Парабола как найти b что это

Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.

  1. Коэффициент (a) можно найти с помощью следующих фактов:

    – Если (a>0), то ветви параболы направленных вверх, если (a<0), то ветви параболы направлены вниз.

    определяем знак коэффициента a

    – Если (a>1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

    Определяем значение a

    – Аналогично с (a<-1), только график вытянут вниз.

    определяем значение a

    – Если (a∈(0;1)), то график сжат в (a) раз (по сравнению с «базовым» графиком с (a=1)). Вершина при этом остается на месте.

    парабола при a от 0 до 1

    – Аналогично (a∈(-1;0)), только ветви направлены вниз.

    парабола a от -1 до 0

  2. Парабола пересекает ось y в точке (c).

    определяем c по графику

  3. (b) напрямую по графику не видно, но его можно посчитать с помощью (x_в) – абсциссы (икса) вершины параболы:

    (x_в=-frac{b}{2a})
    (b=-x_вcdot 2a)
    находим b с помощью икс вершины

Пример (ЕГЭ):

пример из ЕГЭ

Решение:
Во-первых, надо разобраться, где тут (f(x)), а где (g(x)). По коэффициенту (c) видно, что (f(x)) это функция, которая лежит ниже – именно она пересекает ось игрек в точке (4).

пример из ЕГЭ

Значит нужно найти коэффициенты у параболы, которая лежит повыше.
Коэффициент (c) у неё равен (1).
Ветви параболы направлены вниз – значит (a<0). При этом форма этой параболы стандартная, базовая, значит (a=-1).

пример из ЕГЭ

Найдем (b). (x_в=-2), (a=-1).

(x_в=-frac{b}{2a})
(-2=-frac{b}{-2})
(b=-4)

Получается (g(x)=-x^2-4x+1). Теперь найдем в каких точках функции пересекаются:

(-x^2-4x+1=-2x^2-2x+4)
(-x^2-4x+1+2x^2+2x-4=0)
(x^2-2x-3=0)
(D=4+4cdot 3=16=4^2)
(x_1=frac{2-4}{2}=-1);    (x_2=frac{2+4}{2}=3).

Ответ: (3).

2 способ – находим формулу по точкам

Это самый надежный способ, потому что его можно применить практически в любой ситуации, но и самый не интересный, потому что думать тут особо не надо, только уметь решать системы линейных уравнений. Алгоритм прост:

  1. Ищем 3 точки с целыми координатами, принадлежащие параболе.
    Пример:

    нахождение формулы по точкам

  2. Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.

    Пример: (A(-4;5)), (B(-5;5)), (C(-6;3)).

    (begin{cases}5=a(-4)^2+b(-4)+c\5=a(-5)^2+b(-5)+c\3=a(-6)^2+b(-6)+c end{cases})

  3. Решаем систему.
    Пример:

    (begin{cases}5=16a-4b+c\5=25a-5b+c\3=36a-6b+c end{cases})

    Вычтем из второго уравнения первое:

    (0=9a-b)
    (b=9a)

    Подставим (9a) вместо (b):

    (begin{cases}5=16a-36a+c\5=25a-45a+c\3=36a-54a+c end{cases})
    (begin{cases}5=-20a+c\5=-20a+c\3=-18a+c end{cases})

    Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

    (2=-2a)
    (a=-1)

    Найдем (b):

    (b=-9)

    Подставим в первое уравнение (a):

    (5=20+c)
    (c=-15).

    Получается квадратичная функция:   (y=-x^2-9x-15).

Пример (ЕГЭ):

пример из ЕГЭ

Решение:

Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи). 

решение задачи из ЕГЭ

Таким образом имеем систему:

(begin{cases}8=a(-1)^2+b(-1)+4\2=a+b+4 end{cases})

(begin{cases}8=a-b+4\2=a+b+4 end{cases})

(begin{cases}4=a-b\-2=a+b end{cases})

Сложим 2 уравнения:

(2=2a)
(a=1)

Подставим во второе уравнение:

(-2=1+b)
(b=-3)

Получается:

(g(x)=x^2-3x+4)

Теперь найдем точки пересечения двух функций:

(-3x+13=x^2-3x+4)
(x^2-9=0)
(x=±3)

Теперь можно найти ординату второй точки пересечения:

(f(-3)=-3cdot (-3)+13)
(f(-3)=9+13)
(f(-3)=22)

Ответ:   (22).

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Главный недостаток этого способа – вершина должна иметь целые координаты.

Сам способ базируется на следующих идеях:

  1. График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).

    нахождение через преобразование параболы

  2. – Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
    – Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.

    растяжение и сжатие параболы

  3. – График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
    – График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц. 

    Сдвиг параболы вправо и влево

  4. График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
    График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.

    сдвиг параболы вверх и вниз

У вас наверно остался вопрос – как этим пользоваться? Предположим, мы видим такую параболу:

пример

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).

пример нахождение формулы параболы с помощью преобразования графиков функций

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).

решение примера

То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:

(y=x^2-10x+25-4)
(y=x^2-10x+21)

Готово.

Пример (ЕГЭ):

решение примера из ЕГЭ

Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:

  1. Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).

    решение примера из ЕГЭ

  2. Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).

  3. Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).

  4. Получается (y=-2(x^2-4x+4)+4=)(-2x^2+8x-8+4=-2x^2+8x-4).

  5. (f(6)=-2cdot 6^2+8cdot 6-4=-72+48-4=-28)

Смотрите также:
Как найти k и b по графику линейной функции?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 декабря 2022 года; проверки требует 1 правка.

Парабола

Парабола как коническое сечение

Parabola3.svg
Парабола, её фокус и директриса
Эксцентриситет {displaystyle e=1}
Уравнения
{displaystyle {begin{aligned}&y=x^{2}\&y=ax^{2}+bx+c\&Ax^{2}+Bxy+Cy^{2}+Dx+Ey=F\&quad (B^{2}-4AC=0)end{aligned}}}
Другие конические сечения
  • Гипербола
  • Парабола
  • Эллипс
  • Окружность

Пара́бола (греч. παραβολή — приближение[1]) — плоская кривая, один из типов конических сечений.

Определение[править | править код]

Античные математики определяли параболу как результат пересечения кругового конуса с плоскостью, которая не проходит через вершину конуса и параллельна его образующей (см. рисунок). В аналитической геометрии удобнее эквивалентное определение: парабола есть геометрическое место точек на плоскости, для которых расстояние до заданной точки (фокуса) равно расстоянию до заданной прямой (директрисы) (см. рисунок)[2].

Если фокус лежит на директрисе, то парабола вырождается в ломаную.

Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.

Парабола в семействе конических сечений

Вершина[править | править код]

Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

Уравнения[править | править код]

Каноническое уравнение параболы в прямоугольной системе координат:

{displaystyle textstyle y^{2}=2px,p>0} (или {displaystyle textstyle x^{2}=2py}, если поменять местами оси координат).

Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы[3]. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии frac{p}{2} от обоих.

Вывод

Parabola4.svg

Уравнение директрисы PQ: {displaystyle textstyle x+{frac {p}{2}}=0}, фокус F имеет координаты left (frac{p}{2};0right ). Таким образом, начало координат O — середина отрезка CF. По определению параболы, для любой точки M, лежащей на ней, выполняется равенство KM = FM. Далее, поскольку  textrm{KM=KD+DM}=frac{p}{2}+x и textrm{FM}=sqrt{left (x-frac{p}{2}right )^2+y^2}, то равенство приобретает вид:

{displaystyle {sqrt {left(x-{frac {p}{2}}right)^{2}+y^{2}}}={frac {p}{2}}+x.}

После возведения в квадрат и некоторых преобразований получается равносильное уравнение {displaystyle y^{2}=2px.}

Парабола, заданная квадратичной функцией[править | править код]

Квадратичная функция y=ax^{2}+bx+c при aneq 0 также является уравнением параболы и графически изображается той же параболой, что и {displaystyle y=ax^{2},} но в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:

{displaystyle x_{textrm {A}}=-{dfrac {b}{2a}},;y_{textrm {A}}=-{dfrac {mathcal {D}}{4a}},} где {displaystyle {mathcal {D}}=b^{2}-4ac} — дискриминант квадратного трёхчлена.

Ось симметрии параболы, заданной квадратичной функцией, проходит через вершину параллельно оси ординат. При a > 0 (a < 0) фокус лежит на этой оси над (под) вершиной на расстоянии 1/4a, а директриса — под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение y=ax^{2}+bx+c может быть представлено в виде {displaystyle y=a(x-x_{textrm {A}})^{2}+y_{textrm {A}},} а в случае переноса начала координат в точку A уравнение параболы превращается в каноническое. Таким образом, для каждой квадратичной функции можно найти систему координат такую, что в этой системе уравнение соответствующей параболы представляется каноническим. При этом p=frac{1}{|2a|}.

Общее уравнение параболы[править | править код]

В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:

Ax^2+Bxy+Cy^2+Dx+Ey+F=0.

Если кривая второго порядка, заданная в таком виде, является параболой, то составленный из коэффициентов при старших членах дискриминант B^2-4AC равен нулю.

Уравнение в полярной системе[править | править код]

Парабола в полярной системе координат (rho,vartheta) с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением

rho (1 + cos vartheta) = p,

где p — фокальный параметр (расстояние от фокуса до директрисы или удвоенное расстояние от фокуса до вершины)

Расчёт коэффициентов квадратичной функции[править | править код]

Если для уравнения параболы с осью, параллельной оси ординат, {displaystyle y=ax^{2}+bx+c} известны координаты трёх различных точек параболы {displaystyle (x_{1};y_{1}),;(x_{2};y_{2}),;(x_{3};y_{3}),} то его коэффициенты могут быть найдены так:

a=frac{y_{3}-tfrac{x_{3}(y_{2}-y_{1})+x_{2}y_{1}-x_{1}y_{2}}{x_{2}-x_{1}}}{x_{3}(x_{3}-x_{1}-x_{2})+x_{1}x_{2}},   
b=frac{y_{2}-y_{1}}{x_{2}-x_{1}}-a(x_{1}+x_{2}),   
c=frac{x_{2}y_{1}-x_{1}y_{2}}{x_{2}-x_{1}}+ax_{1}x_{2}.

Если же заданы вершина (x_{0};y_{0}) и старший коэффициент a, то остальные коэффициенты и корни вычисляются по формулам:

b=-2ax_0
c=ax_0^2+y_0
x_1=x_0+sqrt{-frac{y_0}{a}}
x_2=x_0-sqrt{-frac{y_0}{a}}

Свойства[править | править код]

Отражательное свойство параболы (оптика)

Расстояние от

Pn до фокуса

F такое же, как и от

Pn до

Qn (на директрисе L)

Длина линий

FPnQn одинакова. Можно сказать, что, в отличие от эллипса, второй фокус у параболы — в бесконечности (см. также Шары Данделена)

  • Парабола — кривая второго порядка.
  • Она имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и вершину перпендикулярно директрисе.
  • Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.
  • Траектория фокуса параболы, катящейся по прямой, есть Цепная линия[4].
  • Описанная окружность треугольника, описанного около параболы, проходит через её фокус, а точка пересечения высот лежит на её директрисе

Связанные определения[править | править код]

  • При вращении параболы вокруг оси симметрии получается эллиптический параболоид.

Вариации и обобщения[править | править код]

Графики степенной функции y=x^{n} при натуральном показателе n>1 называются параболами порядка n[5][6]. Ранее рассмотренное определение соответствует {displaystyle n=2,} то есть параболе 2-го порядка.

Парабола также представляет собой синусоидальную спираль при textstyle n=-{frac  {1}{2}};

Параболы в физическом пространстве[править | править код]

Параболический компас Леонардо да Винчи

Траектории некоторых космических тел (комет, астероидов и других), проходящих вблизи звезды или другого массивного объекта (звезды или планеты) на достаточно большой скорости, имеют форму параболы (или гиперболы). Эти тела, вследствие своей большой скорости, не захватываются гравитационным полем звезды и продолжают свободный полёт. Это явление используется для гравитационных манёвров космических кораблей (в частности, аппаратов Вояджер).

Для создания невесомости в земных условиях проводятся полёты самолётов по параболической траектории, так называемой параболе Кеплера.

При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу.

Также параболические зеркала используются в любительских переносных телескопах систем Кассегрена, Шмидта — Кассегрена, Ньютона, а в фокусе параболы устанавливают вспомогательные зеркала, подающие изображение на окуляр.

При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе.

Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов-рефлекторов (оптических, инфракрасных, радио- …), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях.

Форма параболы иногда используется в архитектуре для строительства крыш и куполов.

  • Параболическая орбита и движение спутника по ней (анимация)

    Параболическая орбита и движение спутника по ней (анимация)

  • Падение баскетбольного мяча

  • Параболическая солнечная электростанция в Калифорнии, США

  • Параболические траектории струй воды

    Параболические траектории струй воды

  • Вращающийся сосуд с жидкостью

    Вращающийся сосуд с жидкостью

Примечания[править | править код]

  1. Парабола. Словарь иностранных слов. Дата обращения: 19 июня 2021. Архивировано 14 января 2020 года.
  2. Математическая энциклопедия, 1984.
  3. Александров П. С. Парабола // Курс аналитической геометрии и линейной алгебры. — М.: Наука, 1979. — С. 69—72. — 512 с.
  4. Савелов А. А. Плоские кривые. Систематика, свойства, применения (Справочное руководство)/ Под ред. А. П. Нордена. М.: Физматлит, 1960. С. 250.
  5. Битюцков В. И. Степенная функция // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 208—209. — 1248 с.
  6. Степенная функция // Математический энциклопедический словарь. — М.: Советская энциклопедия, 1988. — С. 564—565. — 847 с.

Литература[править | править код]

  • Акопян А. А., Заславский А. В. Геометрические свойства кривых второго порядка. — М.: МЦНМО, 2007. — 136 с.
  • Бронштейн И. Парабола // Квант. — 1975. — № 4. — С. 9—16.
  • Маркушевич А. И. Замечательные кривые. — Гостехиздат, 1952. — 32 с. — (Популярные лекции по математике, выпуск 4).
  • Парабола // Математическая энциклопедия (в 5-и томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 191—192. — 1216 с.

Ссылки[править | править код]

  • Статья в справочнике «Прикладная математика».
  • Анимированные рисунки, иллюстрирующие некоторые свойства параболы.
  • Информация (англ.) о связи параболы с физикой.
  • Учебный фильм о параболе

Описание презентации по отдельным слайдам:

  • Алгоритм 
нахождения  значения коэффициентов a, b, c 
 по графику квадратично...

    1 слайд

    Алгоритм
    нахождения значения коэффициентов a, b, c
    по графику квадратичной функции
    y= ax2 +bx+c.

  • Нахождение коэффициента  a 
1) по графику параболы  определяем координаты вер...

    2 слайд

    Нахождение коэффициента a

    1) по графику параболы определяем координаты вершины (m,n)
    2) по графику параболы определяем координаты любой точки А (х1;у1)
    3) подставляем эти значения в формулу квадратичной функции, заданной в другом виде:
    4) решаем полученное уравнение.

  • Нахождение коэффициента b1) Сначала находим значение коэффициента a 
      (ш...

    3 слайд

    Нахождение коэффициента b
    1) Сначала находим значение коэффициента a
    (шаг I, смотри выше)

    2)В формулу для абсциссы параболы m= -b/2a подставляем значения
    m и a

    3) Вычисляем значение коэффициента b.

  • Нахождение коэффициента с:1)Находим координату у точки пересечения графика...

    4 слайд

    Нахождение коэффициента с:

    1)Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;с)-точка пересечения графика параболы с осью Оу.
    2)Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II (находим коэффициенты a,b)
    3)Подставляем найденные значения a, b , А(х1 ;у1) в уравнение
    у=ax2 +bx+c и находим с.

  • По графику функции найдите значения коэффициентов a, b, c

    5 слайд

    По графику функции найдите значения коэффициентов a, b, c

Нахождение коэффициентов квадратичной функции y=ax2 + bx +c

I Нахождение коэффициента а :

  1. по графику параболы определяем координаты вершины (m,n)

  2. по графику параболы определяем координаты любой точки A (x;y)

  3. подставляем эти значения в формулу квадратичной функции, заданной в другом виде:

y=а(х-m)2+n

  1. решаем полученное уравнение.

II. нахождение коэффициента b: b= – (х1 + х2) это для приведённого уравнения

  1. Сначала находим значение коэффициента a (шаг I, смотри выше)

В формулу для абсциссы параболы m = подставляем значения m и а

  1. Вычисляем значение коэффициента b.

III. нахождение коэффициента с: с = х1 ∙ х2 это для приведённого уравнения

  1. Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;C)-точка пересечения графика параболы с осью Оу.

  2. Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II {находим коэффициенты а,Ь)

  3. Подставляем найденные значения а, b ,А(х ; у) в уравнение у=ах2 +bх+с и находим с.

I Нахождение коэффициента а :

  1. по графику параболы определяем координаты вершины (m,n)

  2. по графику параболы определяем координаты любой точки A (x;y)

  3. подставляем эти значения в формулу квадратичной функции, заданной в другом виде:

y=а(х-m)2+n

  1. решаем полученное уравнение.

II. нахождение коэффициента b:

  1. Сначала находим значение коэффициента a (шаг I, смотри выше)

В формулу для абсциссы параболы m = подставляем значения m и а

  1. Вычисляем значение коэффициента b.

III. нахождение коэффициента с:

  1. Находим координату у точки пересечения графика параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;C)-точка пересечения графика параболы с осью Оу.

  2. Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II {находим коэффициенты а,b)

  3. Подставляем найденные значения а, b ,А(х ; у) в уравнение у=ах2 +bх+с и находим с.

Рассмотрим задачу: где невозможно по графику найти точно m и n необходимо найти все коэффициенты уравнения, задающего график:

Найти все коэффициенты по графику функции

Подставляем в уравнение: координаты выбранных точек, например, таких: (2;2), (5;2), (4;-3). Получается:

Последние два уравнения вычтем:

Данное выражение подставим в первое и второе уравнения:

Вычтем два получившихся уравнения:

Зная а, можем найти и остальные коэффициенты:

Следующая задача: найти коэффициенты уравнения, задающего график функции, изображенный на рисунке:

Найти все коэффициенты по графику функции

Здесь будет немного попроще, так как определить коэффициент с можно по рисунку: с=-5. Это значит, что потребуется только две точки, и система будет состоять только из двух уравнений. Возьмем для ее составления точки (1;-3) и (2;-3):

Вычтем получившиеся уравнения (второе – из первого) и определим коэффициенты а и b:

Найти все коэффициенты по графику функции

Наконец, еще одно такое же задание. Снова необходимо определить все коэффициенты функции, график которой представлен на рисунке:

Зададимся точками. Их будет три, уравнений тоже три, так как нам необходимо найти три коэффициента – a, b и c.

Точки будут: (-2; -3),(-5; -3) и  (-3; -5) . Тогда уравнения:

Из первого уравнения вычитаем второе:

Полученное подставим в первое и третье:

Полученные уравнения вычтем вновь, и найдем искомое:

Определение

Функция вида y=ax2+bx+c, где а, b, с – некоторые числа, причем, а0 число, х – переменная, называется квадратичной функцией.

Графиком квадратичной функции является парабола, она имеет вершину и две ветви, которые могут быть направлены либо вверх, либо вниз (рис.1). Красной точкой обозначена вершина параболы, из которой выходят ветви. Её координаты по графику – (3; –4). Направление ветвей зависит от значения коэффициента «а», то есть, если «а» – положительное число, то ветви направлены вверх; если число «а» – отрицательное, то ветви направлены вверх. На данном рисунке ветви направлены вверх, значит коэффициент «а» у формулы, которая задает эту функцию – положительное число. Коэффициент «с» показывает ординату (у) точки пересечения ветви параболы с осью у. Так, на рисунке №1 парабола пересекает ось у в точке (5;0), значит коэффициент с=5.

Рисунок №1.

Вершина параболы. Формула.

Чтобы найти координаты вершины параболы (х0; у0), надо воспользоваться формулой:

х0=b2a

для нахождения у0 можно просто подставить значение х0 в формулу данной функции y0=ax2+bx+c вместо х.

Рассмотрим это на примере конкретно заданной функции.

Пример №1

Найти вершину параболы, заданной формулой у=2х2 – 8х + 5.

Найдем, чему равны коэффициенты: а=2; b= – 8

Подставим их в формулу и вычислим значение х0:

х0=b2a=822=84=2

Теперь в заданную по условию формулу вместо х подставим найденное значение у0=222 – 82 + 5=8 – 16 + 5= –3

Итак, мы нашли координаты вершины параболы: (2; –3).

Ответ: (2; –3).

Нули параболы

Значения х, при которых функция принимает значения, равные нулю, называются нулями функции. Другими словами, Значения абсцисс (х) точек пересечения ветвей параболы с осью х, называются нулями функции. На рисунке №1 точки координаты точек пересечения ветвей параболы с осью х следующие: (1;0) и (5;0). Значит, нули функции – это значения х, равные 1 и 5.

Рассмотрим, как найти нули функции не по рисунку, а по заданной формуле.

Пример №2

Найти нули функции у=х2 +4х – 5

Так как нули функции это абсциссы точек пересечения ветвей параболы с осью х, то их координаты будут (х;0), то есть у=0. Значит, вместо у подставляем нуль в нашу формулу 0=х2 +4х – 5 и получаем квадратное уравнение, решив которое, мы и найдем значения нулей функции:

х2 +4х – 5=0

а=1, b=4, с= –5

D=b2 – 4ac=42 – 41(5)=36

x=b±D2a

x=4±362; х1=–5; х2=1

Значит, нули функции равны –5 и 1

Ответ: –5 и 1

Примечание к заданию по нахождению нулей функции без графика

Если дискриминант уравнения отрицательный, значит, нулей функции нет, то есть парабола не пересекает ось х (вершина находится выше неё, если ветви направлены вверх и ниже, если ветви направлены вниз).

Рассмотрим нахождение соответствия рисунков парабол, расположенных в системе координат значениям а и с.

Пример №3

Для выполнения данного задания на соответствие необходимо сначала поработать с графиками, подписав на них, какими – отрицательными или положительными являются коэффициенты а и с.

C:UsersУчительDesktopgfhf, 1.jpg

Теперь можно выполнить соответствие:

Ответ: 231

Пример №4

Рассмотрим еще пример на соответствие

В данном задании рассмотрим коэффициенты в формулах и подчеркнем их: так, в формуле под буквой А коэффициент а=-2, т.е. отрицательный, значит, ветви направлены вниз, а это график под номером 2. В формулах под буквами Б и В первые и третьи коэффициенты одинаковые, значит, сравнить по рисунку их невозможно, следовательно, будем сравнивать по расположению вершины (справа или слева от оси у), а именно х0. C:UsersУчительDesktop76.jpg

Итак, найдем х0 для формулы «Б»:

х0=b2a=422=44=1

Видим, что х0 отрицательное, значит, вершина расположена слева от оси у, а это рисунок 3. Ну и осталось привести в соответствие В и 1.

Запишем в таблицу

Ответ: 231

Задание 11OM21R

На рисунках изображены графики функций вида . Установите соответствие между знаками коэффициентов а и с и графиками функций.

КОЭФФИЦИЕНТЫ

А) a>0, с >0              Б) а<0; с>0        В) а>0, с<0

В таблице под каждой буквой укажите соответствующий номер.

Ответ:

Решение


На рисунках в задании изображены параболы. Вспомним, что обозначают коэффициенты а и с: а – направление ветвей (a<0 – ветви вниз; а>0 – ветви вверх); коэффициент с показывает ординату точку пересечения параболы с осью х (с >0 – пересечение в положительном направлении; с<0 – пересечение в отрицательном направлении).

Теперь поработаем с графиками и подпишем на каждом из них соответствующие коэффициенты.

C:UsersУчительDesktopграфик 1.jpg

Теперь расставим в соответствии с указанными коэффициентами:

А) a>0, с >0 – это график №1

Б) а<0; с>0  – это график №3

В) а>0, с<0 – это график №2

Ответ: 132

pазбирался: Даниил Романович | обсудить разбор

Задание OM1105o

Установите соответствие между функциями и их графиками.

ФУНКЦИИ

А) у=–х2–4х–3                    Б) у=–х2+4х–3                    В) у=х2+4х+3


Сразу обратим внимание на вариант В. Эта функция единственная, имеющая положительный коэффициент при х2 (здесь а=1, т.е. а>0). При а>0 график параболы направлен ветками вверх. Такой график имеется только один – под №3. Кроме того, можно обратить внимание на коэфициент с. Она равен 3, т.е. с>0. Это указывает на то, что парабола должна пересечь ось Оу выше начала координат. Что и отображено на графике В. Получаем соответствие: В–3.

Оба других графика – 1-й и 2-й – пересекают ось Оу ниже начала координат, что соответствует значению с=–3<0 в обоих случаях.

Далее надежнее всего вычислить вершины оставшихся двух парабол из уравнений А и Б по формуле -b/2a. Видим, что случае А (- (-4)) / (2 • -1) = -2, следовательно, вершина левее оси Y, так как x0 отрицателен, значит, А-1, а Б-2.

Ответ: 123

pазбирался: Даниил Романович | обсудить разбор

Задание OM1101o

На рисунках изображены графики функций вида

y = ax² + bx + c

Установите соответствие между знаками коэффициентов a и c и графиками функций.

Коэффициенты:

А) a > 0, c > 0

Б) a < 0, c > 0

В) a > 0, c < 0

Графики:

Графики функций огэ по математике 5 задание


Мы вспоминаем, за что отвечают коэффициенты a и при построении графиков функции вида

y = ax² + bx + c

Коэффициент a определяет направление ветвей параболы: если a > 0, то ветви направлены вверх, а если  a < 0, то ветви направлены вниз.

Таким образом, мы видим, что только у второй параболы ветви направлены вниз, а значит a < 0.

У первой и третьей ветви направлены вверх, то есть a > 0.

Далее мы смотрим, на что влияет коэффициент c.

Коэффициент c отвечает за положение параболы относительно оси x, или же отвечает за сдвиг по оси y, а именно:

если c > 0, то вершина параболы расположена выше оси х

если c < 0, то вершина параболы расположена ниже оси x

Так, у первой параболы c < 0, у второй и третьей c > 0.

Из всего вышеперечисленного можно найти ответ:

А) 3

Б) 2

В) 1

Ответ: 321

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 10.5k

Добавить комментарий