Ошибка эксперимента как найти

Статьи
Главная страница

 

Из графика
видно, что существует вероятность, пусть и очень маленькая, что наше единичное
измерение покажет результат, сколь угодно далеко отстоящий от истинного
значения. Выходом из положения является проведение серии измерений. Если на
разброс данных действительно влияет случай, то в результате нескольких
измерений мы скорее всего получим следующее (рис 2):

Будет ли
рассчитанное среднее значение нескольких измерений совпадать с истинным? Как
правило – нет. Но по теории вероятности, чем больше сделано измерений, тем
ближе найденное среднее значение к истинному. На языке математики это можно
записать так:

Но с бесконечностью у всех дело обстоит неважно. Поэтому на практике мы имеем дело
не со всеми возможными результатами измерений, а с некоторой выборкой из этого
бесконечного множества. Сколько же реально следует делать измерений? Наверное,
до тех пор, пока полученное среднее значение не будет отличаться от истинного
меньше чем точность отдельного измерения.


Следовательно,
когда наше среднее значение (рис. 2) отличается от истинного меньше чем
погрешность измерений, дальнейшее увеличение числа опытов бессмысленно. Однако
на практике мы не знаем истинного значения! Значит, получив среднее по
результатам серии опытов, мы должны определить, какова вероятность того, что
истинное значение находится внутри заданного интервала ошибки. Или каков тот
доверительный интервал, в который с заданной надежностью попадет истинное
значение (рис 3).

Рассмотрим
некоторый условный эксперимент, где в серии измерений получены некоторые
значения величины Х (см. табл. 1).  Рассчитаем среднее значение и, чтобы  оценить
разброс данных найдем величины DХ = Х –
Хср

Таблица
1. Данные измерений и их обработка

Х

Х ср

DХ

DХ2

s2

s

1

130

143,5 »

 144

-13,5

182,3

420

20,5

2

162

18,5

342,3

3

160

16,5

272,3

s2ср

sср

4

122

-21,5

462,3

105

10,2

Ясно, что
величины DХ  как-то характеризуют
разброс данных. На практике для усредненной характеристики разброса серии измерений используется
дисперсия выборки:

и среднеквадратичное или стандартное отклонение выборки:

Последнее
показывает, что каждое измерение в данной серии (в данной выборке) отличается
от другого в среднем на ± s.

Понятно, что каждое отдельное
значение оказывает влияние на средний результат. Но это влияние тем меньше, чем
больше измерений в нашей выборке. Поэтому дисперсия и стандартное отклонение
среднего значения, будет определяться по формулам:

Можем ли мы теперь определить вероятность того, что
истинное значение попадет в указанный интервал среднего? Или наоборот,
рассчитать тот доверительный интервал в который истинное значение
попадет с заданной вероятностью (95%)? Поскольку кривая на наших графиках это
распределение вероятностей, то площадь под кривой, попадающая в указанный
интервал и будет равна этой вероятности (доля площади, в процентах). А площади
математики научились рассчитывать хорошо, знать бы только уравнение этой
кривой.


И здесь мы сталкиваемся еще с одной сложностью. Кривая, которая описывает распределение
вероятности для выборки, для ограниченного числа измерений, уже не будет кривой нормального
распределения. Ее форма будет зависеть
не только от дисперсии (разброса данных) но и от степени свободы для выборки
(от числа независимых измерений) (рис 4):

Уравнения этих кривых впервые были предложены в 1908
году английским математиком и химиком Госсетом, который опубликовал их под
псевдонимом Student (студент), откуда пошло хорошо известные термины
«коэффициент Стьюдента» и аналогичные. Коэффициенты Стьюдента получены на
основе обсчета этих кривых для разных степеней свободы (f = n-1) и уровней
надежности (Р) и сведены в специальные таблицы. Для получения доверительного интервала необходимо
умножить уже найденное стандартное отклонение среднего на соответствующий
коэффициент Стьюдента. ДИ = sср*tf, P

Проанализируем, как меняется доверительный интервал
при изменении требований к надежности результата и числа измерений в серии.
Данные в таблице 2 показывают, что чем больше требование к надежности, тем
больше будет коэффициент Стьюдента и, следовательно, доверительный интервал. В большинстве случаев, приемлемым считают значение Р=95%

Таблица
2. Коэффициент Стьюдента для различных уровней надежности.

P

0,9

0,95

0,99

0,999

t5,
P

2,02

2,57

4,03

6,87

Таблица
3. Коэффициент Стьюдента для различных степеней свободы.

f=
n-1

1

2

3

4

5

16

30

tf,
0,95

12,7

4,3

3,18

2,78

2,57

2,23

2,04

Из таблицы 3 и графика
видно, что чем больше число измерений, тем меньше коэффициент и доверительный
интервал для данного уровня надежности. Особенно значительное падение
происходит при переходе от степени свободы 1 (два измерения) к 2 (три
измерения). Отсюда следует, что имеет смысл ставить не менее трех параллельных
опытов, проводить не менее трех измерений.

Окончательно
для измеряемой величины Х получаем значение Хсред±sср*tf,P. В
нашем случае получаем: f=3; t=3,18;
ДИ = 3,18*10,2 = 32,6; X = 143,5 ±32,6

Как правило,
значение доверительного интервала округляется до одной значащей цифры, а
значение измеряемой величины – в соответствии с округлением доверительного
интервала. Поэтому для нашей серии окончательно имеем: X = 140 ±30

Найденная
нами погрешность является абсолютной погрешностью и ничего не говорит еще о
точности измерений. Она свидетельствует о точности измерений только в сравнении
с измеряемой величиной. Отсюда представление об относительной ошибке:

           

Косвенные определения.

Исследуемая величина рассчитывается в этом случае с помощью
математических формул по другим величинам, которые были измерены
непосредственно. В этом случае для расчета ошибок можно использовать
соотношения, приведенные в таблице 4.

Таблица
4. Формулы для расчета абсолютных и относительных ошибок.

Формула

Абсолютная

Относительная

x = a ± b

Dx = Da+Db

e =
(Da+Db) /(a±b )

x = a* b; x = a* k

Dx = bDa+aDb; Dx = kDa

e = Da/a+Db/b = ea + e b

x = a / b

Dx = (bDa+aDb) / b2

e = Da/a+Db/b = ea + e b

x = a*k; (x = a / k)

Dx = Da*k; (Dx = Da/k )

e = ea

x = a2

Dx = 2aDa

e = 2Da/a = 2ea

x = Öa

Dx = Da/(2Öa)

e = Da/2a = ea/2

Из таблицы видно, что относительная ошибка и точность определения не изменяются при умножении (делении) на некоторый постоянный коэффициент. Особенно сильно относительная ошибка может возрасти при вычитании
близких величин, так как при этом абсолютные ошибки суммируются, а значение Х
может уменьшиться на порядки.

Пусть например, нам необходимо определить
объем проволочки.
Если диаметр проволочки измерен с погрешностью 0,01 мм (микрометром) и равен 4 мм, то относительная погрешность составит 0,25% (приборная). Если
длину проволочки (200 мм) мы измерим линейкой с погрешностью 0,5 мм, то относительная погрешность также составит 0,25%. Объем можно рассчитать по формуле: V=(pd2/4)*L. Посмотрим, как будут меняться ошибки
по мере проведения расчетов (табл. 5):

Таблица 5. Расчет абсолютных и относительных ошибок.

Величина

Значение

Абсолютная

Относительная

d2

16

Dx = 2*4*0,01=0,08

e = 0,5%

pd2 *)

50,27

Dx = 0,08*3,14+0,0016*16
=0,28

e = 0,55%

pd2/4

12,57

Dx = 0,28/4 = 0,07

e = 0,55%

(pd2/4)*L

2513

Dx = 12,57*0,5+200*0,07=20

e = 0,8%

*) Если мы возьмем привычное p=3,14, то Dp=0,0016
то ep = 0,05%, но если используем более
точное значение, то Dp и ep можно будет пренебречь

Окончательный
результат V=2510±20 (мм3) e
=0,8%. Чтобы повысить точность косвенного определения, нужно в первую очередь
повышать точность измерения той величины, которая вносит больший вклад в ошибку
(в данном случае – точность измерения диаметра проволочки).

План проведения измерений:

[1]

1.   Знакомство
с методикой, подготовка прибора, оценка приборной погрешности d. Оценка возможных причин
систематических ошибок, их исключение.

2.   
Проведение серии измерений. Если получены совпадающие результаты, можно
считать что случайная ошибка равна 0, DХ
= d. Переходим к пункту 7.

3.   
Исключение промахов – результатов значительно отличающихся по своей
величине от остальных.

4.   
Расчет
среднего значения Хср, и стандартного отклонение среднего
значения scp

5.   
Задание значения уровня надежности P,
определение коэффициента Стьюдента t и
нахождение доверительного интервала ДИ= t*scp

6.   
Сравнение случайной и приборной погрешности, при этом возможны варианты:

–    
ДИ << d, можно
считать, что DХ = d, повысить точность измерения
можно, применив более точный прибор

–    
ДИ >> d, можно
считать, что DХ = ДИ,
повысить точность можно, уменьшая случайную ошибку, повышая число измерений в
серии, снижая требования к надежности.

–    
ДИ » d, в этом
случае расчитываем ошибку по формуле DХ
=

7.   
Записывается окончательный результат Х = Хср ± DХ.
Оценивается относительная ошибка
измерения e = DХ/Хср

Если
проводится несколько однотипных измерений (один прибор, исследователь, порядок
измеряемой величины, условия) то подобную работу можно проводить один раз. В
дальнейшем можно считать DХ
постоянной и ограничиться минимальным числом измерений (два-три измерения
должны отличаться не более, чем на DХ)

Для косвенных
измерений необходимо провести обработку данных измерения каждой величины. При
этом желательно использовать приборы, имеющие близкие относительные погрешности
и задавать одинаковую надежность для расчета доверительного интервала. На
основании полученных значений Da, Db, определяется DХ
для результирующей величины (см табл. 4). Для повышения точности надо
совершенствовать  измерение той величины, вклад ошибки которой в DХ наиболее существенен.

Изучение зависимостей.

Частым вариантом экспериментальной работы является
измерение различных величин с целью установления зависимостей. Характер этих
зависимостей может быть различен: линейный, квадратичный, экспоненциальный,
логарифмический, гиперболический. Для выявления зависимостей широко
используется построение графиков.

При построении графиков вручную важно правильно
выбрать оси, величины, масштаб, шкалы. Следует предупредить школьников, что
шкалы должны иметь равномерный характер, нежелательна как слишком детальная,
так и слишком грубая их разметка. Точки должны заполнять всю площадь графика,
их расположение в одном углу, или «прижатыми» к одной из осей, говорит о
неправильно выбранном масштабе и затрудняет определение характера зависимости.
При проведении линии по точкам надо использовать теоретические представление о
характере зависимости: является она непрерывной или прерывистой, возможно ли ее
прохождение через начало координат, отрицательные значения, максимумы и
минимумы.

Наиболее легко проводится и анализируется прямая
линия. Поэтому часто при изучении более сложных зависимостей часто используется
линеаризация зависимостей, которая достигается подходящей заменой переменных.
Например:

Зависимость . Вводя новую переменную
, получаем уравнение
a = bx, которое
будет изображаться на графике прямой линией. Наклон этой прямой позволяет
рассчитать константу диссоциации.

Разумеется и в этом случае полученные в эксперименте данные включают в себя различные ошибки, и точки редко лежат строго на прямой. Возникает
вопрос, как с наибольшей точностью провести прямую по экспериментальным точкам, каковы ошибки в определении
параметров.

Математическая статистика показывает, что наилучшим
приближением будет такая линия, для которой дисперсия (разброс) точек
относительно ее будет минимальным. А дисперсия определяется как средний квадрат
отклонений наблюдаемого положения точки от расчитанного:

Отсюда название этого метода – метод наименьших
квадратов. Задавая условие, чтобы величина s2
принимала минимальное значение, получают формулы для коэффициентов а и b в уравнении прямой у = а + bx:

и формулы для расчета соответствующих ошибок
[2].

Если
делать расчеты, используя калькулятор, то лучше оформлять их в виде таблицы:

x

x2

y

y2

xy

Sx =

Sx2
=

Sy =

Sy2
=

Sxy =

Подводя
итог, следует сказать, что обработка данных эксперимента достаточно сложный
этап работы ученого. Необходимость проведения большого числа измерений требует
большой затраты времени и материальных ресурсов. Громоздкость формул,  необходимость
использования большого числа значащих цифр затрудняют вычисления. Поэтому, возможно,
не все рекомендации этой статьи применимы в рамках школьного исследования. Но
понимать их сущность, значимость, необходимость, и в соответствии с этим
адекватно оценивать свои результаты, должен любой исследователь.

В настоящее время обработку экспериментальных данных
существенно облегчают современные компьютерные технологии, современное
программное обеспечение. Об том, как их можно использовать –  в следующей
статье.

Литература:


[1]
Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений, М., «Наука»,
1970, 194 с.

[2]
Петерс Д., Хайес Дж., Хифтье Г. Химическое разделение и измерение – М.,: Химия,
1978, 816 с.


В большинстве
случаев при проведении эксперимента
несколькими приборами измеряются
различные величины. Для получения
конечного результата эти измерения
определенным образом комбинируются с
помощью некоторых математических
действий.

При этом может
возникнуть ситуация, когда комбинация
отдельных достаточно точных измерений
приведет к значительным ошибкам, сводящим
на нет цель эксперимента. Поэтому
необходимо еще до проведения эксперимента
тщательно исследовать вопрос о точности
окончательного результата. При проведении
такого анализа обычно предполагается,
что показания всех приборов имеют
случайную ошибку, либо характеризуются
некоторой неопределенностью, которую
можно рассматривать, как случайную
ошибку.

2.4.1. Показатели точности произведения и частного

К числу наиболее
распространенных функций, встречающихся
в экспериментальной работе, относятся
комбинации произведений и частных
(безразмерные величины). Типичными
примерами являются: число Рейнольдса
– произведение скорости, длины и
плотности деленное на вязкость, число
Маха – отношение скорости объекта к
скорости звука, коэффициент усиления,
представляющий отношение измерения
напряжения на выходе к измерению
напряжения на входе и т.п.

Рассмотрим общий
результат, который является линейной
функцией произведения двух измеряемых
величин x
и y:

R=kxy,
(2.6)

где k
– некоторый нормируемый множитель,
значение которого известно точно.

Допустим, что величинам
xиyсоответствуют выборочные средние
квадратичные отклоненияSxиSy.
Еслиx1иy1отклонения
от точного значенияxc
и yc,
обусловленные наличием случайной
ошибки, то для каждой конкретной пары
отсчетов выражение (2.6) примет вид

Rc
+ r
1
= k (x
c
+x
1)(yc
+ y
1),
(2.7.)

где r1
– отклонение результата.

Далее

Rc
+ r
1
= k(x
c
y
c
+ x
1yc
+ x
cy1
+ x
1y1),
(2.8.)

где членом
второго порядка x1
y1
можно пренебречь.

Используя зависимости
(2.6) и (2.8), можно найти отклонения результата
для каждого измерения

r1
= k(x
1yc
+ y
1xc)
,

r2
= k(x
2yc
+ y
2xc)
, ……., r
i
= k(x
iyc
+ y
ixc)
.

Из определения среднеквадратичного отклонения следует

Просуммировав n
уравнений, получим

член
полагаем равным нулю, т. к. любое
произведениеx
и y
с равной вероятностью может быть как
положительным, так и отрицательным, и
для большой выборки сумма таких
произведений будет стремиться к нулю.
Подставив в последнее выражение
зависимость для дисперсии общей ошибки,
находим

(2.9)

откуда легко
получить следующую зависимость

(2.10)

Можно показать,
что полученное соотношение справедливо
для случая, когда R=kx/y
, и что при
R=kxy/z
необходимо
использовать выражение

(2.11)

Член
Sr2/Rc2,
представляющий собой отношение среднего
квадратичного отклонения к точному
отсчету, является показателем точности,
который можно выразить в процентах и
называется вариацией.
Полученное выражение является
математической формулировкой следующего
правила: если результат является функцией
отношений либо произведений нескольких
величин, то квадрат относительной ошибки
результата равен сумме квадратов
относительных ошибок отдельных измерений.

Соседние файлы в папке Сладков (лекции, ккр)

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.


Загрузить PDF


Загрузить PDF

Абсолютная ошибка – это разность между измеренным значением и фактическим значением.[1]
Эта ошибка характеризует точность измерений. Если вам известны фактическое и измеренное значения, можно с легкостью вычислить абсолютную ошибку. Но иногда фактическое значение не дано, поэтому в качестве абсолютной ошибки пользуются максимально возможной ошибкой.[2]
Если даны фактическое значение и относительная ошибка, можно вычислить абсолютную ошибку.

  1. Изображение с названием Calculate Absolute Error Step 1

    1

    Запишите формулу для вычисления абсолютной ошибки. Формула: Delta x=x_{{0}}-x, где Delta x – абсолютная ошибка (разность между измеренным и фактическим значениями), x_{{0}} – измеренное значение, x – фактическое значение.[3]

  2. Изображение с названием Calculate Absolute Error Step 2

    2

    Подставьте в формулу фактическое значение. Фактическое значение должно быть дано; в противном случае используйте принятое опорное значение. Фактическое значение подставьте вместо x.

    • Например, нужно измерить длину футбольного поля. Фактическая длина (принятая опорная длина) футбольного поля равна 105 м (именно такое значение рекомендуется FIFA). Таким образом, фактическое значение равно 105 м: Delta x=x_{{0}}-105.
  3. Изображение с названием Calculate Absolute Error Step 3

    3

    Подставьте в формулу измеренное значение. Оно будет дано; в противном случае измерьте величину (длину или ширину и так далее). Измеренное значение подставьте вместо x_{0}.

    • Например, вы измерили длину футбольного поля и получили значение 104 м. Таким образом, измеренное значение равно 104 м: Delta x=104-105.
  4. Изображение с названием Calculate Absolute Error Step 4

    4

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[4]
    Так вы вычислите абсолютную ошибку.

    • В нашем примере: Delta x=104-105=-1, то есть абсолютная ошибка измерения равна 1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 5

    1

    Запишите формулу для вычисления относительной ошибки. Формула: delta x={frac {x_{{0}}-x}{x}}, где delta x – относительная ошибка (отношение абсолютной ошибки к фактическому значению), x_{{0}} – измеренное значение, x – фактическое значение.[5]

  2. Изображение с названием Calculate Absolute Error Step 6

    2

    Подставьте в формулу относительную ошибку. Скорее всего, она будет дана в виде десятичной дроби. Относительную ошибку подставьте вместо delta x.

    • Например, если относительная ошибка равна 0,02, формула запишется так: 0,02={frac {x_{{0}}-x}{x}}.
  3. Изображение с названием Calculate Absolute Error Step 7

    3

    Подставьте в формулу фактическое значение. Оно будет дано. Фактическое значение подставьте вместо x.

    • Например, если фактическое значение равно 105 м, формула запишется так: 0,02={frac {x_{{0}}-105}{105}}.
  4. Изображение с названием Calculate Absolute Error Step 8

    4

    Умножьте обе стороны уравнения на фактическое значение. Так вы избавитесь от дроби.

  5. Изображение с названием Calculate Absolute Error Step 9

    5

    Прибавьте фактическое значение к каждой стороне уравнения. Так вы найдете x_{{0}}, то есть измеренное значение.

  6. Изображение с названием Calculate Absolute Error Step 10

    6

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[6]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренное значение равно 107,1 м, а фактическое значение равно 105 м, вычисления запишутся так: 107,1-105=2,1. Таким образом, абсолютная ошибка равна 2,1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 11

    1

    Определите единицу измерения. То есть выясните, было ли значение измерено с точностью до сантиметра, метра и так далее. Возможно, эта информация будет дана (например, «длина поля измерена с точностью до метра»). Чтобы определить единицу измерения, посмотрите на то, как округлено данное значение.[7]

    • Например, если измеренная длина поля равна 106 м, значение было округлено до метров. Таким образом, единица измерения равна 1 м.
  2. Изображение с названием Calculate Absolute Error Step 12

    2

  3. Изображение с названием Calculate Absolute Error Step 13

    3

    Используйте максимально возможную ошибку в качестве абсолютной ошибки.[9]
    Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[10]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренная длина поля равна 106pm 0,5 м, то есть абсолютная ошибка равна 0,5 м.

    Реклама

Советы

  • Если фактическое значение не указано, найдите принятое опорное или теоретическое значение.

Реклама

Об этой статье

Эту страницу просматривали 24 549 раз.

Была ли эта статья полезной?

Как рассчитать экспериментальную ошибку в химии

На чтение 1 мин. Просмотров 375 Опубликовано 05.06.2021

Ошибка – это мера точности значений в вашем эксперименте. Важно уметь вычислить экспериментальную ошибку, но есть несколько способов ее вычислить и выразить. Вот наиболее распространенные способы вычисления экспериментальной ошибки:

Содержание

  1. Формула ошибки
  2. Формула относительной ошибки
  3. Формула процента ошибки
  4. Пример расчета ошибки

Формула ошибки

В общем, ошибка – это разница между принятым или теоретическое значение и экспериментальное значение.

Ошибка = экспериментальное значение – известное значение

Формула относительной ошибки

Относительная ошибка = ошибка/известное значение

Формула процента ошибки

% Error = относительная ошибка x 100%

Пример расчета ошибки

Допустим, исследователь измеряет массу образца, который должен быть 5,51 грамм. Известно, что фактическая масса образца составляет 5,80 грамма. Рассчитайте погрешность измерения.

Экспериментальное значение = 5,51 грамма
Известное значение = 5,80 грамма

Ошибка = экспериментальное значение – известное значение
Ошибка = 5,51 г – 5,80 грамма
Ошибка = – 0,29 грамма

Относительная ошибка = ошибка/известное значение
Относительная ошибка = – 0,29 г/5,80 г
Относительная ошибка = – 0,050

% Error = относительная ошибка x 100%
% Error = – 0,050 x 100%
% Error = – 5,0%

В большинстве
случаев при проведении эксперимента
несколькими приборами измеряются
различные величины. Для получения
конечного результата эти измерения
определенным образом комбинируются с
помощью некоторых математических
действий.

При этом может
возникнуть ситуация, когда комбинация
отдельных достаточно точных измерений
приведет к значительным ошибкам, сводящим
на нет цель эксперимента. Поэтому
необходимо еще до проведения эксперимента
тщательно исследовать вопрос о точности
окончательного результата. При проведении
такого анализа обычно предполагается,
что показания всех приборов имеют
случайную ошибку, либо характеризуются
некоторой неопределенностью, которую
можно рассматривать, как случайную
ошибку.

2.4.1. Показатели точности произведения и частного

К числу наиболее
распространенных функций, встречающихся
в экспериментальной работе, относятся
комбинации произведений и частных
(безразмерные величины). Типичными
примерами являются: число Рейнольдса
– произведение скорости, длины и
плотности деленное на вязкость, число
Маха – отношение скорости объекта к
скорости звука, коэффициент усиления,
представляющий отношение измерения
напряжения на выходе к измерению
напряжения на входе и т.п.

Рассмотрим общий
результат, который является линейной
функцией произведения двух измеряемых
величин x
и y:

R=kxy,
(2.6)

где k
– некоторый нормируемый множитель,
значение которого известно точно.

Допустим, что величинам
xиyсоответствуют выборочные средние
квадратичные отклоненияSxиSy.
Еслиx1иy1отклонения
от точного значенияxc
и yc,
обусловленные наличием случайной
ошибки, то для каждой конкретной пары
отсчетов выражение (2.6) примет вид

Rc
+ r
1
= k (x
c
+x
1)(yc
+ y
1),
(2.7.)

где r1
– отклонение результата.

Далее

Rc
+ r
1
= k(x
c
y
c
+ x
1yc
+ x
cy1
+ x
1y1),
(2.8.)

где членом
второго порядка x1
y1
можно пренебречь.

Используя зависимости
(2.6) и (2.8), можно найти отклонения результата
для каждого измерения

r1
= k(x
1yc
+ y
1xc)
,

r2
= k(x
2yc
+ y
2xc)
, ……., r
i
= k(x
iyc
+ y
ixc)
.

Из определения среднеквадратичного отклонения следует

Просуммировав n
уравнений, получим

член
полагаем равным нулю, т. к. любое
произведениеx
и y
с равной вероятностью может быть как
положительным, так и отрицательным, и
для большой выборки сумма таких
произведений будет стремиться к нулю.
Подставив в последнее выражение
зависимость для дисперсии общей ошибки,
находим

(2.9)

откуда легко
получить следующую зависимость

(2.10)

Можно показать,
что полученное соотношение справедливо
для случая, когда R=kx/y
, и что при
R=kxy/z
необходимо
использовать выражение

(2.11)

Член
Sr2/Rc2,
представляющий собой отношение среднего
квадратичного отклонения к точному
отсчету, является показателем точности,
который можно выразить в процентах и
называется вариацией.
Полученное выражение является
математической формулировкой следующего
правила: если результат является функцией
отношений либо произведений нескольких
величин, то квадрат относительной ошибки
результата равен сумме квадратов
относительных ошибок отдельных измерений.

Соседние файлы в папке Сладков (лекции, ккр)

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Любой химический эксперимент не идеален. Ограниченную точность имеют не только измерительные приборы, но и наши органы чувств. Как оценить, насколько точны данные результатов эксперимента?

Ошибки экспериментов бывают нескольких типов: приборные, систематические и случайные.

Приборные напрямую связаны с точностью инструмента, которым мы что-либо измеряем. К примеру, химические стаканы и плоскодонные колбы, как правило, имеют
на боку шкалу, по которой можно мерить объём, однако, такая шкала обычно
приблизительная. Точность любой шкалы, например, обычной линейки или
секундомера, можно определить по цене одного деления. У линейки это – 1 мм
(между 0 и 1 см (большие деления) есть 10 маленьких, 1/10 = 0,1 см = 1 мм цена
деления)

линейка (цена деления)

А у секундомера? (Маленький кружочек внутри считает доли
секунды, допустим, мы не брали их в расчёт) Между 60 с и 5 с есть 5 больших
делений, отвечающих 1 с. И между ними есть ещё 5 делений, 1/5=0,2 с – это и
есть цена деления секундомера. 

секундомер механический

По цене деления измерительного прибора можно делать вывод о
том, насколько точны измерения и насколько велика будет ошибка эксперимента. В
данных примерах ошибка измерений длины будет порядка 1 мм, а времени – 0,2 с, а
какова ошибка измерений химического стакана с такой шкалой?

химический стакан цена деления

Между двумя делениями 100 мл, значит, ошибка измерения
объёма будет порядка 100 мл! Это много, поэтому на шкалу стакана или колбы
только ориентируются, а для точного измерения объёма жидкостей используют:

  • Мерные цилиндры (для измерения объёма от 10 мл до 1 л)

    мерный цилиндр

     

  • Мерные пробирки (для измерения объёма от 1 мл до 20 мл)

    мерные пробирки

  • Мерные пипетки (от 0,1 мл до 25 мл).

    мерные пипетки

    Мерные пипетки имеют
    самую большую цену деления и потому они точнее мерных пробирок и цилиндров.

В связи с этим может появиться мысль, что раз мерные пипетки
или пробирки точнее мерных цилиндров, то если нужно отобрать 55 мл и у Вас для
этого имеется мерный цилиндр объёмом 100 мл с ценой деления 1 мл и пипетка
объёмом 25 мл с ценой деления 0,2 мл, то чтобы точнее отмерить объём, нужно
использовать пипетку. Это не совсем так. Ошибки имеют свойство накапливаться,
поэтому если разом отобрать объём цилиндром объём будет 55±1 мл, а чтобы отобрать
такой объём пипеткой нужно 3 раза отбирать жидкость, три раза допуская ошибку
величиной в цену деления, т.е. ошибка составит 3*0,2 мл = 6 мл, а объём
отобранный пипеткой будет 55±0,6
мл. 0,6 сопоставимо с 1 мл, если не требуется высокая точность, то по правилу
округления 0,6»1 мл,
т.е. разницы почти никакой (а мучений с пипеткой в 3 раза больше). Поэтому в
экспериментах, где не принципиальна высокая точность, разумнее использовать для
измерения объёма мерные цилиндры.

А как оценивать ошибку, если прибор электронный? Точно
также, по цене деления прибора, т.е. по последнему знаку. Если вы измеряете
массу на таки весах

технические весы

(они ещё называются техническими весами), то цена деления
такого прибора – 0,01 г.

Уменьшить величину приборной ошибки можно только с использованием более точных и современных приборов (и максимально автоматизированных). 

Систематическая ошибка возникает тогда, когда экспериментатор не учитывает какой-либо важный фактор, который напрямую влияет на результат эксперимента. Например, наличие посторонних ионов или влияние температуры. Чтобы снизить влияние этой погрешности, нужно установить причину возникновения этой ошибки и устранить её.

Случайные погрешности предугадать и полностью устранить невозможно. Это погрешности выполнения эксперимента, разного рода неточности, в общем, та самая неидеальность реального эксперимента в чистом виде. С точки зрения статистики, измеряя какую-либо величину, мы получаем значение, которое с какой-то долей вероятности находится недалеко от истинного значения. Чтобы ответить на вопросы “с какой вероятностью” и “насколько недалеко” от истинного значения, нужно прибегнуть к математической статистике. 

Логично рассуждать, что чем больше экспериментальных значений мы получим в ходе измерений, тем больше вероятность того, что их среднее значение будет близко к истинному. Поэтому обычно эксперименты, где определяются количества (или содержание), повторяются минимум 2-3 раза (чем больше, тем точнее). А в качестве результата серии экспериментов берётся среднее значение величины.

Оценить, насколько сильно измеренное значение отличается от истинного (некоего теоретического, заранее известного нам значения), можно с помощью абсолютной и относительной ошибки. Они рассчитываются по формулам:

Δабс – абсолютная ошибка измерений, ε –
относительная ошибка измерений. С помощью этих величин можно оценить, насколько сильно определённое нами значение отличается от теоретического.

Для первых количественных экспериментов этих сведений об ошибках будет достаточно, чтобы оценить точность выполняемого Вами эксперимента, однако это самый простой способ оценки погрешностей. На основании данных эксперимента можно вычислить доверительный интервал, в котором с определённой долей вероятности находится истинная величина, можно даже посчитать воспроизводимость методики и минимальную концентрацию, которую можно определить с её помощью, но эти формулы более сложны и изучаются математической статистикой.

Добавить комментарий