Одз квадратичной функции как найти

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1 x – y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 – 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 – 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z – 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x – y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ – 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Найти ОДЗ выражения 1 3 – x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Найти ОДЗ заданного выражения x + 2 · y + 3 – 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Определить ОДЗ выражения вида 1 x + 1 – 1 + log x + 8 ( x 2 + 3 ) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 – 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 – 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x – 1 · x – 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x – 1 · x – 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x – 1 ≥ 0 , x – 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Рассмотрим пример выражения x – 1 · x – 3 , когда х = – 1 . При подстановке получим, что – 1 – 1 · – 1 – 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x – 1 · x – 3 , тогда при вычислении получим, что 2 – 1 · 2 – 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Квадратичная функция. Построение параболы

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 – 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:

  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=”671″ src=”https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=”602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x – 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x – 5.

D = b 2 – 4ac = 9 – 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x – 5 = 0 2 + 3x – 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=”>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x – 5 = 0″ height=”671″ src=”https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC” width=”602″>

Уравнение квадратичной функции имеет вид y = a * (x – x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x – 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x – 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀” height=”431″ src=”https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=”602″>

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Практика. Функции. Часть 1. Область определения и область значений функции

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На предыдущих уроках мы познакомились с базовыми функциями, их свойствами и графиками. Кроме того, узнали о различных преобразованиях графиков функций. На этом уроке мы разберем практические задания с функциями и их графиками, а также изучим еще один вид преобразования графиков функций.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kvadratichnaya-funkciya-parabola

http://interneturok.ru/lesson/algebra/8-klass/effektivnye-kursy/praktika-funktsii-chast-1-oblast-opredeleniya-i-oblast-znacheniy-funktsii

[/spoiler]


Загрузить PDF


Загрузить PDF

В каждой функции есть две переменные – независимая переменная и зависимая переменная, значения которой зависят от значений независимой переменной. Например, в функции y = f(x) = 2x + y независимой переменной является «х», а зависимой – «у» (другими словами, «у» – это функция от «х»). Допустимые значения независимой переменной «х» называются областью определения функции, а допустимые значения зависимой переменной «у» называются областью значений функции.[1]

  1. Изображение с названием Find the Domain and Range of a Function Step 1

    1

    Определите тип данной вам функции. Областью значений функции являются все допустимые значения «х» (откладываются по горизонтальной оси), которым соответствуют допустимые значения «у». Функция может быть квадратичной или содержать дроби или корни. Для нахождения области определения функции сначала необходимо определить тип функции.

    • Квадратичная функция имеет вид: ax2 + bx + c:[2]
      f(x) = 2x2 + 3x + 4
    • Функция, содержащая дробь: f(x) = (1/x), f(x) = (x + 1)/(x – 1) (и так далее).
    • Функция, содержащая корень: f(x) = √x, f(x) = √(x2 + 1), f(x) = √-x (и так далее).
  2. Изображение с названием Find the Domain and Range of a Function Step 2

    2

    Выберите соответствующую запись для области определения функции. Область определения записывается в квадратных и/или круглых скобках. Квадратная скобка применяется в том случае, когда значение входит в область определения функции; если значение не входит в область определения, используется круглая скобка. Если у функции несколько несмежных областей определения, между ними ставится символ «U».[3]

    • Например, область определения [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.
  3. Изображение с названием Find the Domain and Range of a Function Step 3

    3

    Постройте график квадратичной функции. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Так как парабола возрастает или убывает на всей оси Х, то областью определения квадратичной функции являются все действительные числа. Другими словами, областью определения такой функции является множество R (R обозначает все действительные числа).[4]

    • Для лучшего уяснения понятия функции выберите любое значение «х», подставьте его в функцию и найдите значение «у». Пара значений «х» и «у» представляют собой точку с координатами (х,у), которая лежит на графике функции.
    • Нанесите эту точку на плоскость координат и проделайте описанный процесс с другим значением «х».
    • Нанеся на плоскость координат несколько точек, вы получите общее представление о форме графика функции.
  4. Изображение с названием Find the Domain and Range of a Function Step 4

    4

    Если функция содержит дробь, приравняйте ее знаменатель к нулю. Помните, что делить на нуль нельзя. Поэтому, приравняв знаменатель к нулю, вы найдете значения «х», которые не входят в область определения функции.[5]

    • Например, найдите область определения функции f(x) = (x + 1)/(x – 1).
    • Здесь знаменатель: (х – 1).
    • Приравняйте знаменатель к нулю и найдите «х»: х – 1 = 0; х = 1.
    • Запишите область определения функции. Область определения не включает 1, то есть включает все действительные числа за исключением 1. Таким образом, область определения функции: (-∞,1) U (1,∞).
    • Запись (-∞,1) U (1,∞) читается так: множество всех действительных чисел за исключением 1. Символ бесконечности ∞ означает все действительные числа. В нашем примере все действительные числа, которые больше 1 и меньше 1, включены в область определения.
  5. Изображение с названием Find the Domain and Range of a Function Step 5

    5

    Если функция содержит квадратный корень, то подкоренное выражение должно быть больше или равно нулю. Помните, что квадратный корень из отрицательных чисел не извлекается. Поэтому любое значение «х», при котором подкоренное выражение становится отрицательным, нужно исключить из области определения функции.[6]

    • Например, найдите область определения функции f(x) = √(x + 3).
    • Подкоренное выражение: (х + 3).
    • Подкоренное выражение должно быть больше или равно нулю: (х + 3) ≥ 0.
    • Найдите «х»: х ≥ -3.
    • Область определения этой функции включает множество всех действительных чисел, которые больше или равны -3. Таким образом, область определения: [-3,∞).

    Реклама

  1. Изображение с названием Find the Domain and Range of a Function Step 6

    1

    Убедитесь, что вам дана квадратичная функция. Квадратичная функция имеет вид: ax2 + bx + c: f(x) = 2x2 + 3x + 4. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Существуют различные методы нахождения области значений квадратичной функции.[7]

    • Самый простой способ найти область значений функции, содержащей корень или дробь, – это построить график такой функции при помощи графического калькулятора.
  2. Изображение с названием Find the Domain and Range of a Function Step 7

    2

    Найдите координату «х» вершины графика функции. В случае квадратичной функции найдите координату «х» вершины параболы. Помните, что квадратичная функция имеет вид: ax2 + bx + c. Для вычисления координаты «х» воспользуйтесь следующим уравнением: х = -b/2a. Это уравнение является производной от основной квадратичной функции и описывает касательную, угловой коэффициент которой равен нулю (касательная к вершине параболы параллельна оси Х).[8]

    • Например, найдите область значений функции 3x2 + 6x -2.
    • Вычислите координату «х» вершины параболы: х = -b/2a = -6/(2*3) = -1
  3. Изображение с названием Find the Domain and Range of a Function Step 8

    3

    Найдите координату «у» вершины графика функции. Для этого в функцию подставьте найденную координату «х». Искомая координата «у» представляет собой предельное значение области значений функции.

    • Вычислите координату «у»: y = 3x2 + 6x – 2 = 3(-1)2 + 6(-1) -2 = -5
    • Координаты вершины параболы этой функции: (-1,-5).
  4. Изображение с названием Find the Domain and Range of a Function Step 9

    4

    Определите направление параболы, подставив в функцию по крайней мере одно значение «х». Выберите любое другое значение «х» и подставьте его в функцию, чтобы вычислить соответствующее значение «у». Если найденное значение «у» больше координаты «у» вершины параболы, то парабола направлена вверх. Если же найденное значение «у» меньше координаты «у» вершины параболы, то парабола направлена вниз.

    • Подставьте в функцию х = -2: y = 3x2 + 6x – 2 = y = 3(-2)2 + 6(-2) – 2 = 12 -12 -2 = -2.
    • Координаты точки, лежащей на параболе: (-2,-2).
    • Найденные координаты свидетельствуют о том, что ветки параболы направлены вверх. Таким образом, область значений функции включает все значения «у», которые больше или равны -5.
    • Область значений этой функции: [-5, ∞)
  5. Изображение с названием Find the Domain and Range of a Function Step 10

    5

    Область значений функции записывается аналогично области определения функции. Квадратная скобка применяется в том случае, когда значение входит в область значений функции; если значение не входит в область значений, используется круглая скобка. Если у функции несколько несмежных областей значений, между ними ставится символ «U».[9]

    • Например, область значений [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.

    Реклама

  1. Изображение с названием Find the Domain and Range of a Function Step 11

    1

    Постройте график функции. Во многих случаях проще найти область значений функции, построив ее график. Областью значений многих функций с корнями является (-∞,0] или [0,+∞), так как вершина параболы, направленной вправо или влево, лежит на оси Х. В этом случае область значений включает все положительные значения «у», если парабола возрастает, или все отрицательные значения «у», если парабола убывает. Функции с дробями имеют асимптоты, которые определяют область значений.[10]

    • Вершины графиков некоторых функций с корнями лежат выше или ниже оси Х. В этом случае область значений определяется координатой «у» вершины параболы. Если, например, координата «у» вершины параболы равна -4 (у = -4), а парабола возрастает, то область значений равна [-4,+∞).
    • Самый простой способ построить график функции – это воспользоваться графическим калькулятором или специальным программным обеспечением.
    • Если у вас нет графического калькулятора, постройте приблизительный график, подставив в функцию несколько значений «х» и вычислив соответствующие значения «у». Нанесите найденные точки на координатную плоскость, чтобы получить общее представление о форме графика.
  2. Изображение с названием Find the Domain and Range of a Function Step 12

    2

    Найдите минимум функции. Построив график функции, вы увидите на нем точку, в которой функция имеет минимальное значение. Если наглядного минимума нет, то он не существует, а график функции уходит в -∞.

    • Область значений функции включает все значения «у» за исключением значений асимптот. Зачастую, области значений таких функций записываются так: (-∞, 6) U (6, ∞).
  3. Изображение с названием Find the Domain and Range of a Function Step 13

    3

    Определите максимум функции. Построив график функции, вы увидите на нем точку, в которой функция имеет максимальное значение. Если наглядного максимума нет, то он не существует, а график функции уходит в +∞.

  4. Изображение с названием Find the Domain and Range of a Function Step 14

    4

    Область значений функции записывается аналогично области определения функции. Квадратная скобка применяется в том случае, когда значение входит в область значений функции; если значение не входит в область значений, используется круглая скобка. Если у функции несколько несмежных областей значений, между ними ставится символ «U».[11]

    • Например, область значений [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.

    Реклама

Об этой статье

Эту страницу просматривали 352 307 раз.

Была ли эта статья полезной?

Эта статья — о числовой функции одной переменной. О функции второй степени с несколькими переменными см. Квадратичная форма; о геометрическом месте точек см. Парабола.

График функции {displaystyle f(x)=x^{2}-x-2}

Квадратичная функция — целая рациональная функция второй степени вида {displaystyle f(x)=ax^{2}+bx+c}, где a neq 0 и a,b,cin mathbb {R} . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.

Обзор основных свойств[править | править код]

Многие свойства квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} зависят от значения коэффициента a. В следующей таблице приводится обзор основных свойств квадратичной функции[1]. Их доказательство рассматривается в статье в соответствующих разделах.

Свойство a>0 a<0
Область определения функции {displaystyle D(f)=mathbb {R} }
Множество значений функции {displaystyle E(f)=left[-{frac {b^{2}-4ac}{4a}};+infty right)} {displaystyle E(f)=left(-infty ;-{frac {b^{2}-4ac}{4a}}right]}
Чётность функции Чётная функция при b=0; ни чётная, ни нечётная при bneq 0
Периодичность функции Непериодическая функция
Непрерывность функции Всюду непрерывная функция, точек разрыва нет
Нули функции {displaystyle x_{1,2}={frac {-bpm {sqrt {D}}}{2a}}}, если {displaystyle D=b^{2}-4acgeq 0}
нет действительных нулей, если {displaystyle D=b^{2}-4ac<0}
Предел функции при {displaystyle xto pm infty } {displaystyle f(x)to +infty } при {displaystyle xto pm infty } {displaystyle f(x)to -infty } при {displaystyle xto pm infty }
Дифференцируемость функции Всюду многократно дифференцируема:
{displaystyle f'(x)=2ax+b,f''(x)=2a,f'''(x)=0}
Точки экстремума (абсолютный экстремум) {displaystyle x_{min}={frac {-b}{2a}}} (минимум) {displaystyle x_{max}={frac {-b}{2a}}} (максимум)
Интервалы строгой монотонности убывает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
возрастает на {displaystyle left[-{frac {b}{2a}};+infty right)}
возрастает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
убывает на {displaystyle left[-{frac {b}{2a}};+infty right)}
Выпуклость функции Всюду выпуклая вниз функция Всюду выпуклая вверх функция
Точки перегиба Точки перегиба отсутствуют
Ограниченность функции Ограничена снизу Ограничена сверху
Наибольшее значение функции Отсутствует (неограничена сверху) {displaystyle y_{max}=-{frac {b^{2}-4ac}{4a}}}
Наименьшее значение функции {displaystyle y_{min}=-{frac {b^{2}-4ac}{4a}}} Отсутствует (неограничена снизу)
Положительные значения функции {displaystyle (-infty ;x_{1})cup (x_{2};+infty )} {displaystyle (x_{1};x_{2})}
Отрицательные значения функции {displaystyle (x_{1};x_{2})} {displaystyle (-infty ;x_{1})cup (x_{2};+infty )}

Влияние коэффициентов на трансформацию графика[править | править код]

Стандартная запись уравнения квадратичной функции[править | править код]

Влияние коэффициентов a, b и c на параболу

Действительные числа a, b и c в общей записи квадратичной функции называются её коэффициентами. При этом коэффициент a принято называть старшим, а коэффициент c — свободным. Изменение каждого из коэффициентов приводит к определённым трансформациям параболы.

По значению коэффициента a можно судить о том, в какую сторону направлены её ветви (вверх или вниз) и оценить степень её растяжения или сжатия относительно оси ординат:

  • Если a>0, то ветви параболы направлены вверх, то есть её вершина расположена снизу.
  • Если a<0, то ветви параболы направлены вниз, то есть её вершина расположена сверху.
  • Если {displaystyle |a|<1}, то парабола сжата по оси ординат, то есть кажется более широкой и плоской.
  • Если {displaystyle |a|>1}, то парабола растянута по оси ординат, то есть кажется более узкой и крутой.

Влияние значения коэффициента a наиболее просто позволяет проиллюстрировать квадратичная функция вида {displaystyle f(x)=ax^{2}}, то есть в случае b=0 и c=0. В случае a=0 квадратичная функция превращается в линейную.

Изменение коэффициента b повлечёт за собой сдвиг параболы как относительно оси абсцисс, так и относительно оси ординат. При увеличении значения b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} влево и одновременно на {displaystyle (2b+1)/4a} вниз. При уменьшении b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} вправо и одновременно на {displaystyle (2b-1)/4a} вверх. Такие трансформации объясняются тем, что коэффициент b характеризует угловой коэффициент касательной к параболе в точке пересечения с осью ординат (то есть при x=0).

Коэффициент c характеризует параллельный перенос параболы относительно оси ординат (то есть вверх или вниз). При увеличении значения этого коэффициента на 1, парабола переместится на 1 вверх. Соответственно, если уменьшить коэффициент c на 1, то и парабола сместится на 1 вниз. Так как коэффициент b также влияет на положение вершины параболы, то по одному лишь значению коэффициента c нельзя судить о том, расположена ли вершина выше оси абсцисс или ниже неё.

Запись квадратичной функции через координаты вершины параболы[править | править код]

Любая квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} может быть получена с помощью растяжения/сжатия и параллельного переноса простейшей квадратичной функции f(x)=x^{2}. Так, график функции вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} получается путём сжатия (при a<0) или растяжения (при a>0) графика функции f(x)=x^{2} в a раз с последующем его параллельным переносом на x_{0} единиц вправо и y_0 единиц вверх (если эти значения являются отрицательными числами тогда, соответственно, влево и вниз). Очевидно, что при проделанной трансформации вершина параболы функции f(x)=x^{2} переместится из точки (0;0) в точку (x_{0};y_{0}). Этот факт даёт ещё один способ вычисления координат вершины параболы произвольной квадратичной функции путём приведения её уравнения к виду {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, позволяющему сразу увидеть координаты вершины параболы — (x_{0};y_{0}).

Влияние коэффициентов в записи вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} на параболу

Преобразовать произвольную квадратичную функцию вида {displaystyle f(x)=ax^{2}+bx+c} к форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} позволяет метод выделения полного квадрата, использующий формулы сокращённого умножения биномов:

{displaystyle f(x)=ax^{2}+bx+c}

{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot xright)+c}
{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot x+{frac {b^{2}}{4a^{2}}}-{frac {b^{2}}{4a^{2}}}right)+c}
{displaystyle =acdot left(x^{2}+2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)-{frac {b^{2}}{4a}}+c}
{displaystyle =acdot left(x+{frac {b}{2a}}right)^{2}+{frac {-b^{2}}{4a}}+{frac {4ac}{4a}}}
{displaystyle =acdot left(x-{frac {-b}{2a}}right)^{2}+{frac {-b^{2}+4ac}{4a}}}
{displaystyle =acdot left(x-x_{0}right)^{2}+y_{0}}, где {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}={frac {-b^{2}+4ac}{4a}}}

Сравнивая значения для x_{0} и y_0, вычисленные дифференциальным методом (см. соответствующий раздел статьи), можно также убедиться, что они являются координатами вершины параболы. В конкретных случаях вовсе не требуется запоминать приведённые громоздкие формулы, удобней всякий раз выполнять преобразования многочлена к желаему виду непосредственно. На конкретном примере этот метод выглядит так:

{displaystyle f(x)=2x^{2}+8x+5=2cdot left(x^{2}+4cdot xright)+5}

{displaystyle =2cdot left(x^{2}+4cdot x+4-4right)+5}
{displaystyle =2cdot left(left(x+2right)^{2}-4right)+5}
{displaystyle =2cdot left(x+2right)^{2}-8+5}
{displaystyle =2cdot left(x+2right)^{2}-3Rightarrow S(-2;-3)}

Недостатком данного метода является его громоздкость, особенно в случае, когда в результате вынесения за скобки приходится работать с дробями. Также он требует определённого навыка в обращении с формулами сокращённого умножения.

Однако, рассмотренное выше доказательство в общем виде приводит к более простому способу вычисления координат вершины параболы с помощью формул {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}=f(x_{0})}. Например, для той же функции {displaystyle f(x)=2x^{2}+8x+5} имеем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3}.

Нули функции[править | править код]

Число нулей квадратичной функции[править | править код]

Число действительных нулей квадратичной функции в случае a>0

Квадратичная функция является целой рациональной функцией второй степени, поэтому она может иметь не более двух нулей в действительной области. В случае расширения на комплексную область можно говорить о том, что квадратичная функция в любом случае имеет ровно два комплексных нуля, которые могут быть строго действительными числами или содержать мнимую единицу.

Определить число нулей квадратичной функции без решения соответствующего квадратного уравнения можно с помощью вычисления дискриминанта. При этом имеются различные вариации его вычисления: обычный (применим всегда), сокращённый (удобен в случае чётного коэффициента b) и приведённый (применим только для приведённого многочлена). При этом числовые значения в каждом случае будут отличаться, однако знак дискриминанта будет совпадать независимо от вариации.

Полный дискриминант Сокращённый дискриминант Приведённый дискриминант
{displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=x^{2}+px+q}
{displaystyle D=b^{2}-4ac} {displaystyle D=left({frac {b}{2}}right)^{2}-ac} {displaystyle D=left({frac {p}{2}}right)^{2}-q}

Независимо от вычисления дискриминанта будут справедливы следующие утверждения:

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} с использованием стандартной формулы для дискриминанта получаем:

{displaystyle D=b^{2}-4ac=8^{2}-4cdot 2cdot 5=64-40=24>0}.

Это означает, что данная функция имеет два действительных нуля, то есть её парабола пересекает ось абсцисс в двух точках.

Методы вычисления нулей квадратичной функции[править | править код]

Нахождение нулей квадратичной функции сводится к решению квадратного уравнения {displaystyle ax^{2}+bx+c=0}, где a neq 0. Конкретный метод, наиболее подходящий для конкретной квадратичной функции, во многом зависит от его коэффициентов. Во всех специальных случаях кроме специальных формул и методов всегда применима также и универсальная формула. Во всех перечисленных формулах, содержащих квадратный корень, следует учитывать, что если подкоренное выражение является отрицательным числом, то квадратичная функция не имеет нулей в действительной области, а обладает двумя комплексными нулями.

  • В наиболее общем случае применяется универсальная формула:
{displaystyle x_{1,2}={frac {-bpm {sqrt {b^{2}-4ac}}}{2a}}}
{displaystyle x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}}
Получить приведённую форму из общей можно, поделив исходное уравнение {displaystyle ax^{2}+bx+c=0} на a. При этом, очевидно, {displaystyle p=b/a} и {displaystyle q=c/a}.
{displaystyle x_{1,2}=pm {sqrt {frac {-c}{a}}}}
{displaystyle x_{1}=0}
{displaystyle x_{2}={frac {-b}{a}}}

Чётность и симметрия квадратичной функции[править | править код]

Симметрия относительно оси ординат[править | править код]

График функции f(x)=x^{2} (b=0 и c=0) симметричен относительно оси ординат

Квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} является целой рациональной функцией второй степени, поэтому для неё справедливы все соответствующие свойства целой рациональной функции. В частности, она является чётной только тогда, когда в записи её многочлена присутствуют лишь чётные показатели степени, и нечётной — если она содержит только нечётные показатели. Из этого следует, что никакая квадратичная функция не может быть нечётной ввиду того, что на неё изначально накладывается условие aneq 0, а следовательно она всегда будет содержать чётный показатель 2.

Кроме того, очевидно, что квадратичная функция является чётной только при отсутствии показателя 1, что означает b=0. Этот факт легко доказывается и непосредственно. Так, очевидно, что функция {displaystyle f(x)=ax^{2}+c} является чётной, так как справедливо:

{displaystyle f(-x)=acdot (-x)^{2}+c=ax^{2}+c=f(x)}, то есть {displaystyle f(-x)=f(x)}.

Таким образом, квадратичная функция является симметричной относительно оси ординат только тогда, когда b=0. Конкретные значения коэффициентов a и c на этот факт абсолютно не влияют. В частности, c может быть также равно нулю, то есть отсутствовать в записи формулы. В этом случае вершина параболы будет совпадать с началом системы координат.

Во всех других случаях квадратичная функция не будет ни чётной, ни нечётной, то есть является функцией общего вида. Это также легко можно показать с помощью определения чётности функции:

{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+cneq f(x)}, то есть {displaystyle f(-x)neq f(x)}.
{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+c=-(-ax^{2}+bx-c)neq -f(x)}, то есть {displaystyle f(-x)neq -f(x)}.

Осевая симметрия в общем случае[править | править код]

Осью симметрии любой параболы является прямая, проходящая через её вершину параллельно оси ординат

В то же время график любой квадратичной функции обладает осевой симметрией. Как известно, если для некоторой функции f(x) для некоторого числа {displaystyle x_{0}in mathbb {R} } справедливо равенство {displaystyle f(x_{0}+x)=f(x_{0}-x)}, то график этой функции f(x) обладает осевой симметрией по отношению к прямой x = x_0. В отношении квадратичной функции таким числом x_{0} является абсцисса вершины её параболы. Таким образом, график любой квадратичной функции симметричен по отношению к оси, параллельной оси ординат и проходящей через вершину параболы, а осью симметрии функции {displaystyle f(x)=ax^{2}+bx+c} является прямая {displaystyle x=-b/2a}.

Доказательство этого факта также не является сложным:

{displaystyle f(x_{0}+x)=f(x+x_{0})=fleft(x-{frac {b}{2a}}right)=aleft(x-{frac {b}{2a}}right)^{2}+bleft(x-{frac {b}{2a}}right)+c}

{displaystyle =aleft(x^{2}-2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)+bleft(x-{frac {b}{2a}}right)+c}
{displaystyle =ax^{2}-bx+{frac {b^{2}}{4a}}+bx-{frac {b^{2}}{2a}}+c=ax^{2}-{frac {b^{2}}{4a}}+c=ax^{2}+{frac {4ac-b^{2}}{4a}}}

К аналогичному результату приводит и преобразование:

{displaystyle f(x_{0}-x)=f(-x+x_{0})=fleft(-x-{frac {b}{2a}}right)=dotsb =ax^{2}+{frac {4ac-b^{2}}{4a}}}

Таким образом, {displaystyle fleft({frac {-b}{2a}}+xright)=fleft({frac {-b}{2a}}-xright)}, поэтому график функции симметричен относительно прямой {displaystyle x={frac {-b}{2a}}}.

Вычисление вершины параболы с помощью нулей функции[править | править код]

Нули функции расположены симметрично к оси, проходящей через вершину параболы параллельно оси ординат

Так как ось симметрии параболы всегда проходит через её вершину, то, очевидно, что нули квадратичной функции также всегда симметричны относительно абсциссы вершины параболы. Этот факт позволяет легко вычислить координаты вершины параболы с помощью известных нулей функции. В поле действительных чисел этот способ действует только тогда, когда парабола пересекает ось абсцисс или касается её, то есть имеет нули из действительной области.

В случае, когда квадратичная функция имеет лишь один нуль (кратности 2), то он, очевидно, сам и является вершиной параболы. Если же парабола имеет нули x_{1} и x_{2}, то абсцисса x_{0} её вершины легко вычисляется как среднее арифметическое нулей функции. Ордината вершины вычисляется путём подстановки её абсциссы в исходное уравнение функции:

{displaystyle x_{0}={frac {x_{1}+x_{2}}{2}}}
{displaystyle y_{0}=f(x_{0})}

Особенно удобным этот способ будет в случае, когда квадратичная функция заданна в её факторизированном виде. Так, например, парабола функции {displaystyle f(x)=2(x-1)(x+3)} будет иметь вершину со следующими координатами:

{displaystyle x_{0}={frac {1+(-3)}{2}}=-1}
{displaystyle y_{0}=f(-1)=2(-1-1)(-1+3)=-8}

При этом даже не требуется преобразовывать уравнение функции к общему виду.

Исследование методами дифференциального и интегрального анализа[править | править код]

Производная и первообразная[править | править код]

Квадратичная функция (красный график), её производная (синий) и первообразная (чёрный)

Угловой коэффициент касательной параболы в точке x=0 равен коэффициенту b в записи уравнения квадратичной функции; в данном случае b=1

Как и любая целая рациональная функция квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} дифференцируема во всей своей области определения. Её производная легко находится с помощью элементарных правил дифференцирования: {displaystyle f'(x)=2ax+b}. Таким образом, видим, что производной квадратичной функции является линейная функция, которая либо строго монотонно возрастает (если a>0), либо строго монотонно убывает (если a<0) на всей области определения. При этом также нетрудно заметить, что {displaystyle f'(0)=b}, что означает, что коэффициент {displaystyle f'(0)=b} в уравнении исходной функции равен угловому коэффициенту параболы в начале координат.

Квадратичная функция как и любая целая рациональная функция также и интегрируема во всей своей области определения. Её первообразная, очевидно, является кубической функцией:

{displaystyle F(x)=int (ax^{2}+bx+c)dx={frac {a}{3}}x^{3}+{frac {b}{2}}x^{2}+cx+d}, где {displaystyle din mathbb {R} }.

Монотонность и точки экстремума[править | править код]

Очевидно, что вершина параболы является её наивысшей или наинизшей точкой, то есть абсолютным экстремумом квадратичной функции (минимумом при a>0 и максимумом при a<0). Поэтому абсцисса вершины параболы разбивает область определения функции на два монотонных интервала, на одном из которых функция возрастает, а на другом — убывает. Воспользовавшись методами дифференциального исчисления, с помощью этого факта можно легко вывести простую формулу для вычисления координат вершины параболы, заданной общим уравнением {displaystyle f(x)=ax^{2}+bx+c}, через его коэффициенты.

Согласно необходимому и достаточному условию для существования экстремума, получаем: {displaystyle f'(x)=2ax+b}. При этом f'(x)=0, если {displaystyle x=-b/2a}. Функция {displaystyle f''(x)=2a} является константной функцией, при этом {displaystyle f''>0} при a>0 и {displaystyle f''<0} при a<0. Таким образом, необходимый и достаточный критерий существования экстремума выполняется в точке {displaystyle x_{0}=-b/2a}. Следовательно, имеем координаты вершины:

{displaystyle x_{0}={frac {-b}{2a}}}
{displaystyle y_{0}=f(x_{0})=aleft({frac {-b}{2a}}right)^{2}+bleft({frac {-b}{2a}}right)+c={frac {4ac-b^{2}}{4a}}}

Вершина параболы разбивает область определения квадратичной функции на два монотонных интервала: {displaystyle left(-infty ;{frac {-b}{2a}}right)} и {displaystyle left({frac {-b}{2a}};+infty right)}. При a>0 функция на первом из них является строго монотонно убывающей, а на втором — строго монотонно возрастающей. В случае a<0 — в точности наоборот.

При этом можно вовсе не запоминать данные формулы, а просто каждый раз пользоваться критериями существования экстремума для каждой конкретной квадратичной функции. Или же рекомендуется запоминать только формулу {displaystyle x_{0}=-b/2a} для вычисления абсциссы вершины параболы. Её ордината легко вычисляется в результате подстановки вычисленной абсциссы в конкретное уравнение функции.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} получаем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, вершина параболы данной функции имеет координаты {displaystyle (-2;-3)}. При этом функция строго монотонно убывает на интервале {displaystyle (-infty ;-2)} и строго монотонно возрастает на интервале {displaystyle (-2;+infty )}

Выпуклость и точки перегиба[править | править код]

Так как вторая производная квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} является константной линейной функцией {displaystyle f''(x)=2a}, то она не имеет точек перегиба, так как её значение постоянно, а соответственно достаточный критерий не будет выполняться ни для какой её точки. Более того, очевидно, что при a>0 исходная квадратичная функция будет всюду выпуклой вниз (ввиду того, что её вторая производная всюду положительна), а при a<0 — всюду выпуклой вверх (её вторая производная будет всюду отрицательной).

Обратимость квадратичной функции[править | править код]

Функция f(x)=x^{2} и обратная ей {displaystyle f^{-1}(x)={sqrt {x}}} на интервале [0, +infty)

Так как квадратичная функция не является строго монотонной функцией, то она является необратимой. Так как любую непрерывную функцию, однако, можно обратить на её интервалах строгой монотонности, то для любой квадратичной функции существуют две обратные функции, соответствующие двум её интервалам монотонности. Обратными для квадратичной функции на каждом из её интервалов монотонности являются функции арифметического квадратного корня[2].

Так, функция арифметического квадратного корня {displaystyle f^{-1}(x)={sqrt {x}}} является обратной к квадратной функции f(x)=x^{2} на интервале [0, +infty). Соответственно, функция {displaystyle f^{-1}(x)=-{sqrt {x}}} является обратной к функции f(x)=x^{2} на интервале {displaystyle (-infty ;0]}. Графики функций f(x) и {displaystyle f^{-1}(x)} будут симметричными друг другу относительно прямой y=x.

Функция {displaystyle f(x)=2x^{2}+8x+5} и обратная к ней на интервале {displaystyle [-2;+infty )} функция {displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2}

Для нахождения обратных функций для произвольной квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} удобнее представить её в форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, где (x_{0};y_{0}) — вершина её параболы. Далее воспользуемся известным методом для нахождения обратных функций — поменяем местами переменные x и y и снова выразим y через x:

{displaystyle y=a(x-x_{0})^{2}+y_{0}}
{displaystyle x=a(y-x_{0})^{2}+y_{0}}
{displaystyle x-y_{0}=a(y-x_{0})^{2}}
{displaystyle {frac {x-y_{0}}{a}}=(y-x_{0})^{2}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}=y-x_{0}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}+x_{0}=y}

Таким образом, обратной к f(x) на интервале {displaystyle [x_{0};+infty )} является функция {displaystyle f^{-1}(x)={sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

На интервале {displaystyle (-infty ;x_{0}]} обратной к f(x) является функция {displaystyle f^{-1}(x)=-{sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3} с вершиной {displaystyle (-2;-3)} получаем:

{displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle [-2;+infty )}.
{displaystyle f^{-1}(x)=-{sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle (-infty ;-2]}.

Примеры появления на практике[править | править код]

  • Зависимость высоты свободно падающего тела от времени.
  • Зависимость площади круга от её линейных размеров (например, радиуса).
  • Зависимость расстояния от времени при равноускоренном движении.
  • Зависимость напора от расхода (напорная характеристика центробежного насоса).

Обобщение[править | править код]

Обобщение на случай многих переменных служат поверхности второго порядка, в общем виде такое уравнение можно записать, как:

f({vec  {x}})={vec  {x}}^{T}A{vec  {x}}+{vec  {b}}cdot {vec  {x}}+c.

Здесь: A — матрица квадратичной формы, {vec  {b}} — постоянный вектор, c — константа.
Свойства функции, так же как и в одномерном случае, определяются главным коэффициентом — матрицей A.

См. также[править | править код]

  • Аффинно-квадратичная функция

Примечания[править | править код]

  1. Квадратичная функция // Большая школьная энциклопедия. — М. : «Русское энциклопедическое товарищество», 2004. — С. 118—119.
  2. Rolf Baumann. Quadratwutzelfunktion // Algebra: Potenzfunktionen, Exponential- und Logarithmusgleichungen, Stochastik : [нем.]. — München : Mentor, 1999. — Т. 9. — С. 17—19. — 167 с. — ISBN 3-580-63631-6.

Литература[править | править код]

  • Сканави М.И. График квадратного трёхчлена // Элементарная математика. — 2-е изд., перераб. и доп. — М., 1974. — С. 130—133. — 592 с.
  • Каплан И.А. Тридцать третье практическое занятие (экстремум квадратичной функции) // Практические занятия по высшей математике. — 3-е изд. — Харьков, 1974. — С. 449—451.

Значение области допустимых значений в математике: способы нахождения

Содержание:

  • Допустимые и недопустимые значения переменных
  • Что такое ОДЗ
  • Как найти ОДЗ: примеры, решения

    • Общие принципы нахождения области допустимых значений
    • Примеры нахождения ОДЗ
  • Почему важно учитывать ОДЗ при проведении преобразований
  • Функции, для которых важна ОДЗ

    • ОДЗ обратной зависимости
    • ОДЗ степенной функции
    • ОДЗ показательной функции
    • ОДЗ логарифмической функции
    • ОДЗ тригонометрических функций

Допустимые и недопустимые значения переменных

Перед тем, как вводить понятие области допустимых значений функции, необходимо определиться с самим термином «допустимое значение».

Допустимое значение переменной — такое значение переменной, при котором зависимая от нее функция имеет смысл. Это значит, что, подставив данное значение переменной в выражение функции, можно получить конкретный результат. Сама функция в алгебре — это уравнение, в котором каждому значению x соответствует одно значение y.

Например, для функции обратной пропорциональности (y=frac1x) допустимыми значениями для переменной x будут: 1; 2,7; -5, (sqrt{126}), — в общем, все действительные числа. При подстановке их на место x, функция принимает конкретное значение. Исключениями из этого перечня будут 0, (-infty )и (+infty), так как когда x принимает такие значения, функция не имеет смысла.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое ОДЗ

Область допустимых значений (область определения) функции — совокупность всех значений переменных, при которых функция имеет смысл, то есть решается. Для примера из предыдущего пункта, (y=frac1x), область допустимых значений будет иметь следующий вид: ((-infty;;0)cup(0;;+infty)). Это значит, что в область определения функции ( y=frac1x) входят все числа в промежутках от минус бесконечности до нуля и от нуля до плюс бесконечности.

У записи области определения есть некоторые особенности, которые важно иметь в виду. Круглые скобки — () — применяются, когда область допустимых значений заканчивается на данном числе, причем оно не входит в ОДЗ. Квадратные скобки — [] — применяются в ситуациях, когда в область определения входит число, на котором она заканчивается. Знак объединения — (cup) — по сути означает союз «и». Он используется, когда ОДЗ является системой из нескольких числовых промежутков.

Как найти ОДЗ: примеры, решения

Чтобы найти область допустимых значений для какой-либо функции, не имеет смысла перебирать все числа, при подстановке которых ее можно решить. Рациональнее найти те значения, при которых функция не имеет смысла и исключить их из всего множества чисел.

Общие принципы нахождения области допустимых значений

  • деление на 0. Практически во всех стандартных математических выражениях такая операция не имеет смысла. У этого действия есть конкретный результат только при нахождении предела последовательности или функции. Пример бессмысленных выражений: (y=frac50;)
  • извлечение корня из отрицательного числа. При работе с действительными числами, найти корень любой степени отрицательного числа невозможно. Эта операция приобретает смысл только при переходе к комплексным числам. Пример: (y=sqrt{-11};)
  • возведение в степень. У данного действия есть свои ограничения: нельзя возводить 0 в отрицательную и нулевую степень, отрицательные числа в положительную дробную степень и неположительные (отрицательные и 0) в дробную степень со знаком минус. Примеры: (y=0^{-3};;y=0^0;;y=({-7}^{textstylefrac32});;y=({-6}^{-{textstylefrac17}});)
  • нахождение логарифма. Так как логарифм равняется степени, в которую необходимо возвести основание, чтобы получить логарифмируемое число, некоторые операции не имеют смысла. К ним относятся логарифмирование неположительного числа, положительного числа по отрицательному основанию или единице. Примеры:( y=log_3left(-9right);;y=log_2left(0right);;y=log_{-4}left(64right);;y=log_1left(5right);)
  • тригонометрические функции. Для синуса, косинуса, арктангенса и арккотангенса никаких ограничений нет. Но для тангенса, котангенса, арксинуса и арккосинуса они появляются, исходя из их формул. Так как тангенс является частным при делении синуса на косинус, последний не может равняться нулю. То же самое справедливо и для котангенса, но там уже синус не должен принимать значение 0.

    Арксинус и арккосинус могут быть определены только в промежутке от -1 до 1 включительно — (lbrack-1;;1rbrack.)

Примеры нахождения ОДЗ

Пример №1. Найти область определения функции (y=sqrt{1-x^2})

Из обозначенных выше принципов следует, что подкоренное выражение не может быть отрицательным, значит 1-x^2geq0. Приведем данное неравенство к общему виду: (1-x^2geq0Rightarrow1geq x^2Rightarrow x^2leq1)

Вычислим квадратный корень для обеих частей неравенства:

(x^2leq1Rightarrowsqrt{x^2}leqsqrt1Rightarrowleft|xright|leq1)

Раскроем модуль согласно правилу:

(left|xright|leq1Rightarrow-1leq xleq1)

Из этого следует, что область допустимых значений функции (y=sqrt{1-x^2}) лежит в пределах между -1 и 1, включая эти числа. Таким образом, ОДЗ данной функции: (xinlbrack-1;;1rbrack)

Пример №2. Найти ОДЗ функции (y=lgleft(xright))

(lgleft(xright)) является краткой формой записи десятичного логарифма (log_{10}left(xright)). Так как 10 — положительное число, не равное единице, единственным условием остается x>0. Таким образом, область определения функции (y=lgleft(xright)) будет включать в себя все числа в промежутке от нуля до (+infty). Так как неравенство x>0 — строгое, ОДЗ будет иметь следующий вид: (xin(0;;+infty)).

Почему важно учитывать ОДЗ при проведении преобразований

Тождественные преобразования могут приводить к расширению или сужению области допустимых значений. В этом случае значение, подходящее к изначальной функции, после преобразования может оказаться вне области определения. Поэтому стоит избегать сужающих ОДЗ преобразований или находить область допустимых значений уже после них.

Функции, для которых важна ОДЗ

Сама по себе область допустимых значений — важная характеристика для всех функций. Чтобы правильно решать математические задачи, следует всегда находить ее. При этом, для многих, если не большинства, функций она включает в себя все множество действительных чисел. Например, линейная (y=kcdot x+b) или квадратичная (y=acdot x^2+bcdot x+c) функции. Рассмотрим некоторые функции, для которых это не так.

ОДЗ обратной зависимости

Функция обратной пропорциональности (y=frac kx) уже упоминалась выше. Ее область определения содержит все действительные числа, за исключением нуля: (xin(-infty;;0)cup(0;;+infty).)

ОДЗ степенной функции

Для степенной функции y=x^n следует учитывать обозначенные выше принципы нахождения ОДЗ, справедливые для возведения в степень и извлечения корня. Рассмотрим области определения переменной x в зависимости от значения n:

  • при n>0 и (ninmathbb{Z}), то есть n — целое положительное число: ( xin(-infty;;+infty);)
  • для n>0, причем n — дробное число: ( xinlbrack0;;+infty);)
  • для n=0:( xin(-infty;0)cup(0;;+infty);)
  • при n<0 и (ninmathbb{Z}: xin(-infty;;0)cup(0;;+infty);)
  • для n<0, причем n — дробное число: (xin(0;;+infty).)

ОДЗ показательной функции

Показательная функция y=a^x очень похожа на степенную, но, в отличие от нее, здесь переменная не в основании, а в степени. Область допустимых значений для нее определяется по тем же правилам, что и для степенной функции:

  • для a>0: (xin(-infty;;+infty);)
  • для a=0: (xin(0;;+infty);)
  • для a<0: (xin(-infty;;+infty)), причем x должен быть целым числом.

ОДЗ логарифмической функции

Логарифмическая функция (y=log_aleft(xright)) является обратной для показательной. Согласно свойствам логарифмирования, область определения такой функции будет включать все положительные числа: (xin(0;;+infty).)

ОДЗ тригонометрических функций

Как уже упоминалось выше, для синуса, косинуса, арктангенса и арккотангенса область допустимых значений включает в себя все действительные числа: (xin(-infty;;+infty)). Рассмотрим ОДЗ еще четырех тригонометрических функций:

  • тангенс: (xin(-infty;;frac{mathrmpi}2+mathrmpicdotmathrm n)cup(frac{mathrmpi}2+mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • котангенс: (xin(-infty;;mathrmpicdotmathrm n)cup(mathrmpicdotmathrm n;;+infty), где ninmathbb{Z};)
  • арксинус и арккосинус: (xinlbrack-1;;1rbrack.)

Область значения функции

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Как найти область значений квадратичной функции

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Область значения функции

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = -[b 2 — 4ac] / 4a = -[(-2)^2 — 4 * 3 * (-1)] / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

Онлайн калькулятор с решением как находить область значения функции

  1. (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  2. [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  3. (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  4. [-1;1]: y = sin (x) и y = cos (x).
  5. [0;Pi]: y = arccos (x) и arcsin (x).
  6. [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

Решение задач

  1. В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке [a;b], то множество значений — интервал [f (a);f (b)].
  2. Если y = f (x) обладает непрерывностью на промежутке [a;b], и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал [m;M].
  3. При непрерывности и дифференцируемости функции на промежутке [a;b], она имеет минимальное и максимальное значения на данном промежутке.

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Методы нахождения

Существует много способов нахождения области значений. Однако для решения задач нужно подбирать оптимальный метод, поскольку следует избегать лишних вычислений. Например, если функция является простой, то нет необходимости применять сложные алгоритмы решения. К методам нахождения относятся следующие:

  1. Отдельное нахождение значений элементов сложной функции.
  2. Оценочный.
  3. Учет непрерывности и монотонности.
  4. Взятие производной.
  5. Использование max и min функции.

Для каждого из методов существует определенный алгоритм. Хотя встречаются случаи, когда целесообразно применить два простых метода. Нужно руководствоваться минимальным количеством вычислений и затраченным временем.

Для каждого элемента

Иногда в задачах следует найти E (f) при условии, когда функция является сложной. Очень распространенная методика разбиения задачи на подзадачи, которая применяется не только в дисциплинах с физико-математическим уклоном, но в экономике, бизнесе и других направлениях. Решение с помощью метода последовательного нахождения E (f) каждой из функций. Алгоритм имеет такой вид:

  1. Выполнить необходимые преобразования — упростить выражение.
  2. Разбить выражение на элементы.
  3. Выполнить поиск E (f) для каждого элемента.
  4. Произвести замену.
  5. Анализ.
  6. Результат решения.

Однако довольно сложно ориентировать по данному алгоритму, поскольку нужно разобрать решение примера с его помощью. Дана функция y = log0.5 (4 — 2 * 3^x — 9^x). Решается задача таким образом:

Методы нахождения

  1. Упростить (выделить квадрат): y = log0.5 (4 — 2 * 3^x — 9^x) = log0.5 [5 — (1 — 2 * 3^x — 9^x)] = log0.5 [5 — (3^x + 1)].
  2. Разбить на элементарные функции: y = 3^x, y = 3^x + 1, y = [-(3^x + 1)]^2 и y = [5 — (3^x + 1)]^2.
  3. Определить для каждого элемента E (f): E (3^x) = (0;+бесконечность), E (3^x + 1) = (1;+бесконечность), E ([-(3^x + 1)]^2) = (-бесконечность;-1) и E ([5 — (3^x + 1)]^2) = (-бесконечность;4).
  4. Произвести замену: t = 5 — (3^x + 1)]^2 (-бесконечность <= t <=4).
  5. Анализ: поскольку E (f) на луче (-бесконечность;4) совпадает с интервалом (0;4), то функция непрерывна и убывает. Необходимо отметить, что интервал (0;4) получен при пересечении луча (-бесконечность;4) с областью определения функции логарифмического типа (0;+бесконечность). На интервале (0;4) эта функция непрерывна и убывает. Если t>0, то она стремится к бесконечности. Когда t = 4, ее значение равно -2.
  6. Результат решения — искомый интервал: E (f) = (-2;+бесконечность).

Необходимо обратить внимание на пункты 1, 3 и 5. Они являются очень важными, поскольку от них зависит правильность решения. Очень важно уметь анализировать полученную функцию в 4 пункте.

Оценочный способ

Еще одним методом определения E (f) является способ оценки. Необходимо оценить непрерывную функцию в нижнем и верхнем направлениях. Еще следует доказать достижение нижней и верхней границ. Для этой цели существует также алгоритм. Он немного проще предыдущего. Суть его заключается в следующем:

  1. Доказать непрерывность.
  2. Составить неравенство или неравенства для нескольких функций.
  3. Узнать оценку.
  4. Записать интервал.

Необходимо разобрать алгоритм на примере функции y = cos (7x) + 5 * cos (x). Следует учитывать, что известен только один знак неравенства. Второй нужно доказать оценочным методом. Решение задачи имеет такой вид:

  1. Функция вида y = cos (x) является непрерывной.
  2. Неравенства: -1<=cos (7x)?1 и -5<=5 * cos (x)?5.
  3. Оценка получает при объединении неравенств: -6<=y?6. При значениях независимой переменной x = Pi и x = 0 функция принимает значения -6 и 6 соответственно (нижняя и верхняя границы). Функция состоит из двух элементов, следовательно, она является линейной и непрерывной.
  4. Интервал: E (y) = [-6;6].

Метод позволяет найти решение без использования дополнительных вычислений. Но при его использовании легко ошибиться.

Учет непрерывности и монотонности

Одним из простых способов решения, который специалисты рекомендуют новичкам, является метод учета непрерывности и монотонности. Для этого существует специальный алгоритм:

Решается задача таким образом

  1. Упростить выражение.
  2. Выполнить замену при необходимости.
  3. Найти вершину графика.
  4. Определить промежуток.
  5. Вычислить максимальное и минимальное значения.
  6. Записать E (f).

Например, существует некоторая функция y = cos (2x) + 2cos (x). Необходимо найти ее E. Искать следует по алгоритму решения методом учета монотонности и непрерывности:

  1. Упростить (по формуле двойного угла): y = 2 * (cos (x))^2 + 2cosx — 1.
  2. Замена t = cos (x): y = 2 * t 2 + 2 * t — 1 = 2 * (t + 0,5)^2 — 1,5.
  3. Показательная функция является параболой. Она монотонна, непрерывна и имеет вершину по оси ОУ -1,5. Промежуток, который рассматривается — [-1;1], поскольку E (cos (x)) = [-1;1].
  4. Минимальное значение равно -1,5, так как ветви направлены вверх. Максимальное на промежутке [-1;1] – MAX (y) = 3. Для его нахождения нужно построить график параболы y = 2 * (t + 0,5)^2 — 1,5.
  5. Искомый интервал — E (cos (2x) + 2cos (x)) = [-1,5;3].

Чтобы построить график параболы, нужно найти ее вершину и точки пересечения с осью абсцисс. Последние находятся при решении уравнения 2 * (t + 0,5)^2 — 1,5 = 0. Однако существует способ намного проще. Для этого следует привести выражение к виду 2 * (t + 0,5)^2 = 1,5. Отсюда t = – 0,5. Следовательно, координаты вершины — (-0,5;-1,5). Корни уравнения при его решении: t1 = -[(1 + (3)^0.5)] / 2 и t2 = -[(1 — (3)^0.5)] / 2.

Производная, min и max

Одним из простейших способов нахождения E (f) является взятие производной функции. Этот метод можно комбинировать с определением максимального и минимального значений. Математики рекомендуют простейший алгоритм:

  1. Найти производную.
  2. Анализ.
  3. Указать MAX (f) и MIN (f).
  4. Запись интервала в формате (MIN (f);MAX (f)).

Практическое применение алгоритма — решение задачи этим методом. Например, нужно найти E (arcsin (x)). Решение выполняется по нескольким этапам:

  1. Производная: y’ = [arcsin (x)]’ = 1 / [(1 — x 2 )^0.5].
  2. Функция возрастает на интервале (-1;1).
  3. Минимум и максимум на отрезке (-1;1): MIN (arcsin (-1)) = -Pi/2 MAX (arcsin (1)) = Pi/2.
  4. Интервал: E (arcsin (x)) = [-Pi/2;Pi/2].

В некоторых случаях рекомендуется вычислять пределы, поскольку часть задач решается только с их применением. Существует определенный тип задач, в которых нужно доказать, что отрезок является E (f) конкретной функции. Например, следует выяснить принадлежность [-1;1] функции sin (x). Для этого необходимо воспользоваться вышеописанным алгоритмом:

Укажите область значения функции

  1. Производная: y’ = [sin (x)]’ = cos (x).
  2. Период функции равен 2Pi. Следует взять отрезок [0;2Pi]. Для нахождения множества значений на нем нужно приравнять производную функции к 0, т. е. cos (x) = 0. Найти х = Pi/2 + Pi * к, где «к» принадлежит Z. Точки экстремума равны Pi/2 и 3Pi/2.
  3. Минимум и максимум на отрезке [0;2Pi): MIN ([sin (3Pi/2)]) = -1 и MAX ([sin (3Pi/2)]) = 1.
  4. E (sin (x)) = [-1;1].

Отрезок [-1;1] является E (sin (x)). Оптимальный метод — нахождение производной и определение E (f). В этом примере необходимо знать и проверить периодичность.

Таким образом, существует несколько способов нахождения E (f), но всегда необходимо выбирать метод, приводящий к минимуму вычислений. Нет смысла усложнять решение, поскольку большинство алгоритмов направлены на оптимизацию вычислений.

Добавить комментарий