Погрешность скорости как найти среднюю

Ошибка именно в попытке описать погрешность конечным интервалом. S=100±5 м вовсе не означает, что измерение расстояния покажет максимально 105 метров, а минимально – 95. Предполагается, что разброс измерений имеет гауссово распределение, а интервал ±5м всего лишь характеризует ширину пика. Да, большинство измерений попадут в этот интервал, но некоторые могут оказаться и за его пределами (хотя вероятность такого мала) .

Следует также отметить, что предложенная Бабайкой формула простого сложения относительных погрешностей в случае гауссового распределения (случайные ошибки дают именно такое распределение) неоправданно завышает погрешность скорости. Точнее, при той же доверительной вероятности относительная погрешность для скорости будет равна квадратному корню из суммы квадратов относительных погрешностей расстояния и времени:

∆V/V = sqrt((∆S/S)^2 + (∆t/t)^2)

В нашем случае это чуть более 6%

Неравномерное прямолинейное движение. Средняя скорость

  1. График скорости при неравномерном прямолинейном движении
  2. Как найти путь и перемещение по графику скорости?
  3. Средняя скорость и средняя путевая скорость
  4. Задачи
  5. Лабораторная работа №3. Определение средней скорости движения тела

п.1. График скорости при неравномерном прямолинейном движении

Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.

Движение с переменной скоростью называют неравномерным.

Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.

Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=3 text{км/ч} $$ Построим график скорости для этого случая:
График скорости при неравномерном прямолинейном движении

Графиком скорости (v_x=v_x(t)) при неравномерном прямолинейном движении, которое можно разбить на участки с постоянной скоростью, является ломаная линия.

п.2. Как найти путь и перемещение по графику скорости?

Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком (triangle t) на оси (t) (см. §8 данного справочника).

В таком случае, путь велосипедиста в нашем примере:
Как найти путь и перемещение по графику скорости begin{gather*} s=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.
Как найти путь и перемещение по графику скорости
Если принять город A за начало отсчета с (x_0=0), то координата велосипедиста в конце пути: $$ x_{к}=x_0+s=0+6=6 text{(км)} $$ Перемещение по оси ОХ: (triangle x=x_{к}-x_0=6 text{(км)}).

Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=-3 text{км/ч} $$ Построим график скорости для этого случая:
Как найти путь и перемещение по графику скорости
Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная (v_x(t)) с осью (t): begin{gather*} x=v_{x1}cdot triangle t_1+|v_{x2}|cdottriangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*} Как найти путь и перемещение по графику скорости
Если мы учтем знак (v_{x2}) и уберем модуль, то получим величину перемещения по оси ОХ: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ triangle x=9cdot 0,5-3cdot 0,5=4,5-1,5=3 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_{к}=x_0+triangle x=0+3=3 text{(км)} $$ Как найти путь и перемещение по графику скорости
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.

Пусть неравномерное прямолинейное движение разбито на (n) участков с постоянными скоростями. Каждому такому участку соответствует промежуток времени (triangle t_i) и постоянная скорость (v_{xi}, i=overline{1,n}).
Тогда:
Весь пройденный путь равен сумме площадей прямоугольников на графике скорости: $$ s=|v_{x1}|cdottriangle t_1+|v_{x2}|cdottriangle t_2+…+|v_{xn}|cdottriangle t_n $$ Величина перемещения по оси ОХ равна сумме площадей прямоугольников с учетом знака: $$ triangle x=v_{x1}cdottriangle t_1+v_{x2}cdottriangle t_2+…+v_{xn}cdottriangle t_n $$ Конечная координата равна: (x_{к}=x_0+triangle x).

п.3. Средняя скорость и средняя путевая скорость

Средняя скорость на нескольких участках движения равна отношению общего перемещения к общему времени, затраченному на это перемещение: $$ overrightarrow{v_{cp}}=frac{overrightarrow{r_1}+overrightarrow{r_2}+…+overrightarrow{r_n}}{t_1+t_2+…+t_n}=frac{overrightarrow{r}}{t} $$

Средняя путевая скорость на нескольких участках движения равна отношению общего пути к общему времени, затраченному на этот путь: $$ v_{cp.п}=frac{s_1+s_2+…+s_n}{t_1+t_2+…+t_n}=frac{s}{t} $$

Если тело все время движется в одном направлении, величина средней скорости равна средней путевой скорости, т.к. на каждом участке путь совпадает с модулем перемещения.
Если тело меняет направление движения, величина средней скорости меньше средней путевой скорости.

В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 61=6 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости равна средней путевой скорости.

А вот для случая, когда велосипедист развернулся и пошел обратно: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 31=3 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости меньше средней путевой скорости.

п.4. Задачи

Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.

a)
Задача 1
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=1 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=2 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+1cdot 2+2cdot 2=21 text{(м)} end{gather*} Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: (triangle x=s=21) (м)
Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (с)
Величина средней скорости равна средней путевой скорости: $$ |overrightarrow{v_{cp}}|=v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|=v_{cp.п}=3 text{(м/с)})

б)
Задача 1
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=-2 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=1 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+2cdot 2+1cdot 2=21 text{(м)} end{gather*} Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2+v_{x3}cdot triangle t_3\ triangle x=5cdot 3-2cdot 2+1cdot 2=13 text{(м)} end{gather*} Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (c)
Величина средней скорости: $$ |overrightarrow{v_{cp}}|=frac{triangle x}{t}=frac{13}{7}approx 1,86 text{(м/с)} $$ Средняя путевая скорость: $$ v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|approx 1,86 text{(м/с)}; v_{cp.п}=3 text{(м/с)})

Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.

Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: (v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 40 (frac{2d}{40}=frac{d}{20}) (2d)
2й участок 80 (frac{d}{80}) (d)
Сумма (t=frac{d}{20}+frac{d}{80}) (s=2d+d=3d)

Упростим сумму дробей: $$ t=frac{d}{20}+frac{d}{80}=frac{4d+d}{80}=frac{5d}{80}=frac{d}{16} $$ Получаем: $$ v_{cp}=frac st=frac{3d}{d/16}=3cdot 16=48 text{(км/ч)} $$
Ответ: 48 км/ч

Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.

Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 90 (frac{s}{2cdot 90}=frac{s}{180}) (frac s2)
2й участок 30 (frac{s}{2cdot 30}=frac{s}{60}) (frac s2)
Сумма (t=frac{s}{180}+frac{s}{60}) (s)

Упростим сумму дробей: $$ t=frac{s}{180}+frac{s}{60}=frac{s+3s}{180}=frac{4s}{180}=frac{s}{45} $$ Получаем: $$ v_{cp}=frac st=frac{s}{s/45}=45 text{(км/ч)} $$
Ответ: 45 км/ч

Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.

Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (frac{d}{4t}) (4t) (d)
2й участок (frac{4d}{t}) (t) (4d)
3й участок (frac{45d}{20t}) (20t) (45d)
Сумма (25t) (50d)

По условию средняя скорость: $$ v_{cp}=frac st=frac{50d}{25t}=2cdot frac dt=32Rightarrow frac dt=16 $$ Получаем: begin{gather*} v_1=frac{d}{4t}=frac{16}{4}=4 text{(км/ч)}\ v_2=frac{4d}{t}=4cdot 16=64 text{(км/ч)}\ v_3=frac{9d}{4t}=frac{9}{4}cdot 16=36 text{(км/ч)} end{gather*}
Ответ: 4 км/ч, 64 км/ч и 36 км/ч

Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?

Пусть (v) – скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость (v_{cp}) и сравним ее со скоростью (v).
Если (v_{cp}gt v), то турист выиграл время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (10v) (frac{s}{2cdot 10v}=frac{s}{20v}) (frac s2)
2й участок (frac{v}{2}) (frac{s}{2cdot v/2}=frac sv) (frac s2)
Сумма (t=frac{s}{20v}+frac sv) (s)

Упростим сумму дробей: $$ t=frac{s}{20v}+frac sv=frac svleft(frac{1}{20}+1right)=frac{21}{20}cdot frac sv $$ Средняя скорость: $$ v_{cp}=frac{s}{frac{21}{20}cdotfrac sv}=frac{20}{21}vgt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет

п.5. Лабораторная работа №3. Определение средней скорости движения тела

Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.

Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.

Величина средней скорости при движении на двух участках определяется как средняя путевая скорость: $$ v_{cp}=frac{s_1+s_2}{t_1+t_2} $$ где (s_1) и (s_2) – длина первого и второго участка; (t_1) и (t_2) – время движения по каждому из участков.

Длина участков измеряется с помощью мерной ленты с ценой деления (triangle=1) см,
инструментальная погрешность равна: (d=frac{triangle}{2}=0,5) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: (triangle s_1=triangle s_2=d=0,5) см
Погрешность суммы двух длин: (triangle(s_1+s_2)= triangle s_1+triangle s_2=2d=1) см

Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: (triangle(t_1+t_2)=triangle t_1+triangle t_2)

Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2} $$ Абсолютная погрешность определения средней скорости: $$ triangle v_{cp}=v_{cp}cdot delta_{v_{cp}} $$

Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.

Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.
Определение средней скорости движения тела
3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин (delta_{s_1+s_2}=frac{triangle(s_1+s_2)}{s_1+s_2})
5. Проведите серии по 5 экспериментов для определения (t_1) и (t_2) с помощью секундомера.
6. Найдите (triangle t_1, triangle t_2, triangle(t_1+t_2), delta_{t_1+t_2})
7. По результатам измерений и вычислений найдите (v_{cp}, delta_{v_{cp}}) и (triangle v_{cp}).
8. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

1) Измерение длин
Цена деления мерной ленты (triangle =1) см
Инструментальная погрешность мерной ленты (d=frac{triangle}{2}=0,5) см
Результаты измерений:
(s_1=112) cм
(s_2=208) cм
Сумма длин участков: (s_1+s_2=112+208=320) (см)
Абсолютная погрешность суммы: (triangle (s_1+s_2)=triangle s_1+triangle s_2=2d=1) см
Относительная погрешность суммы: $$ delta_{s_1+s_2}=frac{triangle (s_1+s_2)}{s_1+s_2}=frac{1}{320}=0,3125% $$

2) Измерение времени
Цена деления секундомера (triangle =0,2) с
Инструментальная погрешность секундомера (d=frac{triangle}{2}=0,1) с

Время движения по наклонному желобу

№ опыта 1 2 3 4 5 Сумма
(t_1) c 1,5 1,6 1,5 1,4 1,4 7,4
(triangle) c 0,02 0,12 0,02 0,08 0,08 0,32

Найдем среднее время спуска с наклонного желоба: $$ t_1=frac{1,5+1,6+1,5+1,4+1,4}{5}=frac{7,4}{5}=1,48 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_1): $$ triangle_1=|1,5-1,48|=0,02; triangle_2=|1,6-1,48|=1,02 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0,02+0,12+0,02+0,08+0,08}{5}=frac{0,32}{5}=0,064 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_1=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,064right}=0,1 text{c} $$ Округляем полученное значение времени до десятых. begin{gather*} t_1=(1,5pm 0,1) text{c}\ delta_{t_1}=frac{0,1}{1,5}=frac{1}{15}approx 6,7text{%} end{gather*} Время движения по горизонтальному желобу

№ опыта 1 2 3 4 5 Сумма
(t_2) c 2,3 2,4 2,2 2,2 2,4 11,5
(triangle) c 0 0,1 0,1 0,1 0,1 0,4

Найдем среднее время движения по горизонтали: $$ t_2=frac{2,3+2,4+2,2+2,2+2,4}{5}=frac{11,5}{5}=2,3 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_2): $$ triangle_1=|2,3-2,3|=0; triangle_2=|2,4-2,3|=0,1 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0+0,1+0,1+0,1+0,1}{5}=frac{0,4}{5}=0,08 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_2=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,08right}=0,1 text{c} $$ Получаем: begin{gather*} t_2=(2,3pm 0,1) text{c}\ delta_{t_2}=frac{0,1}{2,3}=frac{1}{23}approx 4,4text{%} end{gather*}

3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8 text{(c)} $$ Абсолютная погрешность суммы: $$ triangle(t_1+t_2)=triangle t_1+triangle t_2=0,1+0,1=0,2 text{(c)} $$ Относительная погрешность суммы: $$ delta_{t_1+t_2}=frac{triangle (t_1+t_2)}{t_1+t_2}=frac{0,2}{3,8}=frac{1}{19}approx 5,3text{%} $$

4) Расчет средней скорости $$ v_{cp}=frac{s_1+s_2}{t_1+t_2}=frac{320}{3,8}approx 84,2 left(frac{text{см}}{text{c}}right) $$ Относительная ошибка частного: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2}=frac{1}{320}+frac{1}{19}approx 0,003125+0,0526approx 0,0557approx 0,056=5,6text{%} $$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_{cp}=v_{cp}cdotdelta_{v_{cp}}=84,2cdot 0,056approx 4,7 left(frac{text{см}}{text{c}}right) $$ Получаем: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}

Выводы
На основании проделанной работы можно сделать следующие выводы.

Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}

Случайные погрешности в лабораторных работах по физике можно оценивать только с использованием калькулятора

О теории случайных погрешностей

Теория случайных погрешностей была создана К.Ф.Гауссом в первой половине XIX в. в связи с его занятиями астрономией и геодезией.

Напомним, что случайные погрешности δi = xi – a проявляются при проведении серии измерений одной и той же физической величины в неизменных условиях одним и тем же методом.

Одним из фундаментальных положений теории Гаусса является “принцип арифметической середины”. В соответствии с этим принципом за истинное значение величины а принимается среднее значение

при n → ∞, если метод не сопровождается систематическими погрешностями.

Для случайных погрешностей характерны следующие свойства:

  1. Положительные и отрицательные случайные погрешности встречаются с одинаковой вероятностью, т. е. одинаково часто.
  2. Среднее арифметическое из алгебраической суммы случайных погрешностей при неограниченном возрастании числа наблюдений стремится к нулю, т. е.

  3. Малые по абсолютной величине случайные погрешности встречаются с большей вероятностью, чем большие.

Основная идея теории Гаусса может быть выражена следующим образом

Возможные конкретные значения случайной погрешности, как и сам результат измерения, предсказать невозможно. Однако после того как экспериментатор определил измеряемый параметр и метод его измерения, сразу “возник” объективный закон, неизвестный исследователю. Этот закон определяет совокупность случайных погрешностей, которые возникают в процессе измерений.

Всегда можно эмпирически (на конкретных опытах) выявить закон распределения случайных погрешностей, который обычно выражается в виде так называемой функции распределения f(δ). Этот закон позволяет определить вероятность, с которой погрешность может оказаться в интервале от δ1 до δ2. Вероятность эта равна площади заштрихованной криволинейной трапеции, представленной на графике функции распределения.

Гауссу удалось определить универсальный закон распределения, которому подчиняется огромный класс случайных погрешностей измерений самых разных величин различными методами.

Этот закон носит название нормального закона распределения. Конечно, существуют измерения, погрешность которых не распределена по нормальному закону. Однако всегда можно определить степень их отклонения от нормального закона.

Функция распределения φ(δ), открытая Гауссом, имеет следующие свойства:

1) Функция δ(φ) четная, т. е. δ-(φ-)δ(φ), и в силу этого симметрична относительно оси координат.

2) Функция δ(φ) имеет максимум при значениях случайной погрешности, равных нулю.

3) Функция δ(φ) имеет две точки перегиба, расположенные симметрично относительно оси координат. Координаты точек перегиба равны ±σ.

4) Касательные к кривой δ(φ) в точках перегиба отсекают на оси абcцисс отрезки, равные ±2σ.

5) Максимальное значение функции δ(φ) равно

6) Площадь под всей кривой δ(φ) стремится к 1. Площадь криволинейной трапеции, ограниченной прямыми, проходящими через точки δ1,2 = ±σ, составляет 0,68 от всей площади; если прямые проходят через точки δ3,4 = ±2σ, то площадь составляет 0,95; площадь криволинейной трапеции, ограниченной прямыми δ5,6 = ±3σ, равна 0,99.

Параметр σ, определяющий все фундаментальные свойства нормального закона, называется средним квадратическим отклонением. Этот параметр может быть определен после получения достаточно большой серии результатов измерений x1, х2, х3, …, хn. Тогда

Важность параметра σ состоит в том, что он позволяет определить границы случайных погрешностей. Действительно, вероятность получения случайных погрешностей, превосходящих по абсолютной величине 3σ, равна 1%.

При обычной организации измерений не представляется возможности провести не только бесконечно большое число измерений, но и провести просто большое их число.

Специальные исследования показали, что такая граница может быть определена при небольшом числе опытов в серии.

В такой серии из k измерений находят так называемую среднюю квадратичную погрешность

Затем Δхкв увеличивают в S раз.

Число S называется коэффициентом Стьюдента (коэффициент был предложен в 1908 г. английским математиком В. С. Госсетом, публиковавшим свои работы под псевдонимом Стьюдент – студент). Коэффициент Стьюдента позволяет определить границу случайной погрешности серии: Δхслуч = S Δхкв.

Таблица коэффициентов S для различного числа опытов в серии

Погрешность среднего арифметического

После проведения серии равноточных измерений и нахождения хср и σ легко определяется интервал, к которому с вероятностью 99% принадлежит результат любого следующего измерения. Этот интервал равен [хср ± 3σ], если в серии достаточно много измерений, и имеет вид [хср ± S Δхкв] при небольшом числе опытов. Это означает, что (или S Δхкв) характеризует погрешность каждого опыта серии. Итак, среднее квадратичное отклонение серии опытов есть погрешность каждого опыта серии. Именно поэтому вводится обозначение σх или ΔSкв.х. Однако среднее арифметическое есть разумная комбинация всех измерений, и поэтому следует ожидать, что истинное значение находится в более узком интервале около хср, чем [xcp ± 3σх].

Понять, почему должно быть именно так, помогут следующие рассуждения

Выполняется N серий по n опытов в каждой. В каждой серии из n опытов определяется среднее значение хср. Таких средних значений получается N: хср1, хср2, …, xcpN. Для этой совокупности средних определяется среднее квадратичное отклонение

Величина σх ср характеризует предельное распределение средних значений, это и есть величина, которая позволяет найти интервал, в котором находится истинное значение измеряемой в опыте величины [хср ± 3σх ср]. На практике такая процедура никогда не реализуется не только потому, что это очень трудоемко, но и потому, что теория погрешностей позволяет по результатам одной серии определить погрешность среднего. Это делается на основе фундаментального результата теории погрешностей:

стандартное отклонение среднего σх ср в  раз меньше стандартного отклонения каждого опыта серии σх, т.е.

Итак, если в серии с достаточно большим числом опытов определено хср, то граница случайной погрешности среднего равна

Если в серии небольшое число опытов, то граница случайной погрешности среднего находится по формуле:

Все расчеты случайных погрешностей возможны только с использованием режима статистических расчетов (см. раздел “Статистические расчеты”), следуя методическим рекомендациям, приведенным ниже.

Использование калькулятора CASIO fx-82EX СLASSWIZ для оценки случайных погрешностей

  1. Включаем калькулятор, клавиша [ON]
  2. Нажимаем клавишу [SHIFT](SETUP)
  3. Входим в режим статистики. Нажимаем клавишу [2]
  4. Выбираем режим 1-Variable. Нажимаем клавишу [1]
  5. Заполняем таблицу
  6. Нажимаем клавишу [OPTN]
  7. Выбираем режим 1-Variable. Нажимаем клавишу [3]
  8. На дисплее получаем ряд характеристик
    8.1. Первая сверху – значение среднего значения
    8.2. Вторая снизу – случайная погрешность каждого опыта серии σх
  9. Вычисляем погрешность среднего
  10. Находим границу случайной погрешности среднего

Пример

Измерялась скорость тела, брошенного горизонтально. В десяти опытах были получены следующие значения дальности полета L (в мм): 250, 245, 250, 262, 245, 248, 262, 260, 260, 248. Дальность полета тела измерялась линейкой с основной погрешностью Δ= 1мм. Высота, с которой брошено тело, в опыте равнялась Н = 1 м и измерялась мерной лентой с основной погрешностью Δ= 1 см и ценой деления С=1 см.

Решение

Сначала определим среднее значение дальности полета тела и вычислим его начальную скорость. Для этого сведем все данные в таблицу и проведем их первичную обработку.

Так как

Легко определить среднее значение скорости по результатам серии опытов:

Граница относительной погрешности измерения скорости:

В этой формуле ΔL – граница абсолютной погрешности измерения дальности полета, Δg – погрешность округления g, ΔН – погрешность прямого однократного измерения высоты.

ΔН = 1 см + 0,5 см = 1,5 см

ΔL складывается из погрешности линейки Δ1 и случайной погрешности ΔLслуч.:

ΔL = Δ1 + ΔLслуч.

Так как ΔLкв = 7мм, то при оценке ΔLслуч. нет смысла учитывать погрешность линейки Δ1 = 1мм.

Определим погрешность измерения скорости в любом однократном опыте, который можно провести на данной установке. В этом случае в формулу для εv следует вместо ∆L подставить его границу ∆L = Lкв. Здесь S = 3,2 (см. таблицу коэффициентов S для различного числа опытов в серии).

Имеем:

Первое слагаемое в этой сумме равно 0,09; слагаемое в скобках (0,01 + 0,0075) = 0,0175. Следовательно, ε= 0,09. Граница абсолютной погрешности каждого опыта серии не превосходит

εv = ε0 = 0,565 0,09 = 0,05 м/с

Это значит, если на данной установке провести еще один опыт, то гарантировать можно, что значение скорости, рассчитанное по его результатам, будет принадлежать интервалу [(0,56 – 0,05)м/с; (0,56 + 0,05)м/с].

Найдем границу случайной погрешности среднего значения скорости тела, брошенного горизонтально. Для этого в формулу для εследует вместо ∆L подставить границу случайной погрешности среднего:

Таким образом,

Относительная погрешность среднего равна

0,027 + 0,01 + 0,0075

Последним слагаемым в этой сумме можно пренебречь. Итак, ср = 0,04 = 4%. Мы видим, что погрешность среднего в два раза меньше погрешности каждого опыта. Граница абсолютной погрешности среднего равна:

Таким образом, из серии 10 опытов по измерению скорости можно сделать вывод о том, что в любой другой такой серии из 10 опытов на данной установке среднее значение скорости будет находиться в интервале [(0,56 – 0,02)м/с; (0,56 + 0,02)м/с]. Этому же интервалу принадлежит неизвестное значение скорости, которое получится, если проделать серию с очень большим числом опытов, т. е. такое значение, которое можно назвать истинным значением.

Создано
огромное количество разнообразных
измерительных приборов, отличающихся
конструкцией, принципом работы и
точностью. Точность прибора либо задается
классом
точности

(который обычно нанесен на прибор), либо
указывается в паспорте, прилагаемом к
прибору. Класс точности – это обобщенная
характеристика прибора, характеризующая
допустимые по стандарту значения
погрешностей, влияющих на точность
измерения.

Измерительные
приборы всегда
вносят свой вклад в погрешность измерения,
зависящий от точности прибора.
Соответствующую величину принято
называть приборной
погрешностью
.
В общем случае она может иметь две
составляющие – систематическую
и случайную
.
У правильно настроенного измерительного
прибора систематическая погрешность
либо отсутствует, либо достаточно просто
учитывается.

Для
определения приборной погрешности,
связанной со случайными факторами, мы
будем пользоваться следующими тремя
правилами:

  1. Если
    известен класс точности прибора, причем
    его цифровое обозначение не
    заключено в кружок
    ,
    тогда приборная погрешность определяется
    формулой:

(6)

где
− величина класса точности,− предел измерения прибора (то есть
максимальное значение величины, которое
может измерить данный прибор).

  1. Если
    прибор имеет класс точности, цифровое
    обозначение которого заключено
    в кружок
    ,
    то приборная погрешность определяется
    по
    отношению к данному результату измерения
    (вместо
    предела измерения
    в формуле (6) следует использовать
    измеренное значениефизической величины).

  2. Если
    прибор не имеет класса точности, его
    приборную погрешность обычно принимают
    равной половине цены деления. Цена
    деления

    прибора – это минимальное значение
    величины, которое может измерить данный
    прибор.

Если в процессе многократных измерений
выясняется, что основной вклад в случайную
погрешность вносит приборная погрешность,
то в данном эксперименте можно ограничиться
однократным измерением. Если же основной
вклад определяется не приборной
погрешностью, то принципиальным
становиться именно проведение многократных
измерений.

Часто
для практических целей достаточно
произвести однократное измерение
интересующей величины. В этом случае
невозможно оценить погрешность, связанную
со всеми случайными факторами «внешней
среды», но мы должны быть уверены, что
она достаточно мала. Чтобы убедиться в
этом, необходимо хотя бы раз произвести
многократное измерение величины и
определить случайную погрешность. Но
в любом случае остаются погрешности
связанные с использованием для измерения
конкретных приборов. Поэтому результат
однократного измерения представляется
в виде
:

где
− значение величины, полученное в
процессе однократного прямого или
косвенного измерения,− погрешность однократного измерения.Количество измерений (одно) и
доверительная вероятность
в этом случае не указываются
, в отличие
от результата многократного измерения.
Величинав случае прямого однократного измерения
представляет собой приборную погрешность
.

4. Погрешность косвенного измерения

Опишем,
как определить погрешность
косвенного измерения
.
Перед тем как дать общий ответ, рассмотрим
достаточно частный случай определения
такой погрешности. Пусть стоит задача
измерения объема куба. Самый простой
способ решения задачи связан с измерением
− длины ребра куба. После того как она
определена, величина объема куба
рассчитывается по формуле.
Если измерение производилось однократно
с помощью линейки, то результат такого
прямого измерения представляется так:

где
− значение длины ребра, полученное в
процессе однократного измерения,− погрешность прямого измерения, равная
приборной погрешности линейки. Логично
потребовать, чтобы результат косвенного
измерения объема тоже имел вид

Значение
объема
рассчитывается по формуле, связывающей
его со значением длины ребра.
Остается определить величину− погрешность для косвенного измерения
объема. Оказывается, это величина линейно
связана с величинойс помощью следующей формулы:

Здесь
через
мы обозначили
производную функции

по
длине

.

Обобщим
данный результат. Пусть величина
определяется из косвенных измерений и
является функцией нескольких независимых
величин, которые в свою очередь измерены
либо прямо, либо косвенно. В качестве
таких «переменных» могут, в частности,
выступать и константы, значения которых
определяются и используются при
вычислениях с определенной точностью.
Следовательно, сами константы, также
как и другие величины, характеризуются
погрешностью. Обозначим независимые
величиныи соответствующие им погрешности.
Явный вид функциидолжен быть известен. Будем считать,
что каждая величинавносит независимый вклад в погрешность
величины.
В таком случае погрешностьопределяется следующим образом:

(7)

Отметим,
что выражение
означаетчастную
производную функции

по
переменной

.

В
качестве примера рассмотрим определение
погрешности для косвенного измерения
скорости. Пусть с помощью рулетки мы
провели однократное измерение расстояния
,
пройденного телом в метрах, а с помощью
секундомера – затраченное на это времяв секундах. Погрешностьв этом случае представляет собой
приборную погрешность линейки и является
известной величиной. Погрешность− это приборная погрешность секундомера.
Значение средней скорости определяется
по известной формуле,
поэтому скорость является функцией
двух величин. В соответствие с общей
формулой (7) определяем выражение для
расчета погрешности средней скорости

Результаты
однократных измерений всех трех величин
теперь могут быть представлены в
стандартной форме:

прямые
измерения:

м,

с,

косвенное
измерение:

м/с.

Соседние файлы в папке методички Физика

  • #
  • #
  • #
  • #
  • #

Средняя скорость неравномерного движения уравнение

Неравномерное движение — это движение, при котором за равные промежутки времени тело проходит разные пути.

Средняя путевая скорость — это физическая величина, равная отношению пути, пройденного телом за рассматриваемый промежуток времени, к длительности этого промежутка.

Средняя путевая скорость — скалярная неотрицательная величина.

Средняя скорость тела за промежуток времени t — это физическая величина, равная отношению перемещения , совершённого телом, к длительности этого промежутка времени.

Средняя скорость — вектор. Она направлена туда, куда направлено перемещение тела за рассматриваемый промежуток времени.

Если тело всё время движется в одном направлении, то модуль средней скорости равен средней путевой скорости. Если же в процессе своего движения тело меняет направление движения, то модуль средней скорости меньше средней путевой скорости.

Пример решения задач на среднюю скорость при неравномерном движении

Автомобиль проехал за первый час 50 км, а за следующие два часа он проехал 160 км. Какова его средняя скорость за все время движения?

Еще больше задач на движение (с решениями и ответами) в конспекте «Задачи на движение»

Это конспект по физике за 7 класс по теме «Неравномерное движение. Средняя скорость». Выберите дальнейшие действия:

Неравномерное прямолинейное движение. Средняя скорость

п.1. График скорости при неравномерном прямолинейном движении

Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.

Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.

Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_=9 text<км/ч>, v_=3 text <км/ч>$$ Построим график скорости для этого случая:

п.2. Как найти путь и перемещение по графику скорости?

Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком (triangle t) на оси (t) (см. §8 данного справочника).

В таком случае, путь велосипедиста в нашем примере:
begin s=v_cdot triangle t_1+v_cdot triangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text <(км)>end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.

Если принять город A за начало отсчета с (x_0=0), то координата велосипедиста в конце пути: $$ x_<к>=x_0+s=0+6=6 text <(км)>$$ Перемещение по оси ОХ: (triangle x=x_<к>-x_0=6 text<(км)>).

Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_=9 text<км/ч>, v_=-3 text <км/ч>$$ Построим график скорости для этого случая:

Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная (v_x(t)) с осью (t): begin x=v_cdot triangle t_1+|v_|cdottriangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text <(км)>end
Если мы учтем знак (v_) и уберем модуль, то получим величину перемещения по оси ОХ: begin triangle x=v_cdot triangle t_1+v_cdot triangle t_2\ triangle x=9cdot 0,5-3cdot 0,5=4,5-1,5=3 text <(км)>end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_<к>=x_0+triangle x=0+3=3 text <(км)>$$
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.

п.3. Средняя скорость и средняя путевая скорость

В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: begin |overrightarrow>|=frac<|overrightarrow|>=frac<triangle x>=frac 61=6 text<(км/ч)>\ v_=frac st=frac 61=6 text <(км/ч)>end Величина средней скорости равна средней путевой скорости.

А вот для случая, когда велосипедист развернулся и пошел обратно: begin |overrightarrow>|=frac<|overrightarrow|>=frac<triangle x>=frac 31=3 text<(км/ч)>\ v_=frac st=frac 61=6 text <(км/ч)>end Величина средней скорости меньше средней путевой скорости.

п.4. Задачи

Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.

a)

Все движение можно разделить на три участка с постоянной скоростью:
begin triangle t_1=3-0=3 c, v_=5 text<м/с>\ triangle t_2=5-3=2 c, v_=1 text<м/с>\ triangle t_3=7-5=2 c, v_=2 text<м/с>\ end Общий путь: begin s=|v_|cdot triangle t_1+|v_|cdot triangle t_2+|v_|cdot triangle t_3\ s=5cdot 3+1cdot 2+2cdot 2=21 text <(м)>end Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: (triangle x=s=21) (м)
Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (с)
Величина средней скорости равна средней путевой скорости: $$ |overrightarrow>|=v_=frac st=frac<21><7>=3 text <(м/с)>$$ Ответ: (|overrightarrow>|=v_=3 text<(м/с)>)

б)

Все движение можно разделить на три участка с постоянной скоростью:
begin triangle t_1=3-0=3 c, v_=5 text<м/с>\ triangle t_2=5-3=2 c, v_=-2 text<м/с>\ triangle t_3=7-5=2 c, v_=1 text<м/с>\ end Общий путь: begin s=|v_|cdot triangle t_1+|v_|cdot triangle t_2+|v_|cdot triangle t_3\ s=5cdot 3+2cdot 2+1cdot 2=21 text <(м)>end Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: begin triangle x=v_cdot triangle t_1+v_cdot triangle t_2+v_cdot triangle t_3\ triangle x=5cdot 3-2cdot 2+1cdot 2=13 text <(м)>end Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (c)
Величина средней скорости: $$ |overrightarrow>|=frac<triangle x>=frac<13><7>approx 1,86 text <(м/с)>$$ Средняя путевая скорость: $$ v_=frac st=frac<21><7>=3 text <(м/с)>$$ Ответ: (|overrightarrow>|approx 1,86 text<(м/с)>; v_=3 text<(м/с)>)

Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.

Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: (v_=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 40 (frac<2d><40>=frac<20>) (2d)
2й участок 80 (frac<80>) (d)
Сумма (t=frac<20>+frac<80>) (s=2d+d=3d)

Упростим сумму дробей: $$ t=frac<20>+frac<80>=frac<4d+d><80>=frac<5d><80>=frac <16>$$ Получаем: $$ v_=frac st=frac<3d>=3cdot 16=48 text <(км/ч)>$$
Ответ: 48 км/ч

Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.

Величина средней скорости равна средней путевой скорости:
(v_=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 90 (frac<2cdot 90>=frac<180>) (frac s2)
2й участок 30 (frac<2cdot 30>=frac<60>) (frac s2)
Сумма (t=frac<180>+frac<60>) (s)

Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.

Величина средней скорости равна средней путевой скорости:
(v_=frac st), где (s) – весь путь, (t) – все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (frac<4t>) (4t) (d)
2й участок (frac<4d>) (t) (4d)
3й участок (frac<45d><20t>) (20t) (45d)
Сумма (25t) (50d)

По условию средняя скорость: $$ v_=frac st=frac<50d><25t>=2cdot frac dt=32Rightarrow frac dt=16 $$ Получаем: begin v_1=frac<4t>=frac<16><4>=4 text<(км/ч)>\ v_2=frac<4d>=4cdot 16=64 text<(км/ч)>\ v_3=frac<9d><4t>=frac<9><4>cdot 16=36 text <(км/ч)>end
Ответ: 4 км/ч, 64 км/ч и 36 км/ч

Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?

Пусть (v) – скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость (v_) и сравним ее со скоростью (v).
Если (v_gt v), то турист выиграл время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (10v) (frac<2cdot 10v>=frac<20v>) (frac s2)
2й участок (frac<2>) (frac<2cdot v/2>=frac sv) (frac s2)
Сумма (t=frac<20v>+frac sv) (s)

Упростим сумму дробей: $$ t=frac<20v>+frac sv=frac svleft(frac<1><20>+1right)=frac<21><20>cdot frac sv $$ Средняя скорость: $$ v_=frac<frac<21><20>cdotfrac sv>=frac<20><21>vgt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет

п.5. Лабораторная работа №3. Определение средней скорости движения тела

Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.

Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.

Длина участков измеряется с помощью мерной ленты с ценой деления (triangle=1) см,
инструментальная погрешность равна: (d=frac<triangle><2>=0,5) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: (triangle s_1=triangle s_2=d=0,5) см
Погрешность суммы двух длин: (triangle(s_1+s_2)= triangle s_1+triangle s_2=2d=1) см

Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: (triangle(t_1+t_2)=triangle t_1+triangle t_2)

Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ delta_>=delta_+delta_ $$ Абсолютная погрешность определения средней скорости: $$ triangle v_=v_cdot delta_> $$

Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.

Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.

3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин (delta_=frac<triangle(s_1+s_2)>)
5. Проведите серии по 5 экспериментов для определения (t_1) и (t_2) с помощью секундомера.
6. Найдите (triangle t_1, triangle t_2, triangle(t_1+t_2), delta_)
7. По результатам измерений и вычислений найдите (v_, delta_>) и (triangle v_).
8. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

1) Измерение длин
Цена деления мерной ленты (triangle =1) см
Инструментальная погрешность мерной ленты (d=frac<triangle><2>=0,5) см
Результаты измерений:
(s_1=112) cм
(s_2=208) cм
Сумма длин участков: (s_1+s_2=112+208=320) (см)
Абсолютная погрешность суммы: (triangle (s_1+s_2)=triangle s_1+triangle s_2=2d=1) см
Относительная погрешность суммы: $$ delta_=frac<triangle (s_1+s_2)>=frac<1><320>=0,3125% $$

2) Измерение времени
Цена деления секундомера (triangle =0,2) с
Инструментальная погрешность секундомера (d=frac<triangle><2>=0,1) с

Время движения по наклонному желобу

№ опыта 1 2 3 4 5 Сумма
(t_1) c 1,5 1,6 1,5 1,4 1,4 7,4
(triangle) c 0,02 0,12 0,02 0,08 0,08 0,32

Найдем среднее время спуска с наклонного желоба: $$ t_1=frac<1,5+1,6+1,5+1,4+1,4><5>=frac<7,4><5>=1,48 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_1): $$ triangle_1=|1,5-1,48|=0,02; triangle_2=|1,6-1,48|=1,02 text <и т.д.>$$ Среднее абсолютное отклонение: $$ triangle_=frac<0,02+0,12+0,02+0,08+0,08><5>=frac<0,32><5>=0,064 text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_1=maxleft\right>=maxleft<0,1;0,064right>=0,1 text $$ Округляем полученное значение времени до десятых. begin t_1=(1,5pm 0,1) text\ delta_=frac<0,1><1,5>=frac<1><15>approx 6,7text <%>end Время движения по горизонтальному желобу

№ опыта 1 2 3 4 5 Сумма
(t_2) c 2,3 2,4 2,2 2,2 2,4 11,5
(triangle) c 0 0,1 0,1 0,1 0,1 0,4

Найдем среднее время движения по горизонтали: $$ t_2=frac<2,3+2,4+2,2+2,2+2,4><5>=frac<11,5><5>=2,3 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_2): $$ triangle_1=|2,3-2,3|=0; triangle_2=|2,4-2,3|=0,1 text <и т.д.>$$ Среднее абсолютное отклонение: $$ triangle_=frac<0+0,1+0,1+0,1+0,1><5>=frac<0,4><5>=0,08 text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_2=maxleft\right>=maxleft<0,1;0,08right>=0,1 text $$ Получаем: begin t_2=(2,3pm 0,1) text\ delta_=frac<0,1><2,3>=frac<1><23>approx 4,4text <%>end

3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8 text <(c)>$$ Абсолютная погрешность суммы: $$ triangle(t_1+t_2)=triangle t_1+triangle t_2=0,1+0,1=0,2 text <(c)>$$ Относительная погрешность суммы: $$ delta_=frac<triangle (t_1+t_2)>=frac<0,2><3,8>=frac<1><19>approx 5,3text <%>$$

4) Расчет средней скорости $$ v_=frac=frac<320><3,8>approx 84,2 left(frac<text<см>><text>right) $$ Относительная ошибка частного: $$ delta_>=delta_+delta_=frac<1><320>+frac<1><19>approx 0,003125+0,0526approx 0,0557approx 0,056=5,6text <%>$$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_=v_cdotdelta_>=84,2cdot 0,056approx 4,7 left(frac<text<см>><text>right) $$ Получаем: begin v_=(84,2pm 4,7) text<см/с>\ delta_>=5,6text <%>end

Выводы
На основании проделанной работы можно сделать следующие выводы.

Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: begin v_=(84,2pm 4,7) text<см/с>\ delta_>=5,6text <%>end

Прямолинейное неравномерное движение в физике – формулы и определения с примерами

Содержание:

Прямолинейное неравномерное движение, ускорение:

На практике прямолинейное равномерное движение наблюдается очень редко. Скорость движущегося автомобиля, поезда, самолета, частей механизма и т.д. может изменяться и по величине, и по направлению.

Прямолинейное движение, при котором за равные промежутки времени материальная точка совершает разные перемещения, называют прямолинейным неравномерным движением.

При таком движении числовое значение скорости не остается неизменным, поэтому для описания неравномерного движения пользуются понятиями средней и мгновенной скорости.

Средняя скорость

Средняя скорость неравномерно движущейся материальной точки на данном участке траектории равна отношению ее перемещения на этом участке ко времени совершения этого перемещения:

Средняя путевая скорость материальной точки при неравномерном движении равна отношению всего пройденного пути ко времени, затраченному на прохождение этого пути:

Средняя скорость материальной точки, движущейся со скоростями на участках пути промежутки времени соответственно, вычисляется так:

Если то из уравнения (1.10) получается

Мгновенная скорость.

Скорость материальной точки в данный момент времени или в данной точке траектории называют мгновенной скоростью.

Мгновенная скорость в некоторой точке является векторной величиной и определяется как предел отношения достаточно малого перемещения на участке траектории, включающей эту точку, к малому промежутку времени затраченному на это перемещение (при условии

Где – мгновенная скорость поступательного движения материальной точки.

С течением времени мгновенная скорость может увеличиваться, уменьшаться и изменять направление. Направление мгновенной скорости в данной точке траектории совпадает с направлением касательной к траектории в этой точке (b). Проекция вектора мгновенной скорости в прямоугольной системе координат равна первой производной координаты по времени:

Ускорение

Быстрота изменения мгновенной скорости при неравномерном движении по величине и направлению характеризуется векторной физической величиной, называемой ускорением:

Ускорение – это физическая величина, равная отношению изменения скорости ко времени, за которое это изменение произошло:

Если измерение времени начинается с нуля то:

Направление ускорения совпадает с направлением вектора

Для простоты здесь и в последующем будет рассматриваться такое неравномерное прямолинейное движение материальной точки, при котором за любые равные промежутки времени происходит одинаковое изменение скорости. Такое движение называется равнопеременным движением.

Равнопеременное движение

Равнопеременное движение – это движение, при котором за любые равные промежутки времени происходит одинаковое изменение скорости. При равнопеременном движении значение и направление ускорения не меняются:

При равнопеременном движении проекция ускорения на любую ось, например ось также постоянная:

Это значит, что при равнопеременном движении график зависимости ускорения от времени представляет собой прямую линию, параллельную оси времени, – проекция ускорения на выбранную ось от времени не зависит (с).

В СИ за единицу ускорения принят – ускорение такого равнопеременного движения, при котором материальная точка за 1 секунду изменяет свою скорость на

Знаете ли вы? Ускорение—одна из наиболее значимых величин, используемых в физике и технике. Известно, что при постепенном торможении автомобиля, автобуса и поезда пассажиры не чувствуют дискомфорта, однако при резком торможении для них возникает серьезная опасность. Значит, важно не просто изменение скорости, а быстрота изменения скорости. Для контроля за изменением скорости машин и механизмов используется прибор, измеряющий ускорение — акселерометр (лат.: accelero — “ускоряю ” и греч.: metreo – “измеряю “) (d).

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Скорость при равнопеременном движении
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение
  • Равномерное прямолинейное движение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://reshator.com/sprav/fizika/7-klass/neravnomernoe-pryamolinejnoe-dvizhenie-srednyaya-skorost/

http://www.evkova.org/pryamolinejnoe-neravnomernoe-dvizhenie-v-fizike

[/spoiler]

Добавить комментарий