоря, эта функция задается при помощи формулы y=f1(x)+f2(x)+…+fn(x), тогда ее область определения считается пересечением областей определения функций  f1, f2, …, fn. Данное утверждение можно записать как:

D(f)=D(f1)D(f2)…D(fn)

Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом, чтобы понимать понимания перечисления числовых множеств.

Пример 1

Найти область определения функции вида y=x7+x+5+tgx.

Решение

Заданная функция представляется как сумма четырех: степенной с показателем 7,степенной с показателем 1, постоянной, функции тангенса.

По таблице определения видим, что D(f1)=(−∞, +∞), D(f2)=(−∞, +∞), D(f3)=(−∞, +∞), причем область определения тангенса включает в себя все действительные числа, кроме π2+π·k, k∈Z.

Областью определения заданной функции f является пересечение областей определения f1, f2, f3 и f4. То есть для функции существует такое количество действительных чисел, куда не входит π2+π·k, k∈Z.

Ответ: все действительные числа кроме π2+π·k, k∈Z.

Чтобы найти  область определения произведения функций необходимо применять правило:

Определение 2

Когда функция f считается произведением n функций f1, f2, f3 и fn, тогда существует такая функция f, которую можно задать при помощи формулы y=f1(x)·f2(x)·…·fn(x), тогда ее область определения считается областью определения для всех функций.

Запишется D(f)=D(f1)D(f2)…D(fn)

Пример 2

Найти область определения функции y=3·arctg x·ln x.

Решение

Правая часть формулы рассматривается как f1(x)·f2(x)·f3(x), где за f1 является постоянной функцией, f2 является арктангенсом, f3 – логарифмической функцией с основанием e. По условию имеем, что D(f1)=(−∞, +∞), D(f2)=(−∞, +∞) и  D(f3)=(0, +∞). Мы получаем, что

D(f)=D(f1)D(f2)D(fn)=(-∞, +∞)(-∞, +∞)D(0, +∞)=(0, +∞)

Ответ: область определения y=3·arctg x·ln x – множество всех действительных чисел.

Необходимо остановиться на нахождении области определения y=C·f(x), где С является действительным числом.  Отсюда видно, что ее областью определения и областью определения f совпадающими. 

Функция y=C·f(x) – произведение постоянной функции и f. Область определения – это все действительные числа области определения D(f). Отсюда видим, что область определения функции y=C·f(x) является -∞, +∞D(f)=D(f).

Естестввенным образом получили, что область определения y=f(x) и y=C·f(x), где C является некоторое действительное число, совпадают. Это видно на примере определения корня y=x считается [0, +∞), потому как область определения функции y=-5·x – [0, +∞).

Области определения y=f(x) и y=−f(x) совпадают , что говорит о том, что его область определения разности функции такая же, как и область определения их суммы.

Пример 3

Найти область определения  функции y=log3x−3·2x.

Решение

Необходимо рассмотреть как разность двух функций f1 и f2.

f1(x)=log3x и f2(x)=3·2x. Тогда получим, что D(f)=D(f1)D(f2).

Область определения записывается как D(f1)=(0, +∞). Приступим к области определения f2. В данном случае она совпадает с областью определения показательной, тогда получаем, что D(f2)=(−∞, +∞).

Для нахождения области определения функции y=log3x−3·2x получим, что

D(f)=D(f1)D(f2)=(0, +∞)-∞, +∞

Ответ: (0, +∞).

Необходимо озвучить утверждение о том, что областью определения y=anxn+an-1xn-1+…+a1x+a0 является множество действительных чисел.

Рассмотрим y=anxn+an-1xn-1+…+a1x+a0, где  в правой части имеется многочлен с одной переменной стандартного вида в виде степени n с действительными коэффициентами. Допускается рассматривать ее в качестве суммы (n+1)-ой функции. Область определения для каждой из таких функций включается множество действительных чисел, которое называется R.

Пример 4

Найти область определения f1(x)=x5+7×3-2×2+12.

Решение

Примем обозначение f за разность двух функций, тогда получим, что f1(x)=x5+7×3-2×2+12 и f2(x)=3·x-ln 5. Выше  было показано, что D(f1)=R. Область определения для f2 является совпадающей со степенной при показателе –ln5, иначе говоря, что D(f2)=(0, +∞).

Получаем, что D(f)=D(f1)D(f2)=-∞, +∞(0, +∞)=(0, +∞).

Ответ: (0, +∞).

Область определения сложной функции

Для решения данного вопроса необходимо рассмотреть сложную функцию вида  y=f1(f2(x)). Известно, что D(f) является множеством всех x из определения функции f2, где область определения f2(x) принадлежит области определения f1.

Видно, что область определения сложной функции вида y=f1(f2(x)) находится на пересечении двух множеств таких, где x∈D(f2) и f2(x)∈D(f1). В стандартном обозначении это примет вид

x∈D(f2)f2(x)∈D(f1)

Рассмотрим решение нескольких примеров.

Пример 5

Найти область определения y=ln x2.

Решение

Алгоритм решения этого уравнения или функции следующий.

Данную функцию представляем в виде y=f1(f2(x)), где имеем, что f1 является логарифмом с основанием e, а f2 – степенная функция с показателем 2.

Для решения необходимо использовать известные области определения D(f1)=(0, +∞) и D(f2)=(−∞, +∞).

Тогда получим систему неравенств вида

x∈D(f2)f2(x)∈D(f1)⇔x∈-∞, +∞x2∈(0, +∞)⇔⇔x∈(-∞, +∞)x2>0⇔x∈(-∞, +∞)x∈(-∞, 0)∪(0, +∞)⇔⇔x∈(-∞, 0)∪(0, +∞)

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Ответ: (−∞, 0)∪(0, +∞).

Пример 6

Найти область определения функции y=(arcsin x)-12.

Решение

График решения следующий.

Так как дана сложная функция, необходимо рассматривать ее как y=f1(f2(x)), где f1 является степенной функцией с показателем -12, а f2 функция арксинуса, теперь необходимо искать ее область определения. Необходимо рассмотреть D(f1)=(0, +∞) и D(f2)=[−1, 1].  Теперь найдем все множества значений x, где x∈D(f2) и f2(x)∈D(f1). Получаем систему неравенств вида

x∈D(f2)f2(x)∈D(f1)⇔x∈-1, 1arcsin x∈(0, +∞)⇔⇔x∈-1, 1arcsin x>0

Для решения arcsin x>0 необходимо прибегнуть к свойствам функции арксинуса. Его возрастание происходит на области определения [−1, 1], причем обращается в ноль при х=0, значит, что arcsin x>0 из определения x принадлежит промежутку (0, 1].

Преобразуем систему вида

x∈-1, 1arcsin x>0⇔x∈-1, 1x∈(0, 1]⇔x∈(0, 1]

Область определения искомой функции имеет интервал равный (0, 1].

Ответ: (0, 1].

Постепенно подошли к тому, что будем работать со сложными функциями общего вида y=f1(f2(…fn(x)))). Область определения такой функции ищется из x∈D(fn)fn(x)∈D(fn-1)fn-1(fn(x))∈D(fn-2)…f2(f3(…(fn(x)))∈D(f1).

Пример 7

Найти область определения y=sin(lg x4).

Решение

Заданная функция может быть расписана, как y=f1(f2(f3(x))), где имеем f1 – функция синуса, f2 – функция с корнем 4 степени, f3 – логарифмическая функция.

Имеем, что по условию D(f1)=(−∞, +∞), D(f2)=[0, +∞), D(f3)=(0, +∞). Тогда областью определения  функции – это пересечение множеств таких значений, где x∈D(f3), f3(x)∈D(f2), f2(f3(x))∈D(f1). Получаем, что

x∈D(f3)f3(x)∈D(f2)f2(f3(x))∈D(f1)⇔x∈(0, +∞)lg x∈[0, +∞)lg x4∈-∞, +∞

Условие lg x4∈-∞, +∞ аналогично условию lg x∈[0, +∞), значит

x∈(0, +∞)lg x∈[0, +∞)lg x4∈-∞, +∞⇔x∈(0, +∞)lg x∈[0, +∞)lg x∈[0, +∞)⇔⇔x∈(0, +∞)lg x∈[0, +∞)⇔x∈(0, +∞)lg x≥0⇔⇔x∈(0, +∞)lg x≥lg 1⇔x∈(0, +∞)x≥1⇔⇔x∈[1, +∞)

Ответ: [1, +∞).

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

Рассмотрим функцию вида f1(x)f2(x). Стоит обратить внимание на то, что данная дробь определяется из множества обеих функций, причем f2(х) не должна обращаться  в ноль. Тогда получаем, что область определения f для всех x записывается в виде x∈D(f1)x∈D(f2)f2(x)≠0.

Запишем функцию y=f1(x)f2(x) в виде y=f1(x)·(f2(x))-1. Тогда получим произведение функций вида y=f1(x) с y=(f2(x))-1. Областью определения функции y=f1(x) является множество D(f1), а для сложной y=(f2(x))-1 определим из системы вида x∈D(f2)f2(x)∈(-∞, 0)∪(0, +∞)⇔x∈D(f2)f2(x)≠0.

Значит, x∈D(f1)x∈D(f2)f2(x)∈(-∞, 0)∪(0, +∞)⇔x∈D(f1)x∈D(f2)f2(x)≠0.

Пример 8

Найти область определения y=tg(2·x+1)x2-x-6.

Решение

Заданная функция дробная, поэтому f1 – сложная функция, где y=tg(2·x+1) и f2 – целая рациональная функция, где y=x2−x−6, а область определения считается множеством всех чисел. Можно записать это в виде

x∈D(f1)x∈D(f2)f2(x)≠0

Представление сложной функции y=f3(f4(x)), где f3 –это функция тангенс, где в область определения включены все числа, кроме π2+π·k, k∈Z, а f4 – это целая рациональная функция y=2·x+1 с областью определения D(f4)=(−∞, +∞). После чего приступаем к нахождению области определения f1:

x∈D(f4)2·x+1∈D(f3)⇔x∈(-∞, +∞)2x+1≠π2+π·k, k∈Z⇔x≠π4-12+π2·k, k∈Z

Еще необходимо рассмотреть нижнюю область определения y=tg(2·x+1)x2-x-6. Тогда получаем, что

x∈D(f1)x∈D(f2)f2(x)≠0⇔x≠π4-12+π2·k, k∈Zx∈-∞, +∞x2-x-6≠0⇔⇔x≠π4-12+π2·k, k∈Zx≠-2x≠3

Ответ: множество действительных чисел, кроме -2, 3 и π4-12+π2·k, k∈Z.

Действия с корнями

Корни в математике, в частности, функцию с корнем можно определить следующим образом:

y=n√x. N здесь — натуральное число, большее за единицу.

Область определения корня зависит от того, каков показатель: четный или нечетный.

Если n является четным числом (n=2m). Это значит, что область определения представляет собой множество всех неотрицательных действительных чисел.

Если показатель корня — нечетное число, большее за единицу (n=2m+1 и m принадлежит к n), то областью определения корня будет множество всех действительных чисел.

Также важным является вопрос, как складывать корни.

Сложение и вычитание корней возможно при условии наличия одинакового подкоренного выражения. К примеру, сложение и вычитание корней возможно 2√3 и 4√3. Можно ли складывать корни или вычитать в случае 2√3 и 2√5? Ответ — нет.

Как решать корни во втором случае? Вы можете упростить подкоренное выражение и привести их корни к одинаковому подкоренному выражению. После этого вы сможете как считать корни, так и вычитать корни.

К основным действиям с корнями относят:

  • умножение корней;
  • деление корней;
  • корень минус корень или плюс.

Область определения логарифма с переменной в основании

Определение 3

Определение логарифма существует для положительных оснований не равных 1. Отсюда видно, что функция y=logf2(x)f1(x) имеет область определения, которая выглядит так:

x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0f2(x)≠1

К аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

y=logaf1(x)logaf2(x), a>0, a≠1. После чего можно приступать к области определения дробной функции.

Область определения логарифмической функции – это множество действительных положительных чисел, тогда области определения сложных функций типа y=logaf1(x) и y=logaf2(x) можно определить из получившейся системы вида x∈D(f1)f1(x)>0 и x∈D(f2)f2(x)>0. Иначе эту область можно записать в виде y=logaf1(x)logaf2(x), a>0, a≠1, что означает нахождение y=logf2(x)f1(x) из самой системы вида

x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0logaf2(x)≠0=x∈D(f1)f1(x)>0x∈D(f2)f2(x)>0f2(x)≠1

Пример 9

Обозначить область определения функции y=log2·x(x2-6x+5).

Решение

Следует принять обозначения f1(x)=x2−6·x+5 и f2(x)=2·x, отсюда D(f1)=(−∞, +∞) и D(f2)=(−∞, +∞). Необходимо приступить к поиску множества x, где  выполняется условие x∈D(f1), f1(x)>0, x∈D(f2), f2(x)>0, f2(x)≠1. Тогда получаем систему вида

x∈(-∞, +∞)x2-6x+5>0x∈(-∞, +∞)2·x>02·x≠1⇔x∈(-∞, +∞)x∈(-∞, 1)∪(5, +∞)x∈(-∞, +∞)x>0x≠12⇔⇔x∈0, 12∪12, 1∪(5, +∞)

Отсюда видим, что искомой областью функции y=log2·x(x2-6x+5) считается множнство, удовлетворяющее условию 0, 12∪12, 1∪(5, +∞).

Ответ: 0, 12∪12, 1∪(5, +∞).

Область определения показательно-степенной функции

Показательно-степенная функция задается формулой вида y=(f1(x))f2(x).  Ее область определения  включает в себя такие значения x, которые удовлетворяют системе x∈D(f1)x∈D(f2)f1(x)>0.

Эта область позволяет переходить от показательно-степенной к сложной вида y=aloga(f1(x))f2(x)=af2(x)·logaf1(x), где где a>0, a≠1.

Пример 10

Найти область определения показательно-степенной функции y=(x2-1)x3-9·x.

Решение

Примем за обозначение f1(x)=x2−1 и f2(x)=x3-9·x.

Функция f1 определена на множестве действительных чисел, тогда получаем область определения вида D(f1)=(−∞, +∞). Функция f2 является сложной, поэтому ее представление примет вид y=f3(f4(x)), а f3 – квадратным корнем с областью определения  D(f3)=[0, +∞), а функция f4 – целой рациональной,D(f4)=(−∞, +∞). Получаем систему вида

x∈D(f4)f4(x)∈D(f3)⇔x∈(-∞, +∞)x3-9·x≥0⇔⇔x∈(-∞, +∞)x∈-3, 0∪[3, +∞)⇔x∈-3, 0∪[3, +∞)

Значит, область определения для функции  f2 имеет вид D(f2)=[−3, 0]∪[3, +∞). После чего необходимо найти область определения показательно-степенной функции по условию x∈D(f1)x∈D(f2)f1(x)>0.

Получаем систему вида x∈-∞, +∞x∈-3, 0∪[3, +∞)x2-1>0⇔x∈-∞, +∞x∈-3, 0∪[3, +∞)x∈(-∞, -1)∪(1, +∞)⇔⇔x∈-3, -1∪[3, +∞)

Ответ: [−3, −1)∪[3, +∞)

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.

Функция Ее область определения

Сумма, разность, произведение функций

f1, f2,…, fn

Пересечение множеств

D(f1), D(f2), …, D(fn)

Сложная функция

y=f1(f2(f3(…fn(x))))

В частности, 

y=f1(f2(x))

Множество всех x, одновременно удовлетворяющих условиям

x∈D(fn),fn(x)∈D(fn-1),fn-1(fn(x))∈D(fn-2),… ,f2(f3(…fn(x)))∈D(f1)

x∈D(f2),f2(x)∈D(f1)

Расположим функции и их области определения.

Функция Ее область определения

Прямая пропорциональность y=k·x

R
Линейная y=k·x+b R

Обратная пропорциональность  y=kx

-∞, 0∪0, +∞
Квадратичная y=a·x2+b·x+c R
y=anxn+an-1xn-1+…+a1x+a0 R
Целая рациональная R
y=C·f(x), где C – число D(f)

Дробная y=f1(x)f2(x)

В частности, если f1(x), f2(x) – многочлены

Множество всех x, которые одновременно удовлетворяют условиям
x∈D(f1), x∈D(f2), f2(x)≠0

f2(x)≠0

y=f(x)n, где n – четное x∈D(f1), f(x)≥0

y=logf2(x)f1(x)

В частности, y=logaf1(x)

В частности, y=logf2(x)a

x∈D(f1), f1(x)>0,x∈D(f2), f2(x)>0, f2(x)≠1

x∈D(f1), f1(x)>0

x∈D(f2), f2>0, f2(x)≠1

Показательно-степенная y=(f1(x))f2(x) x∈D(f1), x∈D(f2), f1(x)>0

Отметим, что преобразования можно выполнять, начиная с правой части выражения. Отсюда видно, что допускаются тождественные преобразования, которые на область определения не влияют. Например, y=x2-4x-2 и y=x+2 являются разными функциями, так как первая определяется на (−∞, 2)∪(2, +∞),  а вторая из множества действительных чисел.  Из преобразования y=x2-4x-2=x-2x+2x-2=x+2 видно, что  функция имеет смысл при x≠2.


Загрузить PDF


Загрузить PDF

Область определения функции – это множество чисел, на котором задается функция. Другими словами, это те значения х, которые можно подставить в данное уравнение. Возможные значения у называются областью значений функции. Если вы хотите найти область определения функции в различных ситуациях, выполните следующие действия.

  1. Изображение с названием Find the Domain of a Function Step 1

    1

    Запомните, что такое область определения. Область определения — это множество значений х, при подставлении которых в уравнение мы получаем область значений у.

  2. Изображение с названием Find the Domain of a Function Step 2

    2

    Научитесь находить область определения различных функций. Тип функции определяет метод нахождения области определения. Вот основные моменты, которые вы должны знать о каждом типе функции, о которых пойдет речь в следующем разделе:

    • Полиномиальная функция без корней или переменных в знаменателе. Для этого типа функции областью определения являются все действительные числа.
    • Дробная функция с переменной в знаменателе. Чтобы найти область определения данного типа функции, знаменатель приравняйте к нулю и исключите найденные значения х.
    • Функция с переменной внутри корня. Чтобы найти область определения данного типа функции, задайте подкоренное выражение больше или равно 0 и найдите значения х.
    • Функция с натуральным логарифмом (ln). Задайте выражение под логарифмом > 0 и решите.
    • График. Нарисуйте график для нахождения х.
    • Множество. Это будет список координат х и у. Область определения — список координат х.
  3. Изображение с названием Find the Domain of a Function Step 3

    3

    Правильно обозначайте область определения. Легко научиться правильному обозначению области определения, но важно, чтобы вы правильно записывали ответ и получали высокую оценку. Вот несколько вещей, которые вы должны знать о написании области определения:

    • Один из форматов написания области определения: квадратная скобка, 2 конечных значения области, круглая скобка.
      • Например, [-1; 5). Это означает область определения от -1 до 5.
    • Используйте квадратные скобки [ и ] , чтобы указать, что значение принадлежит области определения.

      • Таким образом, в примере [-1; 5) область включает -1.
    • Используйте круглые скобки ( и ) , чтобы указать, что значение не принадлежит области определения.

      • Таким образом, в примере [-1; 5) 5 не принадлежит области. Область включает только значения, бесконечно близкие к 5, то есть 4,999(9).
    • Используйте знак U для объединения областей, разделенных промежутком.

      • Например, [-1; 5 ) U (5; 10]. Это означает, что область проходит от -1 до 10 включительно, но не включает 5. Это может быть у функции, где в знаменателе стоит “х – 5”.
      • Вы можете использовать несколько U по мере необходимости, если область имеет несколько разрывов/промежутков.
    • Используйте знаки «плюс бесконечность» и «минус бесконечность», чтобы выразить, что область бесконечна в любом направлении.

      • Со знаком бесконечности всегда используйте ( ), а не [ ].

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 4

    1

    Запишите пример. Например, вам дана следующая функция:

    • f(x) = 2x/(x2 – 4)
  2. Изображение с названием Find the Domain of a Function Step 5

    2

    Для дробных функций с переменной в знаменателе надо приравнять знаменатель к нулю. При нахождении области определения дробной функции необходимо исключить все значения х, при которых знаменатель равен нулю, потому что нельзя делить на ноль. Запишите знаменатель как уравнение и приравняйте его к 0. Вот как это делается:

    • f(x) = 2x/(x2 – 4)
    • x2 – 4 = 0
    • (x – 2 )(x + 2) = 0
    • x ≠ 2; – 2
  3. Изображение с названием Find the Domain of a Function Step 6

    3

    Запишите область определения:

    • х = все действительные числа, кроме 2 и -2

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 7

    1

    Запишите пример. Дана функция y =√(x-7)

  2. Изображение с названием Find the Domain of a Function Step 8

    2

    Задайте подкоренное выражение больше или равным 0. Вы не можете извлечь квадратный корень из отрицательного числа, хотя вы можете извлечь квадратный корень 0. Таким образом, задайте подкоренное выражение больше или равным 0. Заметим, что это относится не только к квадратным корням, но и ко всем корням с четной степенью. Тем не менее, это не относится к корням с нечетной степенью, так как отрицательное число может стоять под корнем нечетной степени.

    • х – 7 ≧ 0
  3. Изображение с названием Find the Domain of a Function Step 9

    3

    Выделите переменную. Для этого перенесите 7 в правую часть неравенства:

    • x ≧ 7
  4. Изображение с названием Find the Domain of a Function Step 10

    4

    Запишите область определения. Вот она:

    • D = [7; +∞)
  5. Изображение с названием Find the Domain of a Function Step 11

    5

    Найдите область определения функции с корнем, когда есть несколько решений. Дано: y = 1/√( ̅x2 -4). Приравняв знаменатель к нулю и решив это уравнение, вы получите х ≠ (2; -2). Вот как вы действуете далее:

    • Проверьте область за -2 (например, подставив -3), чтобы удостовериться, что подстановка в знаменатель чисел меньше -2 в результате дает число больше 0. И это так:
      • (-3)2 – 4 = 5
    • Теперь проверьте область между -2 и +2. Подставьте, например, 0.
      • 02 – 4 = -4, так что числа между -2 и 2 не подходят.
    • Теперь попробуйте числа больше 2, например 3.
      • 32 – 4 = 5, так что числа больше 2 подходят.
    • Запишите область определения. Вот как записывается эта область:
      • D = (-∞; -2) U (2; +∞)

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 12

    1

    Запишите пример. Допустим, дана функция:

    • f(x) = ln(x – 8)
  2. Изображение с названием Find the Domain of a Function Step 13

    2

    Задайте выражение под логарифмом больше нуля. Натуральный логарифм должен быть положительным числом, поэтому задаем выражение внутри скобок больше нуля.

    • x – 8 > 0
  3. Изображение с названием Find the Domain of a Function Step 14

    3

    Решите. Для этого обособьте переменную х, прибавив к обеим частям неравенства 8.

    • x – 8 + 8 > 0 + 8
    • x > 8
  4. Изображение с названием Find the Domain of a Function Step 15

    4

    Запишите область определения. Область определения этой функции есть любое число больше 8. Вот так:

    • D = (8; +∞)

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 16

    1

    Посмотрите на график.

  2. Изображение с названием Find the Domain of a Function Step 17

    2

    Проверьте значения х, которые отображены на графике. Это может быть легче сказать, чем сделать, но вот несколько советов:

    • Линия. Если на графике вы видите линию, которая уходит в бесконечность, то все значения х верны, и область определения включает все действительные числа.
    • Обычная парабола. Если вы видите параболу, которая смотрит вверх или вниз, то область определения — все действительные числа, потому что подходят все числа на оси х.
    • Лежачая парабола. Теперь, если у вас есть парабола с вершиной в точке (4; 0), которая простирается бесконечно вправо, то область определения D = [4; +∞)
  3. Изображение с названием Find the Domain of a Function Step 18

    3

    Запишите область определения. Запишите область определения в зависимости от типа графика, с которым вы работаете. Если вы не уверены в типе графика и знаете функцию, описывающую его, для проверки подставьте координаты х в функцию.

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 19

    1

    Запишите множество. Множество — это набор координат х и у. Например, вы работаете со следующими координатами: {(1; 3), (2; 4), (5; 7)}

  2. Изображение с названием Find the Domain of a Function Step 20

    2

    Запишите координаты х. Это 1; 2; 5.

  3. Изображение с названием Find the Domain of a Function Step 21

    3

    Область определения: D = {1; 2; 5}

  4. Изображение с названием Find the Domain and Range of a Function Step 3

    4

    Убедитесь, что множество является функцией. Для этого необходимо, чтобы каждый раз, когда вы подставляете значение х, вы получали одно и то же значение y. Например, подставляя х = 3, вы должны получить у = 6, и так далее. Приведенное в примере множество не является функцией, потому что дано два разных значения у: {(1; 4), (3; 5), (1; 5)}.

    Реклама

Об этой статье

Эту страницу просматривали 853 835 раз.

Была ли эта статья полезной?

PowerPlusWaterMarkObject23713205

1. Область определения функции.

2. Четность, нечетность, периодичность.

3. Точки пересечения с осями координат.

4. Производная и критические точки.

5. Промежутки возрастания, убывания и
точки экстремума и значение функции в
этих точках.

6. Поведение функции на концах области
определения и асимптоты графика функции
(вертикальные, горизонтальные, и
наклонные)

7. Вторая производная и исследование
функции на выпуклость и вогнутость, и
нахождение точек перегиба.

8. Нахождение контрольных точек.

9. Построение графика по результатам
исследования.

Приложения.

Таблица
1. Как найти область определения функции.

Таблица
2. Четные и нечетные функции.

Таблица
3. Периодические функции.

Таблица
4. Применение производной к исследованию
функции.

Таблица
5. Асимптоты графика функции.

Таблица
6. Вторая производная и точки перегиба.

Примеры.

Пример
1.
Исследовать
функцию

и построить график функции.

Пример
2.
Исследовать
функцию

и построить график функции.

Пример
3.
Исследовать
функцию

и построить график функции.

Схема исследования
функции
y
=
f(x)
для построения

эскиза
ее графика.

Схема

Пример

1. Область определения функции

(см.
табл. 1
)

Область определения:

2. Четность, нечетность (табл.
2
),

периодичность
(
табл. 3)

Функция ни четная, ни нечетная и не
периодическая

3. Точки пересечения с осями координат
(если можно найти)

0y

x = 0; y = 0

y = 0;

0x

4. Производная и критические точки
(
табл. 4)

5. Промежутки возрастания, убывания
и точки экстремума (и значение функции
в этих точках) (
табл.
4
)


6. Поведение функции на концах
области определения и асимптоты
графика функции (вертикальные,
горизонтальные, и наклонные)

(табл. 5)


П
ри

слева


Следовательно,

При

справа x
= – 4


вертикальная
асимптота

Так как

то при

тогда

т.е. y
=
x
– 9

наклонная асимптота

7. Вторая производная и исследование
функции на выпуклость и вогнутость.
Найти точки перегиба (если они
существуют) и значение
f(x)
в точках перегиба (
табл.
6
)

П

оскольку


,
то знак второй производной может
меняться только в точке x
= -4

  1. Если необходимо, найти контрольные
    точки, уточняющие поведение графика

X

-6

-2

Y

-33

7

  1. На основании проведенного исследования
    строим эскиз графика функции
    y=f(x)


Как найти
область определения функции

Вид функции

Ограничения

(f(x)
и
g(x)

существуют!)

Формулировка

1

Знаменатель дроби не равен нулю

2

Под знаком корня четной степени может
стоять только неотрицательное выражение

3

Под знаком логарифма может стоять
только положительное выражение

4

(a
>0)

В основании логарифма может стоять
только положительное выражение, не
равное 1

5

Под знаком котангенса может стоять
только выражение, не равное

(k – целое)

6

Под знаком котангенса может стоять
только выражение, не равное

(k – целое)

7

Под знаком арксинуса и арккосинуса
может стоять только выражение, модуль
которого меньше или равен единице

8

9

а)


натуральное

x – любое число

б)


целое отрица-тельное или нуль

в)

– положитель-ное не целое число

г)

– отрицатель-ное не целое число

Таблица 1

Таблица 2

Четные и нечетные
функции

Четная функция

Нечетная функция

Определение. Функция f
называется четной, если ее область
определения симметрична относительно
начала координат и для любого X
из ее области определения

Определение. Функция f
называется нечетной, если ее
область определения симметрична
относительно начала координат и для
любого X из ее области
определения

Свойства

Свойства

График четной функции
симметричен относительно оси 0
y

График нечетной функции
симметричен относительно начала
координат

Примеры четных функций

Примеры нечетных функций





Таблица 3

Периодические
функции

Определение.
Функция называется периодической
с периодом

,
если для любого x из
области определения

Свойства

1. Если число Т период функции f
, то число

k*T


также является периодом этой функции

2. Если функция y=f(x)
периодическая с периодом Т, то
функция y=Af(kx+b)
также периодическая и ее период
равен

(A, b, k
– постоянные числа и

)

3. Если функция y=f(x)
периодическая с периодом Т, то
сложная функция (функция от функции)
y=φ(f(x))
также периодическая с периодом Т
(хотя, возможно, этот период и не
является наименьшим по абсолютной
величине)

4. Для построения графика периодической
функции с периодом Т достаточно
построить график на отрезке длиной
Т, а далее – параллельно перенести
этот график вдоль оси 0х на расстояние

влево и вправо

Примеры периодических функций

y=sin(x)

T=2π

y=cos(x)

T=2π

y=tg(x)

T=π

y=ctg(x)

T=π

y=sin(3x)

T=

y={x}-

дробная часть х

T=1

y=|cos(x)|

T=π

y=3

T-любое число (Т≠0)

Практические приемы нахождения
периодов функций

1. Найти период каждой составляющей
функции, которая входит в запись
заданной функции.

2. Подобрать
интервал (если возможно), внутри
которого каждый из найденных периодов
укладывается целое число раз. Длина
этого интервала и будет периодом
заданной функции (хотя, возможно, и не
наименьшим по абсолютной величине).

Пример:
f(x) =
sin(4x)+tg(3x);

Таблица 4

Применение
производной к исследованию функции

Монотонность и постоянство функции

Достаточное
условие

возрастания
функции

Достаточное
условие

возрастания
функции

Если в каждой
точке интервала (a;b)
ƒ ́(x)>0,

то функция ƒ(x)

возрастает

на
этом интервале

Если в каждой
точке интервала (a;b)
ƒ ́(x)<0,

то функция ƒ(x)

убывает

на
этом интервале

З
амечание.
Эти
условия являются только достаточными,

но
не являются необходимыми условиями

возрастания
и убывания функции.

Например,
функция

– возрастающая

на
всей области определения, хотя в точке

ее производная

равна нулю.

Необходимое и достаточное условие
постоянства функции

Функция

постоянна
на интервале (a;
b)
тогда и только тогда, когда

во
всех точках этого интервала.

Экстремумы (максимум и минимум)
функции

Точка максимума

Точка минимума

Определение

Точка

из области

определения
функции

называется
точкой максимума

для
этой функции, если

найдется



окрестность

(
)
точки

,

т
акая,
что для всех

из этой окрестности

выполняется
неравенство

Определение

Точка

из области

определения
функции

называется
точкой минимума

для
этой функции, если

найдется


окрестность

(

)
точки

,

такая,
что для всех

из этой окрестности

выполняется
неравенство

– точка максимума

– точка минимума

Точки максимума
и минимума называются точками
экстремума
.

Значения функции
в точках максимума и минимума называются

экстремумами
функции

(максимумом и минимумом функции)

-максимум

-минимум

Критические точки

Определение.
Внутренние
точки области определения функции,

в
которых производная функции равна
нулю или не существует, называются
критическими.

Необходимое
условие экстремума

Достаточное
условие экстремума

В точках экстремума
производная функции

равна
нулю или не существует

– точка экстремума


Если функция

непрерывна
в точке

и
производная

меняет
знак в точке

,

то

– точка экстремума функции

в
точке

знак

меняется с «+» на «-»

– точка максимума

в
точке

знак

меняется с «-» на «+»

точка минимума

Пример графика функции

,
имеющей экстремумы

(


критические точки)





Исследование функции

на монотонность и экстремумы

Схема

Пример

1. Найти область
определения и интервалы, на которых
функция непрерывна

Область определения:

Функция
непрерывна в каждой точке своей области
определения

2. Найти производную

3. Найти критические
точки, т.е. внутренние точки области
определения, в которых

или не существует

4. Отметить
критические точки на области
определения, найти знак производной
и характер поведения функции на каждом
интервале, на которые разбивается
область определения.

5. Относительно
каждой критической точки определить,
является ли она точкой максимума,
минимума или не является точкой
экстремума

6. Записать
требуемые результаты исследования
(промежутки монотонности и экстремумы)

возрастает
при

и

при

убывает
при

Точки экстремума:

Экстремумы:

Наибольшее и наименьшее значение
функции, непрерывное на отрезке

Свойства

Если функция

непрерывна
на отрезке и имеет на нем конечное
число критических точек, то она
принимает свое наибольшее и наименьшее
значение на этом отрезке или в
критических точках, принадлежащих
этому отрезку, или на концах отрезка

Примеры

Нахождение наибольшего и наименьшего
значения функции,

непрерывной
на отрезке

Схема

Пример

Найти
наибольшее и наименьше значение
функции:

при

1. Найти производную


2. Найти критические
точки

(
или
не существует)


при
х = -4 и при х = 2

3. Выбрать
критические точки, принадлежащие
заданному отрезку

Заданному отрезку
[1;3] принадлежит только критическая
точка х = 2

4. Вычислить
значение функции в критических точках
и на концах отрезка

5. Сравнить
полученные значения и выбрать из них
наименьшее и наибольшее

АСИМПТОТЫ ГРАФИКА ФУНКЦИИ

Определение.
Асимптота
кривой – это прямая,

к
которой неограниченно приближается
кривая

при
удалении ее в бесконечность.

Вертикальные асимптоты (х = а)



вертикальная

асимптота Вертикальная
асимптота х
= а

может быть в точке а,
если точка а
ограничивает открытие промежутки
области
при х→а
f(x)
→ ∞
определения
данной функции и возле точки а
функция уходит в бесконечность

Примеры
вертикальных асимптот

О.О.

При
х→0 (справа) y→+∞

При
х→0 (слева) y→-∞

X
= 0 – вертикальная асимптота

О.О.

При
х→0 (справа) y→-∞

X
= 0 – вертикальная асимптота

О.О.

Z

При
х→

(слева) y→+∞

При
х→

(справа) y→-∞

X
=


вертикальная асимптота

Таблица 5.

Наклонные и
горизонтальные асимптоты

1.
Если
f(x)
– дробно-рациональная функция, в
которой степень числителя на единицу
больше степени знаменателя, то выделяем
целую часть и используем определение
асимптоты.

Пример 1

Пример 2

При

т.е.

,
тогда

– наклонная
асимптота (кроме того

вертикальная
асимптота – см. график)

При

т.е.

,
тогда

– горизонтальная
асимптота (кроме того

вертикальная
асимптота – см. график)

2.
В общем случае уравнения наклонных и
горизонтальных асимптот
y
=
kx + b
могут быть получены с использованием
формул:

Для примера 1

Для примера 2

– наклонная
асимптота.

– горизонтальная
асимптота.

Таблица 6.

ВТОРАЯ ПРОИЗВОДНАЯ И ТОЧКИ ПЕРЕГИБА

Понятие второй
производной

Пусть функция

имеет
производную

во
всех точках некоторого промежутка.
Эта производная, в свою очередь,
является функцией от x.
Если функция

дифференцируема, то ее производную
называют второй производной от

и
обозначают

(или

)

Пример.

Понятия
выпуклости, вогнутости и точек перегиба
графика функции

Пусть функция

определена
на промежутке (а; в), а в точке

имеет
конечную производную.

Тогда
к графику этой функции в точке

можно
провести касательную.

Если в некоторой
окрестности точки М все точки кривой
графика функции

(кроме
самой точки М) лежат выше касательной,
то говорят, что кривая (и сама функция)
в точке М выпуклая (точнее, строго
выпуклая). Также иногда говорят, что
в этом случае график функции

направлен
выпуклостью вниз.

Если в некоторой
окрестности точки М все точки кривой
графика функции

(кроме
самой точки М) лежат ниже касательной,
то говорят, что кривая (и сама функция)
в точке М вогнутая (точнее, строго
вогнутая). Также иногда говорят, что
в этом случае график функции

направлен
выпуклостью вверх.

Если точка

оси абсцисс обладает тем свойством,
что при переходе аргумента

через
нее кривая

переходит с одной стороны касательной
на другую, то точка

называется точкой перегиба функции

,
а точка кривой


точкой перегиба графика функции

точка
перегиба функции

В
некоторой окрестности точки

:
при

кривая ниже касательной, а при

кривая
выше касательной (или наоборот)

Достаточные
усовия выпуклости и вогнутости функции,

которая
имеет первую и вторую производную при

Условие
выпуклости

Условие
вогнутости

Если в каждой
точке интервала

то
на интервале

график
функции

направлен
выпуклостью вниз (выпуклый)

Если в каждой
точке интервала

то
на интервале

график
функции

направлен
выпуклостью вверх (вогнутый)

Замечание:

Эти условия
являются только достаточными, но не
являются необходимыми.

Например, график
функции

направлен
выпуклостью вниз на всей числовой
прямой,

хотя
в точке

ее вторая производная

равна
нулю.

Нахождение
точек перегиба функции, которая имеет
вторую производную на заданном
интервале

Необходимое
условие

Достаточное
условие

В
точке перегиба функции

ее
вторая производная равна нулю или не
существует

Если
функция

имеет
первую и вторую производную на интервале

и
ее вторая производная меняет знак при
переходе аргумента через точку

,
то точка

является
точкой перегиба функции

Исследование
функции

на выпуклость, вогнутость и точки
перегиба

Схема

Пример.

1. Найти область
определения и интервалы, на которых
функция непрерывна

Область определения:

Функция
непрерывна в каждой точке своей области
определения

2. Найти вторую
производную

3. Найти внутренние
точки области определения, в которых

или не
существует


существует
на всей области определения


при
x
= -1, x = 3

4. Отметить
найденные точки на области определения,
найти знак производной и характер
поведения функции на каждом интервале,
на которые разбивается область
определения

5. Записать
требуемый результат исследования
(интервалы выпуклости и вогнутости
и точки перегиба)

В интервале

и
в интервале

график
функции

направлен
выпуклостью вниз

,
а в интервале

график
функции

направлен
выпуклостью вверх

.

Точки
перегиба: x
= -1 и x
= 3 (в этих точках

меняет
знак.

Пример 1:

Исследовать
функцию

и построить график функции.

Т.к. знаменатель
заданной функции не должен быть равен
нулю, то можем записать:

Функция определена
на трех указанных участках.

2.

Функция четная,
график функции симметричен оси OY.

Функция не
периодическая.

3. Точки пересечения с осями координат.

Точка пересечения
с осью OY
(0;2), точек пересечения с осью OX
нет.

4. Производная и критические точки.

5. Промежутки
возрастания, убывания, точки экстремума.

На рисунке
представлено изменение знака первой
производной и поведение функции на
участках области определения.

Точка Х0(0;2)
– точка минимума функции.

6. Поведение
функции на концах области определения
и асимптоты.

При :

Следовательно, мы
имеем две вертикальные асимптоты

Наклонные и
горизонтальные асимптоты типа: y=kx+b
находим по формулам:

Уравнение асимптоты
примет вид: y=0*x-1=-1.

Горизонтальная
асимптота: Y=-1.

7. Вторая производная
и исследование функции на выпуклость
и вогнутость.

– не существует в
точках +2 и -2.

Знак производной
меняется в указанных точках.

На рисунке
представлено изменение знака второй
производной и поведение функции на
участках области определения.

8. Контрольные
точки.

Для более наглядного
представления поведения графика функции
определим значение функции в точках:

9. График функции
представлен на рисунке.

Красным цветом
отмечены асимптоты графика и найденные
по результатам исследования точки.

Пример 2:

Исследовать
функцию

и построить график функции.

1. Область определения функции:

Т.к. под знаком
логарифма может стоять только положительное
выражение, то можем записать следующее:

Функция определена
на указанном участке.

2.

Функция ни нечетная,
ни четная, не периодическая.

3. Точки пересечения с осями координат.

Точек пересечения
с осью OY
нет. Точка пересечения с осью ОХ: х=8.

4. Производная и критические точки.

5. Промежутки
возрастания, убывания, точки экстремума.

На рисунке
представлено изменение знака первой
производной и поведение функции на
участках области определения.

точек экстремума
нет.

возрастает
на всей области определения

6. Поведение
функции на концах области определения
и асимптоты.

При :

Следовательно, мы
имеем вертикальную асимптоту

Наклонные и
горизонтальные асимптоты типа: y=kx+b
находим по формулам:

наклонных и
горизонтальных асимптот нет.

7. Вторая производная
и исследование функции на выпуклость
и вогнутость.

Вторая производная
не меняет знак на всей области определения.

выпуклость
вверх

8. Контрольные
точки.

Для более наглядного
представления поведения графика функции
определим значение функции в точках:

9. График функции
представлен на рисунке.

Красным цветом
отмечены асимптоты графика и найденные
по результатам исследования точи.

Пример 3:

Исследовать
функцию

и построить график функции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Автор статьи

Александр Мельник

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Функцией, заданной на множестве $X$ и принимающей значения из множества $Y$ называют некую закономерность, по которой каждому элементу из множества $X$ соответствует лишь один и только один элемент из множества $Y$.

Из этого определения следует, что множество (область) значений функции — это те значения функции $y(x)$, которые она может принимать соответственно области её определения. Теперь перейдём к следующему определению.

Определение 2

Область (множество) значений функции на некотором рассматриваемом отрезке — это интервал значений, которые функция принимает на этом рассматриваемом отрезке.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Чаще всего в учебной литературе встречается термин «множество значений функции». Кратко его обозначают $E(f)$.

Как определить область значения функции

Для определения множества значений функции пользуются графическим методом, методом поисков минимума и максимума, вычислением производной и другими.

Определение множества значений функции графическим методом

Графический метод подразумевает построение графика функции и изучение этого графика. Этот метод наиболее удобен, если не известна какая-либо закономерность изменения функции $f(x)$, а есть только набор произвольных точек или собственно сам график.

Пример 1

Определение множества значений функции графическим методом

Рисунок 1. Определение множества значений функции графическим методом

На данном рисунке область значений функции $y=f(x)$ равна $E(y)=3$, так как на протяжении всего отрезка функция $y$ не меняет своего значения и всегда равна $3$, тогда как область определения функции $D(y)=[0;3.5]$.

Скобки в данном случае для области определения функции необходимо использовать квадратные, так как обе точки закрашены, то есть включены в отрезок. В случае если точки не закрашены, они не включаются в отрезок и тогда применяются круглые скобки.

«Множество значений функции» 👇

Метод нахождения области значения функции через производную

Метод нахождения области значения функции через производную состоит в том, чтобы сначала оценить область её определения (то есть определить те значения, которые может принимать аргумент $x$, а затем осуществить процедуру нахождения самой производной. После этого осуществляют поиск значений $x$, при которых производная функции равна нулю и при которых производная не существует.

Рассмотрим пример нахождения области значений функции через производную.

Пример 2

Дана функция $f(x)=sqrt{16-x^2}$. Найдите область её значений.

Сначала определяем, какие значения может принимать $x$ для существования функции.

При значении $x^2>16$ под корнем получается отрицательное число, а это значит, что область определения функции от $[-4;4]$ включительно.

Теперь найдём производную функции:

$(sqrt{16-x^2})’=-frac{x}{sqrt{16-x^2}}$

Если в знаменателе производной нуль, то производной не существует, в данном случае это условие выполняется при $x=±4$.

Приравниваем производную к нулю и находим значения $x$. Производная данной функции принимает нулевое значение при $x=0$. Теперь подставляем найденные значения производной в нашу функцию, и получаем, что наименьшее значение функции — это $f(4)$ и $f(-4)$, при этих значениях функция равна нулю, а наибольшее значение $f(x)$ — при $x=0$, в этой точке функция равна $16$.

Метод поиска минимума и максимума

Метод поиска минимума и максимума основан на том, чтобы найти максимальное и и минимальное значение, которые функция принимает на изучаемой области.

Пример 3

Определите область значений функции:

$y=6-4sinx$

Проанализируем данную функцию. Так как минимальное значение синуса равно минус единице, а а максимальное — единице, то подставив эти значения получаем, что $max(f(x))=10$ при $x=frac{3π}{2}$, а минимум $min(f(x))=2$ при $x=frac{π}{2}$. Следовательно, множество значений, которые может принимать данная функция — $E(x)=[2;10]$.

Разница между областью значения и областью определения функции

Стоит обратить внимание, что область значений функции — не одно и то же с термином «область определения функции».

Определение 3

Область определения функции $D(y)$ — это диапазон таких значений переменной $x$, при которых существует функция $y(x)$.

Например, рассмотрим функцию $y(x)=x^2$. В данном случае область определения этой функции будет множеством вещественных (действительных) чисел $mathbb{R}$, а сама функция будет принимать значения только положительных действительных чисел $mathbb{R}^+$, так как вещественное число, возведённое в квадрат, не может давать отрицательное значение. То есть, в этом примере множество значений функции — это множество положительных вещественных чисел $mathbb{R}^+$.

Также имеют место случаи, когда область определения функции совпадает с областью значений.
В качестве иллюстрации можно рассмотреть функцию $y(x)=2x$. За аргумент $x$ данная функция может принимать любое действительное число из множества $mathbb{R}$, а значения, которые будет принимать сама функция — это удвоенные числа из множества всех действительных чисел. То есть, в данном случае областью значений $E(y)$ будет также всё множество вещественных чисел $mathbb{R}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий