СДАМ ГИА:
РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
≡ Математика
Базовый уровень
Профильный уровень
Информатика
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
Сайты, меню, вход, новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
Об экзамене
Каталог заданий
Варианты
Ученику
Учителю
Школа
Эксперту
Справочник
Карточки
Теория
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Играть в ЕГЭ-игрушку
Новости
Новости
24 мая
Беседы Решу ЕГЭ по подготовке к ЕГЭ
11 мая
Решение досрочных ЕГЭ по всем предметам
5 мая
Обновленный поиск заданий по ключевым словам
1 мая
Новый сервис: можно исправить ошибки!
29 апреля
Разместили актуальные шкалы ЕГЭ — 2023
24 апреля
Учителю: обновленный классный журнал
7 апреля
Новый сервис: ссылка, чтобы записаться к учителю
30 марта
Решения досрочных ЕГЭ по математике
31 октября
Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР
НАШИ БОТЫ
Все новости
ЧУЖОЕ НЕ БРАТЬ!
Экзамер из Таганрога
10 апреля
Предприниматель Щеголихин скопировал сайт Решу ЕГЭ
Наша группа
Поиск
?
было в ЕГЭ
в условии
в решении
в тексте к заданию
в атрибутах
Категория
Атрибут
Всего: 9 1–9
Добавить в вариант
Тип 7 № 323079
i
На рисунке изображён график функции y = f(x). Функция — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323079: 323283 323373 323375 … Все
Решение
·
Видеокурс
·
Помощь
Тип 7 № 323080
i
На рисунке изображён график некоторой функции y = f(x). Функция — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323080: 323383 323475 323477 … Все
Решение
·
3 комментария
·
Видеокурс
·
Помощь
Тип 7 № 323283
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323079: 323283 323373 323375 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323373
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323079: 323283 323373 323375 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323375
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323079: 323283 323373 323375 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323379
i
На рисунке изображён график функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323079: 323283 323373 323375 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323383
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323080: 323383 323475 323477 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323475
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323080: 323383 323475 323477 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Тип 7 № 323477
i
На рисунке изображён график некоторой функции Функция — одна из первообразных функции Найдите площадь закрашенной фигуры.
Аналоги к заданию № 323080: 323383 323475 323477 … Все
Решение
·
Прототип задания
·
Видеокурс
·
Помощь
Всего: 9 1–9
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Решение:
Площадь под графиком функции f(x) на отрезке [a; b] равна разности первообразных:
S = F(b) – F(a)
Нам необходимо найти площадь закрашенной фигуры на отрезке [-8; -6], то есть a = -8; b = -6. Значит S = F(-6) – F(-8).
Найдем F(-8):
F(-8) = (-8)3 + 21⋅(-8)2 +151⋅(-8) – 1
F(-8) = – 512 + 21⋅64 – 151⋅8 – 1
F(-8) = – 512 + 1344 – 1208 – 1
F(-8) = – 513 + 136
F(-8) = -377
Найдем F(-6):
F(-6) = (-6)3 + 21⋅(-6)2 +151⋅(-6) – 1
F(-6) = – 216 + 21⋅36 – 151⋅6 – 1
F(-6) = – 216 + 756 – 906 – 1
F(-6) = – 217 – 150
F(-6) = -367
Тогда площадь закрашенной фигуры равна:
S = F(-6) – F(-8) = -367 – (-377) = -367 + 377 = 10
Ответ: 10
10
Авг 2013
Категория: 07 Производная, ПО
07. Первообразная
2013-08-10
2022-09-11
Задача 1. На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите , где — одна из первообразных функции .
Решение: + показать
Задача 2. На рисунке изображён график некоторой функции . Функция — одна из первообразных функции . Найдите площадь закрашенной фигуры.
Решение: + показать
Задача 3. На рисунке изображён график некоторой функции . Функция — одна из первообразных функции . Найдите площадь закрашенной фигуры.
Решение: + показать
Задача 4. На рисунке изображён график функции – одной из первообразных некоторой функции , определённой на интервале . Пользуясь рисунком, определите количество решений уравнения на отрезке .
Решение: + показать
Загляните –> + показать
Вы можете пройти тест «Первообразная»
Автор: egeMax |
комментариев 7
Решение уравнений на графике первообразной
На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].
По определению первообразной на интервале (−3; 5) справедливо равенство
Следовательно, решениями уравнения f(x)=0 являются точки экстремумов изображенной на рисунке функции F(x) На рисунке точки, в которых выделены красным и синим цветом. Из них на отрезке [−2;4] лежат 10 точек (синие точки). Таким образом, на отрезке [−2;4] уравнение имеет 10 решений.
На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x) — одна из первообразных функции f(x).
Разность значений первообразной в точках 8 и 2 равна площади выделенной на рисунке трапеции Поэтому
На рисунке изображён график функции y = f(x). Функция — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.
Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках и
Приведем другое решение.
Вычисления можно было бы упростить, выделив полный куб:
что позволяет сразу же найти
Приведем ещё одно решение.
Можно было бы найти разность первообразных, используя формулы сокращенного умножения:
Приведем ещё одно решение.
Получим явное выражение для Поскольку
Этот подход можно несколько усовершенствовать. Заметим, что график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:
На рисунке изображён график некоторой функции y = f(x). Функция — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Найдем формулу, задающую функцию график которой изображён на рисунке.
Следовательно, график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:
Еще несколько способов рассуждений покажем на примере следующей задачи.
Ошибки, конечно, нет, но при таком подходе (сдвиг функции) гораздо легче найти уравнение параболы, проходящей через точки (-1;0), (0;3) и (1;0), а потом вычислить интеграл.
Во-первых, до того как была вычислена производная, мы не знали, является ли изображенный на рисунке график параболой. Во-вторых, на наш взгляд, выделить полный квадрат проще, чем решать систему уравнений с тремя переменными.
Но ведь ясно, что если первообразная — многочлен третьей степени, то производная — многочлен второй степени.
Согласны, если это объяснено, то всё в порядке.
Ошибки, конечно, нет. Но надо ли так подробно решать? Есть первообразная, есть границы интегрирования. S=F(-8)-F(-10)=4
В конце решения есть фраза “Еще несколько способов рассуждений покажем на примере следующей задачи” со ссылкой. Там есть разные варианты решения
На рисунке изображен график некоторой функции Пользуясь рисунком, вычислите определенный интеграл
Определенный интеграл от функции по отрезку дает значение площади подграфика функции на отрезке. Область под графиком разбивается на прямоугольный треугольник, площадь которого и прямоугольник, площадь которого Сумма этих площадей дает искомый интеграл
Первообразная
Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$
Таблица первообразных
Первообразная нуля равна $С$
Функция | Первообразная |
$f(x)=k$ | $F(x)=kx+C$ |
$f(x)=x^m, m≠-1$ | $F(x)=>/+C$ |
$f(x)=<1>/$ | $F(x)=ln|x|+C$ |
$f(x)=e^x$ | $F(x)=e^x+C$ |
$f(x)=a^x$ | $F(x)=/+C$ |
$f(x)=sinx$ | $F(x)-cosx+C$ |
$f(x)=cosx$ | $F(x)=sinx+C$ |
$f(x)=<1>/$ | $F(x)=-ctgx+C$ |
$f(x)=<1>/$ | $F(x)=tgx+C$ |
$f(x)=√x$ | $F(x)=<2x√x>/<3>+C$ |
$f(x)=<1>/<√x>$ | $F(x)=2√x+C$ |
Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$
Правила вычисления первообразных:
- Первообразная суммы равна сумме первообразных. Если $F(x)$ – первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ – первообразная для $f(x)+g(x)$.
- Постоянный множитель выносится за знак первообразной. Если $F(x)$ – первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ – первообразная для $k$ $f(x)$.
- Если $F(x)$ – первообразная для $f(x)$, $а, k, b$ – постоянные величины, причем $k≠0$, то $<1>/$ $F(kx+b)$ – это первообразная для $f(kx+b)$.
Найти первообразную для функции $f(x)=2sinx+<4>/-/<3>$.
Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого
Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$
Для $f_1=sinx$ первообразная равна $F_1=-cosx$
Для $f_2=<1>/$ первообразная равна $F_2=ln|x|$
Для $f_2=cosx$ первообразная равна $F_3=sinx$
По первому правилу вычисления первообразных получаем:
Итак, общий вид первообразной для заданной функции
Задания по теме «Первообразная функции»
Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)
Задание №1164
Условие
На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).
Решение
По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .
Её площадь равна frac<4+3><2>cdot 3=10,5.
Ответ
Задание №1158
Условие
На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x) , определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].
Решение
Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).
Ответ
Задание №1155
Условие
На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).
Решение
По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3 .
Её площадь равна frac<5+3><2>cdot 3=12.
Ответ
Задание №1149
Условие
На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].
Решение
Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.
Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).
Ответ
Задание №1146
Условие
На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).
Найдите площадь заштрихованной фигуры.
Решение
Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.
Ответ
Задание №907
Условие
На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.
Решение
Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).
Ответ
Задание №307
Условие
На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.
Решение
По формуле Ньютона-Лейбница S=F(-1)-F(-5).
F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.
F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.
F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.
Ответ
Задание №306
Условие
На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).
Решение
F(9)-F(3)=S , где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9 . Рассмотрим рисунок ниже.
Данная фигура — трапеция с основаниями 6 и 1 и высотой 2 . Ее площадь равна frac<6+1><2>cdot2=7.
Ответ
Задание №104
Условие
На координатной плоскости изображен график функции y=f(x) . Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2 . Найдите площадь заштрихованной фигуры.
Решение
На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1 , а по оси ординат графиком функции: f(x) . Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1 , по формуле определенного интеграла:
Подставим значение первообразной из условия и получим площадь фигуры:
Ответ
Задание №103
Условие
Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2) . Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5] .
Решение
Формула первообразной имеет следующий вид:
По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0 , то есть те точки, в которых производная от первообразной равна нулю.
Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.
На отрезке [−10; −5] видно что это точки: −9; −7; −6 . Значит уравнение f(x) = 0 имеет 3 решения.
[spoiler title=”источники:”]
http://examer.ru/ege_po_matematike/teoriya/pervoobraznaya
http://academyege.ru/theme/pervoobraznaya-funkcii.html
[/spoiler]
Первообразная функции. Формула Ньютона-Лейбница
Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида у = F(x) + C образуют множество первообразных функции у = f(x).
Сейчас объясним, что это значит.
Вспомним таблицу производных. В левой колонке — функции, в правой — их производные. Например, — производная от функции , — производная функции . А чем будет являться для функции ? Или — для функции ? Вы уже догадались. Первообразной.
Заметим, кстати, что — производная не только функции , но и функций , — в общем, всех функций вида Здесь C — константа, то есть постоянная величина, и ее производная равна нулю.
Аналогично, функция — производная для всех функций вида , где — константа.
Посмотрим на таблицу первообразных. Каждая функция в левом столбце таблицы является производной для функции в правом столбце.
Таблица первообразных
Первообразная суммы функций равна сумме их первообразных.
Первообразная разности функций — разности первообразных.
Первообразная от функции , где — постоянный множитель, равна произведению на первообразную функции , то есть .
Множество всех первообразных функции называется неопределенным интегралом данной функции. Записывается это так:
Нахождение первообразной называется также интегрированием функции. А нахождение производной — дифференцированием функции. Интегрирование (то есть нахождение первообразной) и дифференцирование (взятие производной) — взаимно-обратные действия.
Но интегралы — отдельная тема. В задачах ЕГЭ по математике неопределенные интегралы не встречаются, а теме «Первообразная» посвящено всего несколько задач в первой части ЕГЭ. Для их решения надо знать только таблицу первообразных и еще одну важную формулу.
Формула для вычисления площади под графиком функции (Формула Ньютона-Лейбница)
Пусть в прямоугольной системе координат задана фигура, ограниченная графиком непрерывной функции , осью и прямыми и . Пусть функция неотрицательна на отрезке [a; b].
Тогда площадь этой фигуры вычисляется по формуле:
Такую фигуру называют еще криволинейной трапецией. А сама формула носит название «Формула Ньютона-Лейбница».
1. Значение первообразной функции в точке 0 равно 6. Найдите .
Найдем первообразную функции с помощью таблицы первообразных. Получим:
При получим:
Значит, и
Ответ: 40,5
2. Значение первообразной функции в точке 0 равно -13. Найдите
Найдем первообразную функции с помощью таблицы первообразных. Получим:
При x = 0 получим: Значит, и
Ответ: -14
3. На рисунке изображен график функции . Найдите значение выражения , где – одна из первообразных функции .
По формуле Ньютона-Лейбница, разность первообразных — это площадь, ограниченная графиком функции, осью X и прямыми y=a и y=b.
В этой задаче нужная фигура ограничена графиком функции, осью и прямыми и . Это квадратик, и площадь его равна 4.
Ответ: 4.
4. На рисунке изображён график некоторой функции . Функция — одна из первообразных функции . Найдите площадь закрашенной фигуры.
Решение. По формуле Ньютона-Лейбница, площадь под графиком функции на отрезке [a,b] равна разности значений первообразной в концах отрезка, то есть
В нашей задаче имеем:
Дальше — просто арифметика.
Ответ: 13,5.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Первообразная функции. Формула Ньютона-Лейбница» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
07.05.2023