Период в конденсаторе переменного тока как найти

Преподаватель который помогает студентам и школьникам в учёбе.

Конденсатор в цепях переменного тока – формулы и определение с примерами

Конденсатор в цепях переменного тока:

Рассмотрим конденсатор емкостью С в цепи переменного тока. Заряд конденсатора q(t) = CU(t) изменяется с течением времени вследствие изменения напряжения на нем. Если напряжение в цепи переменного тока
Конденсатор в цепях переменного тока - формулы и определение с примерами

Согласно определению мгновенное значение силы тока в цепи равно производной заряда по времени, т. е. скорости изменения заряда:
Конденсатор в цепях переменного тока - формулы и определение с примерами

Следовательно, колебания силы тока опережают по фазе колебания напряжения на угол Конденсатор в цепях переменного тока - формулы и определение с примерами (четверть периода), а его амплитуда равна Конденсатор в цепях переменного тока - формулы и определение с примерами (рис. 196).

Конденсатор в цепях переменного тока - формулы и определение с примерами

Таким образом, для амплитудных значений переменного тока и напряжения закон Ома можем записать в виде
Конденсатор в цепях переменного тока - формулы и определение с примерами

Величину Конденсатор в цепях переменного тока - формулы и определение с примерами называют емкостным сопротивлением конденсатора. Оно
обратно пропорционально емкости конденсатора и
цепи Конденсатор в цепях переменного тока - формулы и определение с примерами

Для действующих значений напряжения и тока, так же как и для амплитудных значений, выполняется закон Ома:

Конденсатор в цепях переменного тока - формулы и определение с примерами
 

В цепи постоянного тока Конденсатор в цепях переменного тока - формулы и определение с примерами емкостное сопротивление Конденсатор в цепях переменного тока - формулы и определение с примерами становится бесконечно большим, и ток через конденсатор (при условии отсутствия тока утечки) не проходит. В этом случае конденсатор представляет собой «разрыв» цепи. В цепи переменного тока конденсатор постоянно перезаряжается, что и приводит к появлению в ней отличного от нуля тока.

Так же как и для цепи с катушкой индуктивности, для цепи с конденсатором закон Ома не применим для мгновенных значений силы тока и напряжения, поскольку они не совпадают по фазе (см. рис. 196).

Мгновенная мощность в цепи переменного тока, содержащей конденсатор, определяется по формуле
Конденсатор в цепях переменного тока - формулы и определение с примерами

Как и в случае с катушкой индуктивности, средняя за период мощность равна
нулю:
Конденсатор в цепях переменного тока - формулы и определение с примерами

В первой и третьей четвертях периода конденсатор заряжается, превращая энергию источника в энергию электростатического поля конденсатора Конденсатор в цепях переменного тока - формулы и определение с примерамиа во второй и четвертой — конденсатор разряжается, т. е. цепь работает в режиме генератора, возвращая запасенную энергию источнику.

Можно сказать, что в этой цепи происходит без потерь периодический обмен энергией между «генератором» и конденсатором. По этой причине (как и в случае с катушкой индуктивности) емкостное сопротивление называют реактивным.

  • Электрический ток в различных средах
  • Электромагнитная индукция в физике 
  • Правило Ленца для электромагнитной индукции
  • Магнитные свойства вещества
  • Постоянный электрический ток
  • Законы постоянного тока 
  • Переменный электрический ток
  • Катушка индуктивности в цепях переменного тока

Конденсатор в цепи переменного тока

Положим
теперь, что участок цепи содержит
конденсатор емкости C,
причем сопротивлением и индуктивностью
участка можно пренебречь, и посмотрим,
по какому закону будет изменяться
напряжение на концах участка в этом
случае. Обозначим напряжение между
точками а
и b
через u
и будем
считать заряд конденсатора q
и силу тока i
положительными, если они соответствуют
рис.4.
Тогда

,

и,
следовательно,

.

Если сила тока в
цепи изменяется по закону

,
(1)

то заряд конденсатора
равен

.

Постоянная
интегрирования q0
здесь обозначает произвольный постоянный
заряд конденсатора, не связанный с
колебаниями тока, и поэтому мы положим
.
Следовательно,

.
(2)

Рис.4. Конденсатор
в цепи переменного тока

Рис.5. Зависимости
тока через конденсатор и напряжения
от времени

Сравнивая
(1) и (2), мы видим, что при синусоидальных
колебаниях тока в цепи напряжение на
конденсаторе изменяется также по закону
косинуса. Однако колебания напряжения
на конденсаторе отстают по фазе от
колебаний тока на /2.
Изменения тока и напряжения во времени
изображены графически на рис.5. Полученный
результат имеет простой физический
смысл. Напряжение на конденсаторе в
какой-либо момент времени определяется
существующим зарядом конденсатора. Но
этот заряд был образован током, протекавшим
предварительно в более ранней стадии
колебаний. Поэтому и колебания напряжения
запаздывают относительно колебаний
тока.

Формула
(2) показывает, что амплитуда напряжения
на конденсаторе равна

.

Сравнивая
это выражение с законом Ома для участка
цепи с постоянным током (),
мы видим, что величина

играет
роль сопротивления участка цепи, она
получила название емкостного сопротивления.
Емкостное сопротивление зависит от
частоты и
при высоких частотах даже малые емкости
могут представлять совсем небольшое
сопротивление для переменного тока.
Важно отметить,
что емкостное сопротивление определяет
связь между амплитудными, а не мгновенными
значениями тока и напряжения.

Мгновенная
мощность переменного тока

меняется
со временем по синусоидальному закону
с удвоенной частотой. В течение времени
от 0 до T/4
мощность
положительна, а в следующую четверть
периода ток и напряжение имеют
противоположные знаки и мощность
становится отрицательной.
Поскольку
среднее значение за период колебаний
величины
равно нулю, то средняя мощность переменного
тока на конденсаторе.

Катушка индуктивности в цепи переменного тока

Рассмотрим,
наконец, третий частный случай, когда
участок цепи содержит только индуктивность.
Обозначим по-прежнему через U
напряжение между точками а
и б
и будем считать ток I
положительным, если он направлен от а
к б
(рис.6). При наличии переменного тока в
катушке индуктивности возникнет ЭДС
самоиндукции, и поэтому мы должны
применить закон Ома для участка цепи,
содержащего эту ЭДС:

.

В
нашем случае R
= 0, а ЭДС самоиндукции

.

Поэтому

.
(3)

Если сила тока в
цепи изменяется по закону

,

то

.
(4)

Рис.6. Катушка
индуктивности в цепи

переменного
тока

Рис.7.
Зависимости тока через катушку

индуктивности
и напряжения от времени

Видно,
что колебания напряжения на индуктивности
опережают по фазе колебания тока на
/2.
Когда сила тока, возрастая, проходит
через нуль, напряжение уже достигает
максимума, после чего начинает уменьшаться;
когда сила тока становится максимальной,
напряжение проходит через нуль, и т.д.
(рис.7).

Из
(4) следует, что амплитуда напряжения
равна

,

и , следовательно,
величина

играет
ту же роль, что сопротивление участка
цепи. Поэтому
называют индуктивным сопротивлением.
Индуктивное сопротивление пропорционально
частоте переменного тока, и поэтому при
очень больших частотах даже малые
индуктивности могут представлять
значительное сопротивление для переменных
токов.

Мгновенная
мощность переменного тока

также,
как и в случае идеальной емкости, меняется
со временем по синусоидальному закону
с удвоенной частотой. Очевидно, что
средняя за период мощность равна нулю.

Таким
образом, при протекании переменного
тока через идеальные емкость и
индуктивность обнаруживается ряд общих
закономерностей:

  1. Колебания
    тока и напряжения происходят в различных
    фазах – сдвиг по фазе между этими
    колебаниями равен /2.

  2. Амплитуда
    переменного напряжения на емкости
    (индуктивности) пропорциональна
    амплитуде протекающего через этот
    элемент переменного тока

где
X
– реактивное (емкостное или индуктивное
сопротивление). Важно иметь в виду, что
это сопротивление связывает между собой
не мгновенные значения тока и напряжения,
а только их максимальные значения.
Реактивное сопротивление отличается
от омического (резистивного) сопротивления
еще и тем, что оно зависит от частоты
переменного тока.

  1. На
    реактивном сопротивлении не рассеивается
    мощность (в среднем за период колебаний),
    это означает, что, например, через
    конденсатор может протекать переменный
    ток очень большой амплитуды, но
    тепловыделение на конденсаторе будет
    отсутствовать. Это является следствием
    фазового сдвига между колебаниями тока
    и напряжения на реактивных элементах
    цепи (индуктивности и емкости).

Резистивный
элемент, который описывается в
рассматриваемом частотном диапазоне
законом Ома для мгновенных
токов и напряжений

,

называют омическим
или активным сопротивлением. На активных
сопротивлениях происходит выделение
мощности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,658
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,962
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Как работает конденсатор и катушка в цепи переменного тока

Содержание

  • 1 Особенности работы конденсатора
  • 2 Формула ёмкости
  • 3 Особенности электроцепи с емкостью и индуктивностью
  • 4 Виды конденсаторов
  • 5 Различные характеристики конденсаторов
  • 6 Где используются конденсаторы
  • 7 Видео по теме

Работа многих электрических схем строится на использовании конденсаторов. Основной особенностью этих радиоэлементов является то, что они хорошо проводят переменный ток, но не пропускают постоянный.

Разнообразие конденсаторов

Особенности работы конденсатора

Радиодеталь представляет собой две пластины, к которым прикреплены металлические выводы. Пластины не соприкасаются между собой. Обычно между ними проложен слой изолятора. Постоянный электроток через конденсатор проходить не может, так как нет контакта между проводниками, но для переменного он не является препятствием.

Схема устройства конденсатора

Когда конденсатор включен в цепь переменного тока, частота напряжения меняется по закону синусоиды. Сначала электродвижущая сила растёт до своего максимума. После этого она уменьшается до нуля, а затем переходит в отрицательную область, где постепенно возрастает до амплитуды, взятой со знаком минус. Затем отрицательная ЭДС уменьшается по абсолютной величине до нуля и начинает возрастать в положительной области до наибольшего значения. Описанный цикл изменений повторяется снова и снова.

Конденсатор в переменной электроцепи

Когда конденсатор работает в цепи переменного тока, в нем циклически происходят следующие процессы:

  • При возрастании амплитуды от нулевого значения до максимального происходит накопление заряда. Пластины накапливают равные по абсолютной величине, но противоположные по знаку заряды.
  • При уменьшении до нуля накопление прекращается, заряд уменьшается, так как начинает стекать с пластин конденсатора.
  • Когда напряжение меняется на противоположное, на пластины начинают поступать заряды, которые имеют знаки, противоположные тем, что были раньше.
  • Как только ЭДС достигнет максимального отрицательного значения и станет уменьшаться по абсолютной величине, начнётся разрядка конденсатора.

Описанный здесь цикл повторится с началом возрастания ЭДС. Он будет осуществляться до тех пор, пока переменный ток не будет отключён.

Изменение параметров радиодетали

Формула ёмкости

Одна из самых важных характеристик конденсатора — ёмкость. Её обозначают символом C. Несмотря на то, что контакта между пластинами нет, ток будет идти через конденсатор в цепи переменного тока то к пластинам, то от них. Это обусловлено циклически происходящими процессами зарядки и разрядки конденсатора.

Величина ёмкости характеризует способность конденсатора накапливать заряд при поступлении на обкладки определённой разности потенциалов. Ее можно найти по формуле:

Формула ёмкости

Используя эту формулу наряду с законом изменения напряжения, можно узнать силу тока, возникающего в процессе зарядки или разрядки пластин конденсатора в цепи переменного тока. Но для этого необходимо сделать соответствующие преобразования.

Сначала находим напряжение, возникающее на конденсаторе в цепи переменного тока, воспользовавшись формулами для определения ёмкости и разности потенциалов. После преобразований получаем выражение:

Напряжение на входах конденсатора

Из него находим величину заряда:

Формула для заряда

Теперь можно получить выражение для электротока в цепи с конденсатором:

Выражение для силы тока

Надо сказать, что при выводе формулы для нахождения силы электрического тока были использованы следующие приемы:

  • От выражения для заряда была взята производная по времени.
  • Затем было выполнено эквивалентное тригонометрическое преобразование.
  • Um соответствует максимальному значению амплитуды колебаний электронапряжения.

Полученное выражение позволяет узнать ток зарядки и разрядки конденсатора в любой момент. Изменения тока опережают напряжение на половину «пи». Величина тока будет максимальной при нулевом напряжении. И, наоборот, значение тока станет нулевым, когда напряжение достигнет максимума.

Для определения ёмкости может быть использована еще такая формула:

Определение емкости с учетом площади пластин

Как видно из формулы, ёмкость конденсатора увеличивается при увеличении площади пластин и уменьшении расстояния между ними.

Емкостное сопротивление — ещё одна важная характеристика конденсатора. Его можно найти по формуле:

Определение емкостного сопротивления

Если взять формулу для определения амплитуды электротока:

Определение амплитуды электротока

И подставить в нее значение ХС, то получим:

Определение силы электротока

После изучения данной формулы становится понятно, что емкостное и активное сопротивление из закона Ома играют одну и ту же роль. Поэтому емкостное можно считать сопротивлением конденсатора переменному электротоку.

Пример использования формул для решения простых задач по нахождению емкости конденсатора можно увидеть на изображении ниже:

Задача на нахождение емкости конденсатора

Особенности электроцепи с емкостью и индуктивностью

Рассматривая ранее цепь переменного тока с включенным конденсатором, мы могли видеть, что частота колебаний электротока на конденсаторе опережает частоту колебаний электронапряжения на π/2. При включении катушки индуктивности наблюдается обратное явление, то есть, электроток отстает от электронапряжения на π/2. Его амплитуда определяется по формуле:

Определение электротока для катушки индуктивности

Знаменатель в данной формуле представляет собой выражение, используемое для определения индуктивного сопротивления:

Индуктивное сопротивление

В итоге получаем формулу для силы электротока:

Значение силы электротока

Индуктивное сопротивление, как и емкостное, зависит от частоты электротока. Поэтому катушка, включенная в постоянную цепь, будет иметь нулевое индуктивное сопротивление.

Схема колебательного контура

Конденсатор и катушка индуктивности в цепи переменного тока образуют, так называемый, колебательный контур. Его колебания определяются по формуле:

Формула для определения колебаний контура

При вынужденных колебаниях сила элетротока достигает максимума, если колебания электронапряжения и самого контура становятся равными:

Значение вынужденных колебаний

Виды конденсаторов

На данный момент существует огромный выбор конденсаторов:

  • Наиболее распространены радиодетали с двумя обкладками, но их может быть и больше.
  • Плоский конденсатор состоит из двух пластин, между которыми расположен тонкий слой диэлектрика. Его толщина должна быть небольшой по сравнению с размерами пластин.
  • В цилиндрическом конденсаторе обе пластины имеют цилиндрическую форму. Одна из них находится внутри другой. Между цилиндрами имеется равномерный тонкий промежуток, который заполнен диэлектриком.
  • Существуют сферические конденсаторы, обкладки которых представляют собой сферы, одна из которых находится внутри другой.

Конденсаторы различаются в зависимости от вида диэлектрика. В частности, может использоваться не только твёрдый, но и жидкий или газообразный диэлектрик. Есть также вакуумные конденсаторы, в которых внутри между обкладками находится вакуум.

Вакуумные конденсаторы

Существуют оксидно-полупроводниковые конденсаторы. Один из их электродов является анодом. Диэлектриком выступает покрывающий его оксид. Катодом является полупроводниковый слой, который наносится на слой оксида.

Для изолирующего слоя могут использоваться как органические, так и неорганические материалы. В первом случае применяются бумажные или плёночные материалы. Неорганический диэлектрик выполняется из керамики, стекла, слюды или неорганических синтетических плёнок. Есть и такие, внутри которых содержится электролитический раствор. Конденсаторы с подобным диэлектриком характеризуются относительно высокой ёмкостью.

Схема электролитического конденсатора

Еще одна разновидность конденсаторов — подстроечные. Их использование предоставляет возможность изменять значение емкости в определенных пределах, чтобы деталь могла работать наиболее эффективно.

Подстроечные конденсаторы

Наряду с конденсаторами общего назначения существуют и те, которые предназначены для специального применения. Примерами таких видов являются дозиметрические, высоковольтные, пусковые, импульсные, помехоподавляющие и некоторые другие радиоэлементы.

Различные характеристики конденсаторов

Основной характеристикой конденсатора является ёмкость. Но при выборе необходимо учитывать и другие.

Для каждого конденсатора существует номинальное напряжение. Если эксплуатация детали будет осуществляться исключительно при таком значении, производитель гарантирует качественную работу в течение всего срока службы.

При увеличении подаваемого на пластины напряжения заряд будет увеличиваться. Если разность потенциалов станет слишком большой, произойдёт пробой радиодетали. В результате между обкладками пройдёт искра, а сам конденсатор станет неисправной. Конденсатор в цепи переменного тока необходимо эксплуатировать в строго заданных параметрах. Иначе срок его эксплуатации существенно сокращается.

Принцип работы конденсатора

Ещё одна характеристика — удельная ёмкость. Она равна отношению ёмкости и массы используемого диэлектрика. С её повышением улучшаются характеристики, но возрастает вероятность пробоя.

В формуле для определения ёмкости используется понятие диэлектрической проницаемости диэлектрика, который находится между пластинами. Эта характеристика определяет то, насколько сильно данное вещество ослабляет влияние электрического поля между обкладками.

В диэлектриках электроны сильно привязаны к ядрам атомов, из-за чего они не перемещаются под действием электрического поля и не образуют электрический ток. Однако при воздействии электрического поля осуществляется поляризация атомов за счет смещения электронов внутри них. Следствием этого является ослабление электрического поля. Его величина зависит от того, какое вещество используется в качестве диэлектрика. Возмущение электрического поля, создаваемое диэлектриком, ослабляет то, которое было приложено к пластинам, и препятствует притоку заряда к пластинам.

Поляризация диэлектрика

Где используются конденсаторы

Радиодетали этого вида находят применение в разных сферах деятельности современного человека:

  • Конденсатор и катушка индуктивности в цепи переменного тока образуют колебательный контур, его используют во многих устройствах.
  • Конденсаторы меняют свои характеристики в зависимости от температуры или влажности окружающей среды, поэтому применяются в самых разных измерительных приборах.
  • Еще одна сфера применения— блоки питания.
  • Используются в цепях с преобразователями переменного тока в постоянный.
  • Применяются в частотных фильтрах.
  • Без конденсатора трудно представить усилитель.
  • Конденсатор является важным элементом для процессоров и других микросхем.

Здесь приведены только некоторые варианты использования. На самом деле их гораздо больше.

Видео по теме



Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Конденсатор в цепи переменного тока эпюры

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Зависимость емкостного сопротивления от частоты

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

Емкостное сопротивление конденсатора

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

 Конденсатор в цепи переменоого тока анимация

Рисунок 3. а)Процессы в цепи переменного тока с конденсатором и б)сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Добавить комментарий