Площадь квадрата как найти определение

Квадрат
Квадрат со стороной '"`UNIQ--postMath-00000001-QINU`"' и диагональю '"`UNIQ--postMath-00000002-QINU`"'
Квадрат со стороной a и диагональю d
Рёбра 4
Символ Шлефли {4}
Вид симметрии Диэдрическая группа (D4)
Площадь a2
Внутренний угол 90°
Свойства
Выпуклый многоугольник, Изогональная фигура, изотоксальная фигура
Логотип Викисклада Медиафайлы на Викискладе

Квадра́т (от лат. quadratus, четырёхугольный[1]) — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой {displaystyle (90^{circ })}[2].

Варианты определения[править | править код]

Квадрат может быть однозначно охарактеризован разными способами[3][4].

  • Четырёхугольник, диагонали которого равны и взаимно перпендикулярны, причём точка пересечения делит их пополам.
  • Четырёхугольник, являющийся одновременно прямоугольником и ромбом.
  • Прямоугольник, у которого длины двух смежных сторон равны.
  • Прямоугольник, у которого диагонали пересекаются под прямым углом.
  • Ромб, у которого диагонали равны.
  • Ромб, у которого два соседних угла равны.
  • Ромб, один из углов которого — прямой (прочие углы, как легко доказать, тогда также прямые).
  • Параллелограмм, у которого длины двух смежных сторон равны, а угол между ними — прямой.
  • Параллелограмм, у которого диагонали равны, а угол между ними — прямой.
  • Дельтоид, все углы которого прямые.

Свойства[править | править код]

Основной источник: [4]

Далее в этом разделе a обозначает длину стороны квадрата, d — длину диагонали, R — радиус описанной окружности, r — радиус вписанной окружности.

Стороны и диагонали[править | править код]

Диагонали квадрата равны, взаимно перпендикулярны, делятся точкой пересечения пополам и сами делят углы квадрата пополам (другими словами, являются биссектрисами внутренних углов квадрата). Длина каждой диагонали {displaystyle d=a{sqrt {2}}.}

Периметр квадрата P равен:

{displaystyle P=4a=4{sqrt {2}}R=8r}.

Вписанная и описанная окружности[править | править код]

Вписанная и описанная окружности для квадрата

Центр описанной и вписанной окружностей квадрата совпадает с точкой пересечения его диагоналей.

Радиус вписанной окружности квадрата равен половине стороны квадрата:

{displaystyle r={frac {a}{2}}.}

Радиус описанной окружности квадрата равен половине диагонали квадрата:

{displaystyle R={frac {sqrt {2}}{2}}a.}

Из этих формул следует, что площадь описанной окружности вдвое больше площади вписанной.

Площадь[править | править код]

  • Площадь квадрата

  • Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади

    Соединив середины сторон квадрата, получаем квадрат вдвое меньшей площади

Площадь S квадрата равна

{displaystyle S=a^{2}=2R^{2}=4r^{2}={1 over 2}d^{2}}.

Из формулы {displaystyle S=a^{2},} связывающей сторону квадрата с его площадью, видно, почему возведение числа во вторую степень традиционно называется «возведением в квадрат», а результаты такого возведения называются «квадратными числами» или просто квадратами. Аналогично корень 2-й степени называется квадратным корнем.

Квадрат имеет два замечательных свойства[5].

  1. Из всех четырёхугольников с заданным периметром квадрат имеет наибольшую площадь.
  2. Из всех четырёхугольников с заданной площадью квадрат имеет наименьший периметр.

К уравнению квадрата; здесь {displaystyle R=2,x_{0}=y_{0}=0}

Уравнение квадрата[править | править код]

В прямоугольной системе координат уравнение квадрата с центром в точке {displaystyle {x_{0},y_{0}}} и диагоналями, параллельными осям координат (см. рисунок), может быть записано в виде[6]:

{displaystyle |x-x_{0}|+|y-y_{0}|=R,}

где R — радиус описанной окружности, равный половине длины диагонали квадрата. Сторона квадрата тогда равна {displaystyle R{sqrt {2}},} его диагональ равна {displaystyle 2R,} а площадь квадрата равна {displaystyle 2R^{2}.}

Уравнение квадрата с центром в начале координат и сторонами, параллельными осям координат (см. рисунок), может быть представлено в одной из следующих форм:

  1. {displaystyle |x-y|+|x+y|=a} (легко получается применением поворота на 45° к предыдущему уравнению)
  2. {displaystyle max(x^{2},y^{2})=r^{2}}
  3. (в полярных координатах[7]) {displaystyle quad r(varphi )=min left({frac {r}{|cos varphi |}},{frac {r}{|sin varphi |}}right)}

Математические проблемы[править | править код]

С квадратами связаны ряд проблем, часть из которых до сих пор не имеет решения.

  • Квадратура круга — древняя проблема построения циркулем и линейкой квадрата, равновеликого по площади заданному кругу. В 1882 году Фердинанд Линдеман доказал, что это невозможно.

Пример квадрирования квадрата {displaystyle 112times 112}

  • Квадрирование квадрата — задача о разбиении квадрата на конечное число меньших квадратов, без «дырок», причём длины сторон квадратов должны отличаться друг от друга (в идеале должны быть все различны). Найден ряд решений этой задачи.
  • Долгое время математики пытались доказать, что непрерывное отображение отрезка прямой в квадрат невозможно, пока Джузеппе Пеано не построил свой контрпример.
  • Гипотеза Тёплица: на всякой замкнутой плоской жордановой кривой можно отыскать четыре точки, образующие вершины квадрата. Не доказана и не опровергнута.
  • Разбиение квадрата сеткой одинаковых более мелких квадратов также приводит к множеству проблем, используемых, в частности, в теории латинских и греко-латинских квадратов, магических квадратов, в игре судоку.

Симметрия[править | править код]

Квадрат обладает наибольшей осевой симметрией среди всех четырёхугольников. Он имеет:

  • одну ось симметрии четвёртого порядка — ось, перпендикулярную плоскости квадрата и проходящую через его центр;
  • четыре оси симметрии второго порядка (то есть относительно них квадрат отражается сам в себя), из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.

Применение[править | править код]

В математике[править | править код]

Единичный квадрат используется как эталон единицы измерения площади, а также в определении площади произвольных плоских фигур. Фигуры, у которых можно определить площадь, называются квадрируемыми.

Теорема Пифагора первоначально формулировалась геометрически: площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Квадратами являются грани куба — одного из пяти правильных многогранников.

В математической физике символ квадрата может означать «оператор Д’Аламбера» (даламбериан) — дифференциальный оператор второго порядка:

{displaystyle square u:={frac {partial ^{2}u}{partial x^{2}}}+{frac {partial ^{2}u}{partial y^{2}}}+{frac {partial ^{2}u}{partial z^{2}}}-{frac {1}{c^{2}}}{frac {partial ^{2}u}{partial t^{2}}}}

Из теоремы Бойяи — Гервина следует, что любой многоугольник равносоставлен квадрату, то есть его можно разрезать на конечное число частей, из которых составляется квадрат (и обратно)[8].

Графы:
K4 полный граф часто изображается как квадрат с шестью рёбрами.

Орнаменты и паркеты[править | править код]

  • Мозаики, включающие квадраты
  • «Пифагорова мозаика»

  • Bond brick hexagonal tiling.png

  • Square rhombic tiling.png

Мозаики, орнаменты и паркеты, содержащие квадраты, широко распространены.

Другие применения[править | править код]

Шахматная доска имеет форму квадрата и поделена на 64 квадрата двух цветов. Квадратная доска для международных шашек поделена на 100 квадратов двух цветов. Квадратную форму имеет боксёрский ринг, площадка для игры в квадрат.

Квадратный флаг Лима поделён на два чёрных и два жёлтых квадрата, будучи поднятым на корабле в гавани, означает, что корабль находится на карантине.

Графика[править | править код]

Символы со сходным начертанием:  ·  ·

Ряд символов имеют форму квадрата.

  • Символы Юникода U+25A0 — U+25CF
  • U+20DE ◌⃞ COMBINING ENCLOSING SQUARE
  • ロ (Японский иероглиф «Ро» (катакана))
  • 口 (Китайский иероглиф «рот»)
  • 囗 (Китайский иероглиф «ограда»)

В Latex для вставки символа квадрата служат конструкции Box или square.

В HTML, чтобы заключить произвольный текст в квадрат или прямоугольник, можно использовать конструкцию:

  • <span style=”border-style: solid; border-width: 1.5px 1.5px 1.5px 1.5px; padding-left: 4px; padding-right: 4px;”>text</span>; результат: text.

Вариации и обобщения[править | править код]

Многомерное пространство[править | править код]

Квадрат можно рассматривать как двумерный гиперкуб.

Неевклидова геометрия[править | править код]

В неевклидовой геометрии квадрат (в более широком смысле) — многоугольник с четырьмя равными сторонами и равными углами. По величине этих углов можно судить о кривизне плоскости — в евклидовой геометрии и только в ней углы прямые, в сферической геометрии углы сферического квадрата больше прямого, в геометрии Лобачевского — меньше.

Построение квадрата с использованием циркуля и линейки

Складывание квадрата из произвольного куска бумаги

См. также[править | править код]

  • Алгоритм «движущиеся квадраты»
  • Квадрат Полибия
  • Квадратная матрица
  • Квадратриса
  • Первая теорема Тебо
  • Площадь произвольного четырёхугольника

Примечания[править | править код]

  1. Квадрат // Советский энциклопедический словарь. — 2-е изд.. — М.: Советская энциклопедия, 1982. — С. 561. — 1600 с.
  2. Квадрат // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 776. — 1184 с.
  3. Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
  4. 1 2 Каплун, 2014, с. 171—173.
  5. Понарин Я. П. Элементарная геометрия: В 2 т. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — С. 117, 119. — 312 с. — ISBN 5-94057-171-9.
  6. Уравнение квадрата в декартовой системе координат. Дата обращения: 9 ноября 2021. Архивировано 9 ноября 2021 года.
  7. What is the polar equation for a square, if any?
  8. Болтянский В. Г. Третья проблема Гильберта. — М.: Наука, 1977. — 208 с. Архивировано 28 июня 2021 года.

Литература[править | править код]

  • Каплун А. И. Математика, Учебно-практический справочник. — Ростов н/Д.: ООО “Феникс”, 2014. — 240 с. — ISBN 978-5-222-20926-3.

Ссылки[править | править код]

  • Квадрат, геометрическая фигура // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Площадь квадрата через сторону

{S = a ^2}

На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.

Квадрат – четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.

Содержание:
  1. калькулятор площади квадрата
  2. формула площади квадрата через сторону
  3. формула площади квадрата через диагональ
  4. формула площади квадрата через радиус вписанной окружности
  5. формула площади квадрата через радиус описанной окружности
  6. формула площади квадрата через периметр
  7. примеры задач

Формула площади квадрата через сторону

Площадь квадрата через сторону

S = a ^2

a – сторона квадрата

Формула площади квадрата через диагональ

Площадь квадрата через диагональ

S=dfrac{d^2}{2}

d – диагональ квадрата

Формула площади квадрата через радиус вписанной окружности

Площадь квадрата через радиус вписанной окружности

S = 4r^2

r – радиус вписанной окружности

Формула площади квадрата через радиус описанной окружности

Площадь квадрата через радиус описанной окружности

S = 2R^2

R – радиус описанной окружности

Формула площади квадрата через периметр

Площадь квадрата через периметр

S = dfrac{P^2}{16}

P – периметр квадрата

Примеры задач на нахождение площади квадрата

Задача 1

Найдите площадь квадрата если его диагональ равна 1.

Решение

Для решения задачи воспользуемся формулой.

S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2

Ответ: 0.5 см²

Проверим ответ на калькуляторе .

Задача 2

Найдите площадь квадрата, описанного вокруг окружности радиуса 83.

Решение

Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.

S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2

Ответ: 13778 см²

Проверим ответ с помощью калькулятора .

Задача 3

Найдите площадь квадрата если его сторона равна 8 см.

Решение

Используем первую формулу.

S = a ^2 = 8 ^2 = 64 : см^2

Ответ: 64 см²

Проверим результат на калькуляторе .

Задача 4

Найдите площадь квадрата периметр которого равен 456 см.

Решение

Используем формулу для площади квадрата через периметр.

S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2

Ответ: 12996 см²

Проверка .

Задача 5

Найдите площадь квадрата со стороной 15 см.

Решение

Воспользуемся формулой площади квадрата через сторону.

S = a ^2 = 15 ^2 = 225 : см^2

Ответ: 225 см²

Проверка .

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


Площадь квадрата онлайн

С помощю этого онлайн калькулятора можно найти площадь квадрата. Для нахождения площади квадрата, введите известные данные в ячейку и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Площадь квадрата. Определение

Определение 1. Площадь квадрата − это величина той части плоскости, которую занимает квадрат.

Единицы измерения площади квадрата

За единицу измерения площадей применяют квадрат, сторона которого равна единице измерения отрезков. В качестве единицы измерения площадей принимают квадраты со сторонами 1мм, 1см, 1дм, 1м и т.д (Рис.1). Такие квадраты назыают квадратным миллиметром, квадратным сантиметром, квадратным дециметром, квадратным метром и т.д., соответственно. Обозначаются они мм2, см2, дм2, м2 и т.д., соответственно.

Если выбрана единица измерения, то площадь измеряемого объекта (квадрата, треугольника, прямоугольника, многоугольника и т.д.)определяется положительным числом, которая определяет сколько раз единица измерения и ее части укладываются в данном объекте.

Для измерения отдельных плоских фигур используются специальные формулы. В данной статье мы выведем формулу для вычисления площади квадрата.

Площадь квадрата. Доказательство

Теорема 1. Площадь S квадрата со стороной a равна .

Доказательство. Пусть n целое неотрицательное число и пусть . Рассмотрим квадрат со стороной 1 (Рис.2). Разделим этот квадрат по ветрикали и по горизонлали на n равных частей. Получим маленьких квадратов состоронами . Поскольку площадь большого квадрата равна 1 (так как является единицей измерения), то очевидно, что площадь маленького квадрата равна:

а поскольку , то имеем:

Пусть теперь a является конечной десятичной дробью, содержащую n знаков после запятой. (Если n=0, то a будет целым числом). Тогда a можно представить в виде обыкновенной дроби, умножив и делив на :

откуда

где m − целое число.

Возьмем квадрат со стороной a и разделим его по горизонлали и вертикали на m ровных частей. Получим m2 маленьких квадратов (Рис.3).

Тогда, учитывая (2), сторона каждого квадрата равна:

По формуле (1) площадь маленького квадрата равна:

Следовательно, площадь квадрата со стороной a равна:

Пусть, далее, число a представляет собой бесконечную десятичную дробь. Рассмотрим число an которая получается из a отбрасыванием всех десятичных знаков после запятой, начиная с (n+1)-го. Поскольку a отличается от an не более, чем на , то имеем:

откуда

Из неравенства (4) следует, что площадь S квадрата со стороной a заключена между площадью квадрата со стороной an и площадью квадрата со стороной (Рис.4), т.е.

При неограниченном увеличении числа n, число будет становиться сколь угодно малым и, следовательно, число будет сколь угодно мало отличаться от . Тогда из неравенства (5) следует, что число S будет мало отличаться от числа . Следовательно они равны, т.е. .

Площадь квадрата по стороне

Из вышеизложенного доказательства получили, что площадь квадрата равна:

где ( small a ) сторона квадрата.

Пример 1. Сторона квадрата равна . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (6). Подставляя в (6), получим:

Ответ:

Площадь квадрата по диагонали

Пусть известна диагональ ( small d ) квадрата (Рис.5). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Для этого воспользуемся теоремой Пифагора:

Подставляя (7) в (6), получим:

то есть площадь квадрата по диагонали вычисляется из следующей формулы:

Пример 2. Диагональ квадрата равна . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (8). Подставляя в (8), получим:

Ответ:

Площадь квадрата по радиусу вписанной окружности

Пусть известен ( small r ) радиус окружности вписанной в квадрат (Рис.6). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Нетрудно заметить, что радиус ( small r ) равна половине стороны ( small a ) квадрата, т.е.

Подставляя (9) в (6), получим:

или

Пример 3. Радиус вписанной в квадрат окружности равен . Найти площадь квадрата.

Решение. Для нахождения плошади квадрата воспользуемся формулой (10). Подставляя в (10), получим:

Ответ:

Площадь квадрата по радиусу описанной окружности

Пусть известен ( small R ) радиус окружности описанной около квадрата (Рис.7). Найдем площадь квадрата.

Для нахождения плошади квадрата, найдем сначала сторону ( small a ) квадрата. Восрользуемся теоремой Пифагора:

Подставляя (11) в (6), получим:

Пример 4. Радиус описанной окружности равен . Найти площадь квадрата.

Решение. Для нахождения площади квадрата воспользуемся формулой (12). Подставляя в (12), получим:

Ответ:

Площадь квадрата по периметру

Пусть известен периметр ( small P ) квадрата. Найдем площадь квадрата. По периметру можно найти сторону квадрата:

Подставляя (13) в (6), получим:

то есть площадь квадрата через периметр равна:

Пример 5. Периметр квадрата равен . Найти площадь квадрата.

Решение. Для нахождения площади квадрата воспользуемся формулой (14). Подставляя в (14), получим:

Ответ:

Смотрите также:

  • Квадрат. Онлайн калькулятор

Добавить комментарий