Потенциал овр как найти

Электродные потенциалы. ЭДС реакции

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.

Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.

Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.

Элемент Даниэля-Якоби

Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.

гальванический элемент Даниэля-Якоби
гальванический элемент Даниэля-Якоби

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.

Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.

При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).

Zn — 2e = Zn2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu2+ + 2e = Cu

Таким образом, в элементе Даниэля-Якоби происходит такая реакция:

Zn + Cu2+ = Zn2+ + Cu

Zn + CuSO4 = ZnSO4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

Проведем реакцию

2Fe3+ + 2I = 2Fe2+ + I2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.

В сосуды, содержащие растворы Fe3+ и I, поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.

Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe3+:

2I — 2e= I2

2Fe3+ + 2e= 2Fe2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.

Факторы, влияющие на значение окислительно-восстановительного потенциала

Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:

1) Природа вещества (окислителя и восстановителя)

2) Концентрация окисленной и восстановленной форм.

При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:

E = + (RT/nF)ln(Cок/Cвос), где

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при Cок = Cвос);

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

Cок – концентрация (активность) окисленной формы;

Cвос– концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

E = + (0,059/n)lg(Cок/Cвос)

При Cок > Cвос,  E > и наоборот, если Cок < Cвос, то E <

3) Кислотность раствора

Для пар, окисленная форма которых содержит кислород (например, Cr2O72-, CrO42-, MnO4) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H+. И наоборот, окислительно-восстановительный потенциал падает с уменьшением H+.

4) Температура

При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.

Такие таблицы дают возможность сделать некоторые выводы:

Что можно определить по значению окислительно-восстановительного потенциала

  • Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F2/2F) = +2,87 В – сильнейший окислитель

(K+/K) = — 2,924 В – сильнейший восстановитель

Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn2+ + 2Fe3+ = Sn4+ + 2Fe2+

практически протекает в прямом направлении, т.к.

(Sn4+/Sn2+) = +0,15 В,

(Fe3+/Fe2+) = +0,77 В,

т.е. (Sn4+/Sn2+) < (Fe3+/Fe2+).

Реакция

Cu + Fe2+ = Cu2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

(Сu2+/Cu) = +0,34 В,

(Fe2+/Fe) = — 0,44 В,

(Fe2+/Fe) < (Сu2+/Cu).

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции.

Как определить электродвижущую силу (ЭДС) реакции?

Рассмотрим несколько примеров реакций и определим их ЭДС:

  1. Mg + Fe2+ = Mg2+ + Fe
  2. Mg + 2H+ = Mg2+ + H2
  3. Mg + Cu2+ = Mg2+ + Cu

(Mg2+/Mg) = — 2,36 В

(2H+/H2) = 0,00 В

(Cu2+/Cu) = +0,34 В

(Fe2+/Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е0ок — Е0восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Связь константы равновесия и окислительно — восстановительного потенциала

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu2+ = Zn2+ + Cu

Применяя закон действующих масс, можно записать

K = CZn2+/CCu2+

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

E = + (0,059/n)lg(Cок/Cвос)

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn2+ и Cu/Cu2+, находим

E0Zn/Zn2+ = -0,76 + (0,59/2)lgCZn/Zn2+

E0Cu/Cu2+ = +0,34 + (0,59/2)lgCCu/Cu2+

В состоянии равновесия E0Zn/Zn2+ = E0Cu/Cu2+, т.е.

-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем

(0,59/2)( lgCZn2 — lgCCu2+) = 0,34 – (-0,76)

lgK = lg (CZn2+/CCu2+) = 2(0,34 – (-0,76))/0,059 = 37,7

K = 1037,7

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 1037,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E10 -E20 )n/0,059, где

K — константа равновесия

E10 и E20 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E10 > E20, то lgK > 0 и K > 1.

Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E10 — E20) достаточно велика, то она идет практически до конца.

Напротив, если E10 < E20, то  K будет очень мала.

Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E10 — E20) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:

Fe0 + Cd2+ = Fe2+ + Cd0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe0|Fe2+ || Cd2+|Cd0Катод

Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.

Возьмем для примера
гальванический элемент, электродами
которого являются две платиновые
пластинки, опущенные в растворы
и.
В этом элементе по проводнику, соединяющему
электроды, будет идти электрический
ток в результате реакции:

Схема элемента
для этой реакции:

анод катод

окисление
восстановление

На аноде происходит
отдача электронов, то есть окисление

На катоде –
присоединение электронов, то есть
восстановление

В таком гальваническом
элементе исходные и полученные продукты
реакции образуют окислительно-восстановительную
пару
и.

Разность потенциалов
на границе этих двух форм: восстановитель
– окисленная форма
или окислитель – восстановленная форма,
называетсяокислительно-восстановительным
потенциалом
.

Обычно пользуются
величинами потенциалов, измеренными
относительно стандартного водородного
электрода, потенциал которого принят
равным нулю.

Потенциалы,
измеренные при стандартных условиях,
называются стандартными
окислительно-восстановительными
потенциалами
.

Чем больше ЕО.В.,
тем сильнее окислительные свойства
иона или вещества-окислителя в данной
паре.

Пример.
Сравним окислительно-восстановительные
свойства галогенов.

С увеличением
порядкового номера уменьшаются
окислительные, и увеличиваются
восстановительные свойства. Это
подтверждается окислительно-восстановительными
потенциалами:

(может
быть и окислителем и восстановителем)

Окислительно-восстановительный
потенциал вычисляется по уравнению
Нернста:

,

где
– окислительно-восстановительный
потенциал данной пары;

–концентрация
или активность окисленной формы;

–концентрация
или активность восстановленной формы;

–газовая постоянная;

Т
– абсолютная температура;

п
– число электронов, отданных или
полученных при превращении восстановленной
формы в окисленную;

–число Фарадея;

–стандартный
окислительно-восстановительный
потенциал.

Если подставить
иТ
и перейти к десятичному логарифму, то
уравнение Нернста примет вид:

.

6.8. Эдс окислительно-восстановительных реакций

Энергия Гиббса и
ЭДС реакции связаны уравнением:

,
где

–количество
электричества, прошедшее через элемент;

–уменьшение
свойств энергии Гиббса;

–количество
электронов перемещающихся от восстановителя
к окислителю;

–постоянная
Фарадея;

Знак «–» перед
свидетельствует о возможности протекания
реакции.

–ЭДС.

Зная
окислительно-восстановительные
потенциалы, можем определить ЭДС:

.

Окислительно-восстановительная
реакция возможна, когда электродвижущая
сила реакции является положительной
величиной: в этом случае изменение
свободной энергии
сохраняет отрицательный знак, т. е. общий
запас энергии в системе уменьшается.
Чем меньше окислительно-восстановительный
потенциал пары, тем больше восстановительная
способность вещества или иона
(восстановителя). Чем больше
окислительно-восстановительный
потенциал, тем больше окислительная
способность вещества или иона (окислителя)
в данной паре.

Окислительно-восстановительные
реакции идут в сторону образования
более слабых окислителей и восстановителей.

Из всех возможных
при данных условиях окислительно-восстановительных
реакций в первую очередь протекает та,
которая имеет наибольшую разность
окислительно-восстановительных
потенциалов.

Кинетика
электродных процессов.

Равновесные потенциалы могут быть
определены в условиях отсутствия в цепи
тока. При прохождении электрического
тока потенциалы электродов изменяются.

Изменение
потенциала электрода при прохождении
электрического тока, называется
поляризацией:

,
где

–поляризация;
– потенциал электрода при прохождении
электрического тока;– равновесный потенциал.

Поляризация может
наблюдаться как на катоде, так и на
аноде, поэтому различают катодную
и анодную
поляризации
и.

Изменение потенциала
при прохождении тока также называется
перенапряжением.

Поляризация
электрода в отрицательную
сторону связана с протеканием процесса
восстановления
(катодная поляризация), а в положительную
сторону – с протеканием процесса
окисления
(анодная).

Для электролиза
аналогично: при прохождении электрического
тока изменяются потенциалы электродов
электролизера, то есть возникает
электродная поляризация. Вследствие
катодной
поляризации

потенциал катода становится более
отрицательным,
а из-за анодной
поляризации

потенциал анода становится более
положительным.
Поэтому разность потенциалов при
прохождении электрического тока
при электролизе больше, чем разность
равновесных потенциалов электродов

.

Поляризация
электрода

– необходимое условие протекания
электродного процесса. Чем сильнее
поляризован электрод, тем больше скорость
соответствующей полуреакции.

Если речь идет о
катодном выделении водорода, то
поляризацию называют перенапряжением
водорода
.
Перенапряжение выделения водорода на
различных металлах различно.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июня 2022 года; проверки требуют 2 правки.

Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться[1]). Окислительно-восстановительный потенциал выражают в милливольтах (мВ). Примером окислительно-восстановительного электрода являются: Pt/Fe3+, Fe2+.

Определение величины редокс-потенциала[править | править код]

Окислительно-восстановительный потенциал определяют как электрический потенциал, устанавливающийся при погружении платины или золота (инертный электрод) в окислительно-восстановительную среду, то есть в раствор, содержащий как восстановленное соединение (Ared), так и окисленное соединение (Aox). Если полуреакцию восстановления представить уравнением:

Aox + n·e → Ared,

то количественная зависимость окислительно-восстановительного потенциала от концентрации (точнее активностей) реагирующих веществ выражается уравнением Нернста.

Окислительно-восстановительный потенциал определяют электрохимическими методами с использованием стеклянного электрода с red-ox функцией[2] и выражают в милливольтах (мВ) относительно стандартного водородного электрода в стандартных условиях.

Применение в биохимии[править | править код]

В биохимии для обозначения передаваемого от донора к акцептору одного электронного эквивалента (электрона, либо электрона и протона и др.) часто используют термин восстановительный эквивалент. Этот термин ничего не говорит о том, что именно передаётся — электрон как таковой, водородный атом, гидрид-ион (Н) или же передача происходит в реакции с кислородом, приводящей к образованию окисленного продукта.

Способность восстановителя отдавать электроны окислителю выражается величиной окислительно-восстановительного потенциала (стандартного восстановительного потенциала) или редокс-потенциала. Редокс-потенциал определяют измерением электродвижущей силы (э. д. с.) в вольтах, возникающей в полуэлементе, в котором восстановитель и окислитель, присутствующие в концентрациях равных 1 моль/литр при 25°С и рН 7,0, находятся в равновесии с электродом, способным принимать электроны от восстановителя и передавать их окислителю. В качестве стандарта принят редокс-потенциал реакции Н2 → 2Н+ + 2e, который при давлении газообразного водорода в 1 атмосферу при концентрации ионов Н+ равной 1 моль/литр (что соответствует рН = 0) и при 25°С условно принят за нуль. В условиях значения рН, принятого в качестве стандарта при биохимических расчётах, то есть при рН 7,0 , редокс-потенциал (Е°´) водородного электрода (системы Н2 /2Н+) равен −0,42 В.

Значения редокс-потенциала (Е°´) для некоторых окислительно-восстановительных пар, играющих важную роль при переносе электронов в биологических системах:

Восстановитель Окислитель Ео´, В
Н2 + -0,42
НАД • Н + Н+ НАД+ -0,32
НАДФ • Н + Н+ НАДФ+ -0,32
Флавопротеин (восст.) Флавопротеин (окисл.) -0,12
Кофермент Q • Н2 Кофермент Q +0,04
Цитохром B (Fe2+) Цитохром B (Fe3+) +0,07
Цитохром C1 (Fe2+) Цитохром C1 (Fe3+) +0,23
Цитохром A (Fe2+) Цитохром A(Fe3+) +0,29
Цитохром A3 (Fe2+) Цитохром A3 (Fe3+) +0,55
H2O ½ О2 +0,82

Система с более отрицательным редокс-потенциалом обладает большей способностью отдавать электроны системе с более положительным редокс-потенциалом. Например, пара НАД • Н / НАД+ , редокс-потенциал которой равен −0,32 В будет отдавать свои электроны окислительно-восстановительной паре флавопротеин (восстановл.) / флавопротеин (окислен.), имеющей потенциал −0,12 В, то есть более положительный. Большая положительная величина редокс-потенциала окислительно-восстановительной пары вода/кислород (+0,82 В) указывает на то, что у этой пары способность отдавать электроны (то есть способность образовывать молекулярный кислород) выражена очень слабо. Иначе можно сказать, что у молекулярного кислорода очень велико сродство к электронам или водородным атомам.

Примечания[править | править код]

  1. По-английски окислительно-восстановительный потенциал называется также reduction potential, то-есть, буквально, восстановительный потенциал.
  2. Шульц М. М., Белюстин А. А. Писаревский А. М., Никольский Б. П. Стеклянный электрод, чувствительный к изменению окислительного потенциала. // ДАН СССР. 1964. Т. 154. № 2. С. 404—406

См. также[править | править код]

  • Окислитель
  • Восстановитель
  • Стандартный электродный потенциал
  • Восстановление

Ссылки[править | править код]

  • Шульц М. М., Писаревский А. М., Полозова И. П. Окислительный потенциал. Теория и практика. — Л.: Химия. 1984
  • Шульц М. М., Белюстин А. А. Писаревский А. М., Никольский Б. П. Стеклянный электрод, чувствительный к изменению окислительного потенциала. // ДАН СССР. 1964. Т. 154. № 2. С. 404—406
  • Эткинс П. Физическая химия. Т. 1 — М.: Мир, 1980
  • Онлайн-справочник стандартных окислительно-восстановительных потенциалов Архивная копия от 8 октября 2013 на Wayback Machine

Добавить комментарий