Повтори как найти площадь фигуры

Формулы площади геометрических фигур

Площадь геометрической фигуры – численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Треугольник

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p – a)(p – b)(p – c)

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S – площадь треугольника,
    a, b, c – длины сторон треугольника,
    h – высота треугольника,
    γ – угол между сторонами a и b,
    r – радиус вписанной окружности,
    R – радиус описанной окружности,

    p = a + b + c – полупериметр треугольника.
    2

Формулы площади квадрата

Квадрат

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S – площадь квадрата,
    a – длина стороны квадрата,
    d – длина диагонали квадрата.

Формула площади прямоугольника

Прямоугольник

Площадь прямоугольника равна произведению длин двух его смежных сторон

S = a · b

где S – Площадь прямоугольника,
a, b – длины сторон прямоугольника.

Формулы площади параллелограмма

параллелограмм

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S – Площадь параллелограмма,
    a, b – длины сторон параллелограмма,
    h – длина высоты параллелограмма,
    d1, d2 – длины диагоналей параллелограмма,
    α – угол между сторонами параллелограмма,
    γ – угол между диагоналями параллелограмма.

Формулы площади ромба

ромб

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S – Площадь ромба,
    a – длина стороны ромба,
    h – длина высоты ромба,
    α – угол между сторонами ромба,
    d1, d2 – длины диагоналей.

Формулы площади трапеции

трапеция

  1. Формула Герона для трапеции

    S = a + b (p-a)(p-b)(p-a-c)(p-a-d)
    |ab|
  2. Формула площади трапеции по длине основ и высоте

    Площадь трапеции равна произведению полусуммы ее оснований на высоту

    где S – площадь трапеции,
    a, b – длины основ трапеции,
    c, d – длины боковых сторон трапеции,

    p = a + b + c + d – полупериметр трапеции.
    2

Формулы площади выпуклого четырехугольника

выпуклый четырехугольник

  1. Формула площади четырехугольника по длине диагоналей и углу между ними

    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S – площадь четырехугольника,
    d1, d2 – длины диагоналей четырехугольника,
    α – угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)

    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. выпуклый четырехугольник

    Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p – a)(p – b)(p – c)(p – d) – abcd cos2θ

    где S – площадь четырехугольника,

    a, b, c, d – длины сторон четырехугольника,

    p = a + b + c + d2 – полупериметр четырехугольника,

    θ = α + β2 – полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p – a)(p – b)(p – c)(p – d)

Формулы площади круга

круг

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S – Площадь круга,
    r – длина радиуса круга,
    d – длина диаметра круга.

Формулы площади эллипса

эллипс

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

где S – Площадь эллипса,

a – длина большей полуоси эллипса,

b – длина меньшей полуоси эллипса.

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


Все формулы по геометрии. Площади фигур

Чтобы решать задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Начнем с квадрата.

Площадь квадрата равна квадрату его стороны.

Площадь прямоугольника равна произведению его длины и ширины.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне. Она также равна произведению его сторон на синус угла между ними.

Для площади треугольника есть целых 5 формул. И все они применяются в задачах ЕГЭ.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне: S=displaystyle frac{1}{2}ah_a=displaystyle frac{1}{2}bh_b=displaystyle frac{1}{2}ch_c.

2) Она также равна половине произведения его сторон на синус угла между ними:

S=displaystyle frac{1}{2}ab{sin C=displaystyle frac{1}{2}ac{sin B= } }displaystyle frac{1}{2}bc{sin A }.

3) По формуле Герона, S=sqrt{pleft(p-aright)left(p-bright)left(p-cright)}, где p=displaystyle frac{1}{2}left(a+b+cright) полупериметр.

4) Также площадь треугольника равна произведению его полупериметра на радис вписанной окружности, S = pr.

5) Еще один способ. Площадь треугольника равна произведению его сторон, деленному на 4 радиуса описанной окружности, S=displaystyle frac{abc}{4R}.

Есть и другие формулы для площади треугольника. Но для решения заданий ЕГЭ, и первой, и второй части, достаточно этих пяти.

Площадь прямоугольного треугольника равна половине произведения его катетов. Она также равна половине произведения гипотенузы на высоту, проведенную к этой гипотенузе:

S=displaystyle frac{1}{2}ab=displaystyle frac{1}{2}ch_{ }

Площадь правильного треугольника равна квадрату его стороны, умноженному на sqrt{3} и деленному на 4:

Площадь трапеции равна произведению полусуммы оснований на высоту, S=displaystyle frac{a+b}{2}cdot h.

Также можно сказать, что площадь трапеции равна произведению ее средней линии на высоту, S=mcdot h

Площадь произвольного четырехугольника равна половине произведения его диагоналей на синус угла между ними, S=displaystyle frac{1}{2}ACcdot BDcdot {sin alpha  }

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. Она также равна половине произведения диагоналей:

Площадь круга равна произведению числа pi и квадрата радиуса круга.

Ее также можно записать как произведение числа pi и квадрата диаметра круга, деленного на 4:

Вспомним важные свойства площадей фигур.

  1. Равные фигуры имеют равные площади.
    Иногда фигуры, имеющие равные площади, еще называют равновеликими.
  2. Если фигура составлена из нескольких фигур, не имеющих общих внутренних точек, то ее площадь равна сумме площадей этих фигур.

Пример. Найдем площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1смtimes1см.

Решение:

Найдем площадь фигуры на рисунке как сумму площадей нескольких фигур.

На рисунке это три треугольника и трапеция, указаны их площади. Тогда площадь фигуры равна 10 + 3,5 + 1,5 + 3 = 18.

Ответ: 18.

3. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Треугольники АВС и A_1B_1C_1 на рисунке называются подобными.

У треугольника A_1B_1C_1 все стороны в k раз длиннее, чем у треугольника АВС. Высота треугольника A_1B_1C_1 в k раз длиннее, чем высота треугольника АВС. Тогда площадь треугольника A_1B_1C_1 в k^2 раз больше, чем площадь треугольника АВС.

4. На рисунке показаны треугольники АВС и BCD, имеющие общую высоту. Отношение площадей этих треугольников равно отношению АС к CD:

displaystyle frac{S_{ABC}}{S_{BCD}}=displaystyle frac{AC}{CD}

5. Треугольники АВС и АЕС на рисунке имеют одинаковое основание и разные высоты.

Отношение площадей этих треугольников равно отношению их высот:

displaystyle frac{S_{ABC}}{S_{AEC}}=displaystyle frac{BD}{EH}.

6. Медиана треугольника делит его на два равновеликих, то есть равных по площади, треугольника.

На рисунке СМ — медиана треугольника АВС. Площади треугольников АСМ и ВСМ равны.

7. Три медианы треугольника делят его на шесть равных по площади треугольников.

На рисунке все 6 треугольников, из которых состоит треугольник АВС, имеют равные лощади.

Задачи ЕГЭ и ОГЭ по теме: Площади фигур.

Задача 1. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен {30}^circ.

Решение:

Площадь треугольника равна половине произведения его сторон на синус угла между ними. Поэтому

S=displaystyle frac{1}{2}cdot 8cdot 12cdot {sin 30{}^circ =displaystyle frac{1}{2}cdot 8cdot 12cdot displaystyle frac{1}{2}=24 }.

Ответ: 24.

Задача 2. Площадь треугольника ABC равна 4, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.

Решение:

Так как DE и АВ параллельны, треугольники CDE и САВ подобны с коэффициентом подобия displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия. Тогда

S=displaystyle frac{1}{4}cdot 4=1.

Ответ: 1.

Задача 3. У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?

Решение:

Выразим площадь двумя способами:
S_{ABC}=displaystyle frac{1}{2}CHcdot AB=displaystyle frac{1}{2}AKcdot CB.

Тогда AK=displaystyle frac{CHcdot AB}{CB}=displaystyle frac{4cdot 9}{6}=6.

Ответ: 6.

Задача 4. Площадь треугольника ABC равна 10, DE — средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Решение:

Треугольник CDE подобен треугольнику CAB с коэффициентом displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

S_{CDE}=displaystyle frac{1}{4}cdot 10=2.5.

Следовательно, .

Ответ: 7,5.

Задача 5. В параллелограмме ABCD AB = 3, AD = 21, {sin A=displaystyle frac{6}{7}}. Найдите большую высоту параллелограмма.

Решение:

Большая высота — это DH, потому что проведена к меньшей стороне. Из треугольника АDН:

DH=AD{sin A=21cdot displaystyle frac{6}{7}=3cdot 6=18 }.

Ответ: 18.

Задача 6. Найдите площадь квадрата, если его диагональ равна 1.

Решение:

Квадрат — это частный случай ромба. Площадь квадрата равна половине произведения его диагоналей. Поэтому она равна 0,5.

Ответ: 0,5.

Задача 7. Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.

Решение:

Площадь прямоугольника равна произведению его длины на ширину. Периметр прямоугольника равен сумме длин всех сторон. Пусть одна из сторон прямоугольника равна a, тогда вторая равна 2a. Площадь прямоугольника равна S = 2a^2= 18, тогда одна из сторон равна 3, а другая 6. Периметр P = 2 · 3 + 2 · 6 = 18.

Ответ: 18.

Задача 8. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Решение:

Площадь параллелограмма равна произведению его сторон на синус угла между ними. Площадь прямоугольника равна произведению длины на ширину. Пусть одна сторона параллелограмма и прямоугольника равна a, вторая равна  b, а острый угол параллелограмма равен alpha . Тогда площадь параллелограмма равна S=acdot bcdot {sin alpha }, а площадь прямоугольника равна   S_2=acdot b.

По условию площадь прямоугольника вдвое больше:

{S_2=2S_1} . Следовательно, acdot b=2acdot bcdot {sin alpha Leftrightarrow {sin alpha  }=0,5 }Leftrightarrow alpha =30{}^circ.

Ответ: 30.

Задача 9. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.

Решение:

Площадь параллелограмма равна произведению его основания на высоту, проведенную к этому основанию. Пусть высоты равны соответственно a и b. Тогда S = 5 · a = 10 · b = 40. Поэтому a = 8, b = 4. Большая высота равна 8.

Ответ: 8.

Задача 10. Найдите площадь ромба, если его высота равна 2, а острый угол 30{}^circ.

Решение:

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. С другой стороны, площадь ромба равна произведению его основания на высоту, проведенную к этому основанию. Пусть сторона ромба равна a.

Получим уравнение:

a^2=a{sin alpha }.

Корень уравнения a = 4, поэтому S=2 cdot  4=8.

Ответ: 8.

Задача 11. Найдите площадь ромба, если его диагонали равны 4 и 12.

Решение:

Площадь ромба равна половине произведения его диагоналей. S=displaystyle frac{1}{2}cdot 4cdot 12=24.

Ответ: 24.

Задача 12. Основания равнобедренной трапеции равны 14 и 26, а ее периметр равен 60. Найдите площадь трапеции.

Решение:

Трапеция равнобедренная, значит,

AH=displaystyle frac{AB-DC}{2}=6;

AD=displaystyle frac{P_{ABCD}-left(AB+DCright)}{2}=10.

Тогда по теореме Пифагора из треугольника ADH:

DH=sqrt{{AD}^2-{AH}^2}=8;

S=displaystyle frac{AB+CD}{2}cdot DH=20cdot 8=160.

Ответ: 160.

Задача 13. Найдите площадь прямоугольной трапеции, основания которой равны 6 и 2, большая боковая сторона составляет с основанием угол 45{}^circ.

Решение:

Проведем высоту CH. Треугольник CHB — прямоугольный, в нем

angle B=45{}^circ , значит, он также равнобедренный, CH = HB = 4.
S_{ABCD}=displaystyle frac{AB+CD}{2}cdot CH=4cdot 4=16.

Ответ: 16.

Задача 14. Высота трапеции равна 5, площадь равна 75. Найдите среднюю линию трапеции.

Решение:

Средняя линия трапеции равна полусумме оснований. Выразим её из формулы площади трапеции:
S=displaystyle frac{a+b}{2}cdot hLeftrightarrow displaystyle frac{a+b}{2}cdot 5=75Leftrightarrow displaystyle frac{a+b}{2}=15.

Ответ: 15.

Задача 15. Основания трапеции равны 27 и 9, боковая сторона равна 8. Площадь трапеции равна 72. Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ выразите в градусах.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту. Пусть высота равна h, тогда

S=displaystyle frac{27+9}{2}cdot h=72.

Из этого уравнения получим: h = 4.

Рассмотрим прямоугольный треугольник, гипотенузой которого является боковая сторона трапеции, равная 8, а катетом — высота трапеции. Длина катета равна половине гипотенузы, следовательно, он лежит напротив угла {30}^circ.

Ответ: 30.

Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Задача 16. Найдем площадь четырехугольника на рисунке.

Решение:

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников: S=5+7,5=12,5.

Ответ: 12,5.

В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Задача 17. Найдем площадь треугольника, изображенного на клетчатой бумаге.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем:S=25-5-5-4,5=10,5.

Ответ: 10,5.

Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.

Задача 18.

Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

Решение:

На этом рисунке мы видим часть круга. Площадь всего круга равна pi R^2 =pi, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна 2pi R=2pi (так как R = 1), а длина дуги данного сектора равна 2, следовательно, длина дуги в pi раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в pi раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в pi раз меньше, чем площадь всего круга.

Ответ: 1.

Формула Пика

Покажем, как вычислять площадь фигуры, изображенной на координатной плоскости, с помощью формулы Пика.

Задача 19. Найдите площадь многоугольника АВСDE, изображенного на рисунке.

Первый способ:

Площадь многоугольника ABCDE равна сумме площадей треугольника BCD, трапеции BKDE и треугольника AKE.

Имеем:

S_{vartriangle BCD}=displaystyle frac{1}{2}cdot 9cdot 2=9;

S_{BKDE}=displaystyle frac{1}{2}cdot (9+3)cdot 2=12;

S_{vartriangle AKE}=displaystyle frac{1}{2}cdot 3cdot 4=6;

S_{ABCDE}=9+12+6= 27.

Второй способ – применить формулу Пика.

Назовем точку координатной плоскости целочисленной, если обе ее координаты — целые числа. На нашем рисунке это точки на пересечениях линий, разделяющих клетчатую бумагу на клетки.

Площадь многоугольника с целочисленными вершинами равна

.

Здесь В — количество целочисленных точек внутри многоугольника, Г — количество целочисленных точек на границе многоугольника.

Главное — аккуратно посчитать. На нашем рисунке

В = 24 (показаны зеленым),

Г = 8 (показаны красным),

S = 24 + displaystyle frac{8}{2} — 1 = 27.

Ответ: 27.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Все формулы по геометрии. Площади фигур» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Площади фигур. Основные формулы.

Площадь треугольника.

Формула Рисунок Расшифровка формулы

а – основание, h – высота, проведенная к этому основанию.

Формула применима для любого треугольника.

a, b – стороны, α – угол между этими сторонами.

Формула применима для любого треугольника.

a, b, с – стороны, р – полупериметр (сумма трех сторон, деленная пополам).

Формула применима для любого треугольника.

r – радиус вписанной в треугольник окружности, р – полупериметр (сумма трех сторон, деленная пополам).

Формула применима для любого треугольника.

a, b, с – стороны, R – радиус описанной около треугольника окружности, d – диаметр описанной окружности.

Формула применима для любого треугольника.

R – радиус описанной около треугольника окружности, α, β, γ – углы треугольника.

Формула применима для любого треугольника.

a, b – катеты.

Формула применима для прямоугольного треугольника.

a – сторона.

Формула применима для равностороннего (правильного) треугольника.

Площадь квадрата и прямоугольника.

Площадь параллелограмма и ромба.

Формула Рисунок Расшифровка формулы
а – одна из сторон параллелограмма, h – высота, проведенная к этой стороне
а, b – стороны параллелограмма, α – угол между этими сторонами
d1, d2 – диагонали, α – угол между диагоналями (можно брать любой угол, т.к. синусы смежных углов равны)
а – сторона ромба, h – высота, проведенная к этой стороне
а – сторона ромба, α – угол между этими сторонами
d1, d2 – диагонали ромба

Площадь трапеции.

Формула Рисунок Расшифровка формулы

а, b – основания трапеции, h – высота.

Формула применима для любой* трапеции.

m – средняя линия трапеции, h – высота.

Формула применима для любой трапеции.

d1, d2 – диагонали трапеции, α – угол между диагоналями (можно брать любой угол, т.к. синусы смежных углов равны).

Формула применима для любой трапеции.

*Любая трапеция – это и равнобедренная, и прямоугольная, и тупоугольная, и произвольная 🙂

Площадь круга и кругового сектора.

Площадь многоугольника.

Формула Рисунок Расшифровка формулы

р – полупериметр (сумма всех сторон многоугольника, деланная на 2), r – радиус вписанной в этот многоугольник окружности.

*Пятиугольник нарисован для примера.

Формула работает как для правильного, так и для произвольного многоугольника, главное, чтобы в него можно было вписать окружность.

Содержание:

  • Определения
  • Формулы площади основных геометрических фигур

Определения

Площадь является одним из основных математических понятий. Она характеризует как плоские, так и поверхностные геометрические объекты.

Определение

Площадью плоской замкнутой фигуры называется величина части плоскости, которая находится внутри указанной фигуры.

Единицей измерения площади плоской фигуры является квадрат со стороной, равной единице. Число, соответствующее
площади некоторой фигуры, состоящей из частей, равно сумме чисел, соответствующих площадям этих частей. Измерение
площадей треугольников и многоугольников основано на возможности построения равновеликих им прямоугольников.

Площадь произвольной ограниченной плоской фигуры определяется как общий предел площадей описанных и
вписанных в нее многоугольников, наибольшие стороны которых по длине стремятся к нулю.

Если фигура имеет площадь, то она называется квадрируемой.

Формулы площади основных геометрических фигур

Площадь треугольника

Чтобы найти площадь треугольника, надо найти полупроизведение двух его сторон на синус угла между ними.
То есть если известны длины двух сторон треугольника $ABC$, которые равны
$a$ и $b$, а также угол
$alpha$ между этими сторонами, то искомая площадь:

$$mathrm{S}_{Delta A B C}=frac{1}{2} a b sin alpha$$

Читать дальше: формулы площади треугольника и примеры решений

Площадь круга

Чтобы найти площадь круга, надо найти произведение числа
$pi$ на квадрат радиуса этого круга, то есть

$$mathrm{S}_{kappa p}=pi R^{2}$$

Читать дальше: формула площади круга и примеры решений

Площадь квадрата

Чтобы найти площадь квадрата, надо длину его стороны возвести в квадрат, то есть

Читать дальше: формула площади квадрата и примеры решений

Площадь прямоугольника

Чтобы найти площадь прямоугольника, надо его длину умножить на ширину, то есть

Читать дальше: формула площади прямоугольника и примеры решений

Площадь параллелограмма

Чтобы найти площадь параллелограмма, нужно найти произведение стороны
$a$ параллелограмма на высоту
, проведенную к этой стороне, то есть

Читать дальше: формулы площади параллелограмма и примеры решений

Площадь трапеции

Чтобы найти площадь трапеции, нужно длину средней линии
умножить на длину высоты
, опущенной к основанию:

Читать дальше: формулы площади трапеции и примеры решений

Площадь ромба

Чтобы найти площадь ромба, надо длину стороны умножить на длину высоты, проведенной к этой стороне:

Читать дальше: формулы площади ромба и примеры решений

Площадь эллипса

Чтобы найти площадь эллипса, нужно найти произведение длин большой и малой полуосей этого эллипса на число
$pi$, то есть

Читать дальше: формула площади эллипса и примеры решений

  • Как найти площадь треугольника
  • Как найти площадь ромба
  • Как найти площадь эллипса
  • Как найти площадь прямоугольного треугольника
  • Как найти площадь равнобедренного треугольника
  • Как найти площадь равностороннего треугольника
  • Как найти площадь круга
  • Как найти площадь квадрата
  • Как найти площадь прямоугольника
  • Как найти площадь параллелограмма
  • Как найти площадь трапеции

Добавить комментарий