Правил как найти площадь

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


Площадь – это величина пространства, которое ограниченное замкнутым контуром (периметром фигуры).

Площадь прямоугольника находится по формуле: длину умножить на ширину фигуры (S = a*b)

Плошадь квадрата можно найти по двум формулам:

  1. через известное значение одной из сторон: одну из сторон квадрата поднести к квадрату или умножить саму на себя (S = a*a)
  2. через диагональ квадрата: диагональ квадрата поднести к квадрату и умножить на одну/вторую (или получившееся значение разделить на два) (S = 1/2* c*c) (S = c*c : 2)

Площадь треугольника можно найти через основание и высоту фигуры: основание треугольника умножить на высоту и разделить на два (умножить на одну/вторую) (S = a*h :2) (S = a*h *1/2)

Площадь круга можно найти, зная радиус или диаметр фигуры:

  1. число “пи” умножить на радиус круга, поднесенный к квадрату (S = π * r*r)
  2. число “пи”, разделенное на четыре, умножить на диаметр, поднесенный к квадрату: (S = π/4 * D*D)

система выбрала этот ответ лучшим

Hamst­er133­7
[28.6K]

2 года назад 

Площадь – это величина поверхности какой либо фигуры (квадрата, треугольника и т.д). Например, квадрат 2 на 2 (см) имеет площадь 4 см (по формуле a^2). Более подробно узнать о формулах вычисления площадей простейших фигур, вписанных и описанных в круг фигур и т. д. можно здесь.

Михаи­л 33
[36.4K]

5 лет назад 

Нам постоянно приходится слышать о площади геометрических фигур, и можно полноценно сказать, что это одна из наиважнейших составляющих всей геометрии, как научной дисциплины.

Немаловажным фактором является то, что необходимость определить величину площади чего-либо возникает в нашей жизни очень часто.

Для примера возьмём обычный ремонт квартиры или дома.

Сколько раз приходится вычислить площадь комнаты, потолка, стен, пола и т.д.

И любые ошибки при данных вычислениях приводят лишь к одному, к нашим избыточным денежным затратам, так как закупка стройматериалов полностью зависит от площади, для которой предназначаются те или иные стройматериалы.

Примеров того, что понятие площади необходимо знать всем, сотни, но речь не об этом.

И так, что такое площадь?

Площадью называется часть плоскости, заключённой внутри какой либо геометрической фигуры. Соответственно и нахождение её будет зависеть именно от того, в какой именно фигуре заключена данная часть плоскости.

Как находится площадь отдельных геометрических фигур:

AlexS­EO
[85.8K]

3 года назад 

Площадь (ранее принятое название – квадратура), и это следует сразу же отметить, относится к фигуре (геометрической) плоской (возможно – искривленной), где есть два измерения (при вводе третьего измерения получается объем), например – длина/ширина. По сути – это не что иное, как размер той или иной фигуры или совокупность (сложение) всех точек, входящих в нее.

Если фигуры стандартные (круг/квадрат/прямоу­гольник/трапеция/тре­угольник), то найти их площадь просто – есть соответствующие формулы, нужно лишь знать размеры, например, зная сторону такой фигуры, как квадрат, легко найти площадь, просто умножив ее (или возведя в квадрат) на саму себя. Другие формулы:

Если фигура сложная, то тут применяют интегралы (для теоретических вычислений) или же специальные приспособления, например, планиметр или палетку (для практических измерений).

Alex2­837
[113K]

более года назад 

Понятие площади фигуры изучается на уроках математики в средних классах. Очень часто ученики путают эту меру с периметром геометрической фигуры.

Если не обращаться к научной литературе, то понятие площади простыми словами можно обозначить, как часть плоскости, которая ограничивается сторонами фигуры.

Например, площадь треугольника ограничивается его тремя сторонами, площадь прямоугольника или квадрата ограничивается четырьмя сторонами.

Для вычисления площади используются специальные формулы. Для каждой геометрической фигуры имеется своя отдельная формула. Например, для определения площади прямоугольника, достаточно просто умножить его длину на ширину.

Мудры­й Датч
[75K]

2 года назад 

Площадь является мерой того, сколько на плоской поверхности имеется пространства.

В математике вычисляются разными путями площади фигур. Если мы возьмём, к примеру, прямоугольник, то его площадь следует определять как произведение его высоты и ширины, а площадь квадрата, где сторона обозначается буквой “а”, будет равняться

=а*а (“а” в квадрате). Но и будет несправедиво не упомянуть площадь такой фигуры как треугольник, а равна площадь треугольника произведению половины его основания на высоту. Ниже привожу небольшую подсказку в определении площади фигур.

Domin­o-12
[201]

3 недели назад 

В математике площадью называют величину, характеризующую протяженность двумерной геометрической фигуры (прямоугольника, треугольника и т.д.) или области на плоскости.

Площадь обозначается буквой S.

Для каждой геометрической фигуры существуют формулы площади, выбор формулы зависит от того, что дано в условии задачи.

Вот, например, несколько формул для нахождения площади треугольника:

Если известны все 3 стороны, то можно воспользоваться 2 формулой (она называется формулой Герона) – в ней a, b, c являются сторонами, а p – полупериметром (нужно сложить числовые значения всех сторон и разделить на 2).

А если мы знаем, чему равна высота и основание треугольника, то площадь можно посчитать по 1 формуле – половина произведения основания на высоту.

Отдельный случай – это нахождение площади произвольного многоугольника.

Здесь тоже имеются формулы, но в некоторых случаях можно сделать и так: разбить многоугольник на несколько стандартных фигур и найти их площадь, площадь многоугольника будет равна сумме площадей этих фигур.

То есть:

S = S1 + S2 + S3 = …

А в некоторых случаях проще достроить многоугольник до прямоугольника или квадрата, найти площадь полученной фигуры, а затем вычесть из неё площади лишних областей.

Екате­ринаК­рест
[34]

5 лет назад 

Площадь-часть плоскости, заключённая внутри замкнутой геометрической фигуры. Как всем известно,фигуры есть самые разнообразные,но самое элементарное-нахождение площади(S) прямоугольника,треугольника. Чтобы найти S прямоугольника,нужно умножить ее ширину на длину,то есть а*в. Квадрат-тот же самый прямоугольник,но с равными сторонами,следовательно S квадрата=а*а или “а” в квадрате. И,чтобы найти S треугольника нужно умножить половину его основания(а) на высоту(h)(S=12a*h)

Витал­ий Чер
[5.8K]

5 лет назад 

Площадь это поверхность какого либо предмета, к примеру площадь прямоугольника находится по следующей формуле: a*b-где a,b -стороны (длина и ширина), квадрата a^2, круга ПR^2-где П-3,14 а R-радиус, конуса ПR(l+R)-где l-длина конуса и т.д.

СТЭЛС
[309K]

более года назад 

Площадь это характеристика плоскости, выраженная в числовом виде. Вторично выражает размеры этой фигуры.

Площадь прямоугольника, находится путем умножения его ширины на его длину, выраженные в единых мерах.

Знаете ответ?


Загрузить PDF


Загрузить PDF

Иногда вычисление площади сводится к простому перемножению двух чисел, но зачастую это вычисление более сложное. Прочтите эту статью для краткого обзора по вычислению площади (или площади поверхности) следующих фигур: четырехугольник, квадрат, параллелограмм, трапеция, треугольник, многоугольник, круг, пирамида, цилиндр, кривая линия.

  1. Изображение с названием Find Area Step 1

    1

    Найдите длину двух смежных сторон прямоугольника. Поскольку противоположные стороны прямоугольника равны, нужно найти длины смежных сторон. Обозначьте одну сторону как (b), а другую — как (h).[1]

  2. Изображение с названием Find Area Step 2

    2

    Перемножьте значения двух смежных сторон, чтобы найти площадь. Обозначим площадь прямоугольника как (k). Тогда: k = b*h.

    • Для более детальных инструкций прочтите статью «Как найти площадь четырехугольника».

    Реклама

  1. Изображение с названием Find Area Step 3

    1

    Найдите длину стороны квадрата. Поскольку квадраты имеют четыре равные стороны, нужно найти длину всего одной стороны.[2]

  2. Изображение с названием Find Area Step 4

    2

    Возведите в квадрат длину стороны. Это и есть площадь квадрата.

    • Это верно, потому что квадрат — это прямоугольник, у которого все стороны равны. Так как для прямоугольника k = b*h, а в квадрате b=h, для вычисления площади квадрата просто умножаем его сторону на саму себя.

    Реклама

  1. Изображение с названием Find Area Step 5

    1

    Выберите одну сторону, на которую будет опущен перпендикуляр. Найдите длину этой стороны.

  2. Изображение с названием Find Area Step 6

    2

    Опустите перпендикуляр (высоту) на выбранную ранее сторону и найдите его длину.[3]

    • Если нужно, продлите сторону, на которую опускается перпендикуляр, до ее пересечения с перпендикуляром.
  3. Изображение с названием Find Area Step 7

    3

    Реклама

  1. Изображение с названием Find Area Step 8

    1

    Найдите длины двух параллельных сторон. Обозначьте их как (а) и (b).

  2. Изображение с названием Find Area Step 9

    2

    Найдите высоту. Опустите перпендикуляр (высоту (h)) к основанию трапеции.[5]

  3. Изображение с названием Find Area Step 10

    3

    Реклама

  1. Изображение с названием Find Area Step 11

    1

    Найдите длину одной стороны треугольника (b), на которую будет опущен перпендикуляр (высота) и длину высоты (h).

  2. Изображение с названием Find Area Step 12

    2

    Чтобы найти площадь треугольника, подставьте длину соответствующей стороны и длину высоты в формулу: A=0.5b*h

    • Для более детальных инструкций прочтите статью «Как найти площадь треугольника».

    Реклама

  1. Изображение с названием Find Area Step 13

    1

    Найдите длину стороны и длину апофемы (а) (отрезок, соединяющий центр многоугольника и середину любой из его сторон).

  2. Изображение с названием Find Area Step 14

    2

    Умножьте длину стороны на количество сторон, чтобы найти периметр многоугольника (р).

  3. Изображение с названием Find Area Step 15

    3

    Реклама

  1. Изображение с названием Find Area Step 16

    1

    Найдите радиус окружности (r). Это отрезок, соединяющий центр окружности и любую точку на окружности.

  2. Изображение с названием Find Area Step 17

    2

    Реклама

  1. Изображение с названием Find Area Step 18

    1

    Найдите площадь прямоугольного основания пирамиды с помощью приведенной выше формулы для нахождения площади прямоугольника: k=b*h.

  2. Изображение с названием Find Area Step 19

    2

    Найдите площадь каждой треугольной грани пирамиды с помощью приведенной выше формулы для нахождения площади треугольника: A=0.5b*h.

  3. Изображение с названием Find Area Step 20

    3

    Сложите все полученные площади для вычисления площади поверхности пирамиды.

    Реклама

  1. Изображение с названием Find Area Step 21

    1

    Найдите радиус круга в основании цилиндра.

  2. Изображение с названием Find Area Step 22

    2

    Найдите высоту цилиндра.

  3. Изображение с названием Find Area Step 23

    3

    Найдите площадь круга в основании, используя формулу для вычисления площади круга: А=πr^2.

  4. Изображение с названием Find Area Step 24

    4

    Найдите площадь боковой поверхности, умножив высоту цилиндра на периметр основания. Периметр основания равен длине окружности: P = 2πr, поэтому площадь боковой поверхности А= 2πhr.

  5. Изображение с названием Find Area Step 25

    5

    Сложите все полученные площади: две площади круговых оснований и площадь боковой поверхности. Таким образом, площадь поверхности цилиндра: SA = 2πr^2 + 2πhr.

    • Для более детальных инструкций прочтите статью «Как найти площадь поверхности цилиндра».

    Реклама

Допустим, вы хотите найти площадь фигуры, ограниченной кривой линией (описывается функцией f(x)), осью x и значениями функции при x=а и при x=b (то есть область определения [a,b]). Этот метод потребует знаний интегрального исчисления. Если вы не знаете его, этот метод не имеет для вас никакого смысла.

  1. Изображение с названием Find Area Step 26

    1

    Определите f(x) через x.

  2. Изображение с названием Find Area Step 27

    2

    Возьмите интеграл функции f(x) в интервале [а,b]. По формуле Ньютона-Лейбница: F(x)=∫f(x), ∫abf(x) = F(b) – F(a).

  3. Изображение с названием Find Area Step 28

    3

    Подставьте значения а и b в интегральное выражение. Искомая площадь определяется как ∫abf(x). Поэтому, A=F(b)) – F(a).

    Реклама

Об этой статье

Эту страницу просматривали 25 239 раз.

Была ли эта статья полезной?

Площадь
S, от фр. superficie
Размерность
Единицы измерения
СИ м²
СГС см²
Примечания
скаляр

Общая площадь всех трёх фигур составляет около 15-16 квадратиков

Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с помощью наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры[2] (на рисунке справа). В широком смысле понятие площади обобщается[1] на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».

Исторически вычисление площади называлось квадратурой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Общий метод вычисления площади геометрических фигур предоставило интегральное исчисление. Обобщением понятия площади стала теория меры множества, пригодная для более широкого класса геометрических объектов.

Для приближённого вычисления площади на практике используют палетку или специальный измерительный прибор — планиметр.

Определение понятия площади[править | править код]

Свойства[править | править код]

Множество измеримо по Жордану, если внутренняя мера Жордана равна внешней мере Жордана

Площадь — функция, которая обладает следующими свойствами[3][1]:

  • Положительность, то есть площадь неотрицательная (скалярная) величина;
  • Аддитивность, то есть площадь фигуры равна сумме площадей составляющих её фигур без общих внутренних точек;
  • Инвариантность, то есть площади конгруэнтных фигур равны;
  • Нормированность, то есть площадь единичного квадрата равна 1.

Из данного определения площади следует её монотонность, то есть площадь части фигуры меньше площади всей фигуры[3].

Квадрируемые фигуры[править | править код]

Первоначально определение площади было сформулировано для многоугольников, затем оно было расширено на квадрируемые фигуры. Квадрируемой называется такая фигура, которую можно вписать в многоугольник и в которую можно вписать многоугольник, причём площади обоих многоугольников отличаются на произвольно малую величину. Такие фигуры называются также измеримыми по Жордану[1]. Для фигур на плоскости, не состоящих из целого количества единичных квадратов, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими[4]. Существуют неквадрируемые плоские фигуры[1]. Предложенное выше аксиоматическое определение площади в случае плоских фигур обычно дополняют конструктивным, при котором с помощью палетки осуществляется собственно вычисление площади. При этом для более точных вычислений на последующих шагах используют палетки, у которых длина стороны квадрата в десять раз меньше длины у предыдущей палетки[5].

Площадь квадрируемой плоской фигуры существует и единственна. Понятие площади, распространённое на более общие множества, привело к определению множеств, измеримых по Лебегу, которыми занимается теория меры. В дальнейшем возникают более общие классы, для которых свойства площади не гарантируют её единственность[1].

Общий метод определения площади[править | править код]

Площадь плоской фигуры[править | править код]

На практике чаще всего требуется определить площадь ограниченной фигуры с кусочно-гладкой границей. Математический анализ предлагает универсальный метод решения подобных задач.

Декартовы координаты[править | править код]

Определённый интеграл как площадь фигуры

Площадь между графиками двух функций равна разности интегралов от этих функций в одинаковых пределах интегрирования

Площадь, заключённая между графиком непрерывной функции на интервале [a,b] и горизонтальной осью, может быть вычислена как определённый интеграл от этой функции:

S=int limits _{a}^{b}f(x),dx

Площадь, заключённая между графиками двух непрерывных функций f(x),,g(x) на интервале [a,b] находится как разность определённых интегралов от этих функций:

S=int limits _{a}^{b}left|f(x)-g(x)right|,dx

Полярные координаты[править | править код]

В полярных координатах: площадь, ограниченная графиком функции r=r(theta ) и лучами theta =theta _{1},theta =theta _{2},theta _{1}<theta _{2} вычисляется по формуле:

S={1 over 2}int limits _{{theta _{1}}}^{{theta _{2}}}r^{2}(theta ),dtheta .

Площадь поверхности[править | править код]

Для определения площади кусочно гладкой поверхности в трёхмерном пространстве используют ортогональные проекции к касательным плоскостям в каждой точке, после чего выполняют предельный переход. В результате, площадь искривлённой поверхности A, заданной вектор-функцией {mathbf  {r}}={mathbf  {r}}(u,v),, даётся двойным интегралом[1]:

S=iint limits _{A}left|{frac  {partial {mathbf  {r}}}{partial u}}times {frac  {partial {mathbf  {r}}}{partial v}}right|,du,dv.

То же в координатах:

S=iint limits _{A}{sqrt  {left({frac  {D(x,y)}{D(u,v)}}right)^{2}+left({frac  {D(y,z)}{D(u,v)}}right)^{2}+left({frac  {D(z,x)}{D(u,v)}}right)^{2}}};{mathrm  {d}},u,{mathrm  {d}},v

Здесь {frac  {D(y,z)}{D(u,v)}}={begin{vmatrix}y'_{u}&y'_{v}\z'_{u}&z'_{v}end{vmatrix}},quad {frac  {D(z,x)}{D(u,v)}}={begin{vmatrix}z'_{u}&z'_{v}\x'_{u}&x'_{v}end{vmatrix}},quad {frac  {D(x,y)}{D(u,v)}}={begin{vmatrix}x'_{u}&x'_{v}\y'_{u}&y'_{v}end{vmatrix}}.

Теория площадей[править | править код]

Теория площадей занимается изучением обобщений, связанных с распространением определения k-мерной площади с кусочно-гладкого погружения на более общие пространства. Для кусочно-гладкого погружения f площадь определяют способом, аналогичным указанному выше, при этом у площади сохраняются такие свойства как положительность, аддитивность, нормированность, а также ряд новых.

Единицы измерения площади[править | править код]

В одном квадратном сантиметре сто квадратных миллиметров

Метрические единицы[править | править код]

  • Квадратный метр, производная единица Международной системы единиц (СИ); 1 м² = 1 са (сантиар);
  • Квадратный километр, 1 км² = 1 000 000 м²;
  • Гектар, 1 га = 10 000 м²;
  • Ар (сотка), 1 а = 100 м²:
  • Квадратный дециметр, 100 дм² = 1 м²;
  • Квадратный сантиметр, 10 000 см² = 1 м²;
  • Квадратный миллиметр, 1 000 000 мм² = 1 м²;
  • Барн, 1 б = 10−28 м².

Русские устаревшие[править | править код]

  • Квадратная верста = 1,13806 км²
  • Десятина = 10925,4 м²
  • Копна = 0,1 десятины — сенные покосы мерили копнами
  • Квадратная сажень = 4,55224 м²

Мерами земли при налоговых расчётах были выть, соха, обжа, размеры которых зависели от качества земли и социального положения владельца. Существовали и различные местные меры земли: коробья, верёвка, жеребья и др.

Античные[править | править код]

  • Актус
  • Арура
  • Центурия
  • Югер

Другие[править | править код]

  • Акр
  • Рай = 1600 м² (40 м × 40 м).
  • Квадратный парсек
  • Планковская площадь (S_{P},{ell }_{{P}}^{{2}}) ≈ 2,612099 · 10−70 м2

Формулы вычисления площадей простейших фигур[править | править код]

Многоугольники[править | править код]

Фигура Формула Переменные
Правильный треугольник {displaystyle a^{2}{frac {sqrt {3}}{4}}} a — длина стороны треугольника
Прямоугольный треугольник {frac  {ab}{2}} a и b — катеты треугольника
Произвольный треугольник {frac  {1}{2}}ah a — сторона треугольника, h — высота, проведённая к этой стороне
{frac  {1}{2}}absin alpha a и b — любые две стороны, alpha  — угол между ними
{sqrt  {p(p-a)(p-b)(p-c)}}
(формула Герона)
a, b и c — стороны треугольника, p — полупериметр left(p={frac  {a+b+c}{2}}right)
{frac  {1}{2}}{begin{vmatrix}x_{0}&y_{0}&1\x_{1}&y_{1}&1\x_{2}&y_{2}&1end{vmatrix}} (x_{0};y_{0}), (x_{1};y_{1}), (x_{2};y_{2}) — координаты вершин треугольника (в случае обхода вершин по часовой стрелке получим положительный результат, иначе отрицательный)
Квадрат a^2 a — длина стороны квадрата
Прямоугольник ab a и b — длины сторон прямоугольника (его длина и ширина)
Ромб {frac  {1}{2}}cd c и d — длины диагоналей ромба
Параллелограмм ah a и h — длины стороны и опущенной на неё высоты соответственно
absin alpha a и b — соседние стороны параллелограмма, alpha  — угол между ними
Трапеция {frac  {1}{2}}(a+b)h a и b — основания трапеции, h — высота трапеции
Произвольный четырёхугольник {sqrt  {(p-a)(p-b)(p-c)(p-d)-abcdcos alpha }}
(формула Брахмагупты)
a, b, c, d — стороны четырёхугольника, p — его полупериметр, alpha  — полусумма противолежащих углов четырёхугольника
Правильный шестиугольник {displaystyle a^{2}{frac {3{sqrt {3}}}{2}}} a — длина стороны шестиугольника
Правильный восьмиугольник {displaystyle 2a^{2}(1+{sqrt {2}})} a — длина стороны восьмиугольника
Правильный многоугольник {frac  {P^{2}/n}{4operatorname {tg}(pi /n)}} P — периметр, n — количество сторон
Произвольный многоугольник (выпуклый и невыпуклый) {frac  {1}{2}}left|sum _{{i=1}}^{{n}}(x_{{i+1}}-x_{i})(y_{{i+1}}+y_{i})right|
(метод трапеций)
(x_{i};y_{i}) — координаты вершин многоугольника в порядке их обхода, замыкая последнюю с первой: (x_{{n+1}};y_{{n+1}})=(x_{1};y_{1}); при наличии отверстий направление их обхода противоположно обходу внешней границы многоугольника
Произвольный многоугольник (выпуклый и невыпуклый) Вычисление площадей многоугольников по способу Саррона[6]. Есть аналитическая формула. Даны длины сторон многоугольника и азимутальные углы сторон

Площади круга, его частей, описанных и вписанных в круг фигур[править | править код]

Фигура Формула Переменные
Круг pi r^{2} или {frac  {pi d^{2}}{4}} r — радиус, d — диаметр круга
Сектор круга {frac  {alpha r^{2}}{2}} r — радиус круга, alpha  — центральный угол сектора (в радианах)
Сегмент круга {frac  {r^{2}}{2}}(alpha -sin alpha ) r — радиус круга, alpha  — центральный угол сегмента (в радианах)
Эллипс pi ab a, b — большая и малая полуоси эллипса
Треугольник, вписанный в окружность {frac  {abc}{4R}} a, b и c — стороны треугольника, R — радиус описанной окружности
Четырёхугольник, вписанный в окружность {sqrt  {(p-a)(p-b)(p-c)(p-d)}}
(формула Брахмагупты)
a, b, c, d — стороны четырёхугольника, p — его полупериметр
Многоугольник, описанный около окружности {frac  {1}{2}}Pr r — радиус окружности, вписанной в многоугольник, P — периметр многоугольника
Прямоугольная трапеция, описанная около окружности ab a, b — основания трапеции

Площади поверхностей тел в пространстве[править | править код]

Тело Формула Переменные
Полная поверхность прямого кругового цилиндра 2pi r(r+h) r и h — радиус и высота соответственно
Боковая поверхность прямого кругового цилиндра 2pi rh
Полная поверхность прямого кругового конуса {displaystyle pi r(l+r)} r и l — радиус и образующая боковой поверхности соответственно
Боковая поверхность прямого кругового конуса pi rl
Поверхность сферы (шара) 4pi r^{2} или pi d^{2} r и d — радиус и диаметр соответственно
Боковая поверхность прямой призмы {displaystyle Ph} P — периметр основания, h — высота
Полная поверхность произвольной призмы {displaystyle 2A_{1}+A_{2}} A_{1} — площадь основания A_{2} — площадь боковой поверхности

Исторический очерк[править | править код]

Площадь плоских фигур[править | править код]

Многие годы площадь считалась первичным понятием, не требующим определения. Основной задачей математиков являлось вычисление площади, при этом были известны основные свойства площади[3]. В Древнем Египте использовались точные правила вычисления площади прямоугольников, прямоугольных треугольников и трапеций, площадь произвольного четырёхугольника определялась приближённо как произведение полусумм пар противоположных сторон. Применение такой приближённой формулы связано с тем, что участки, площадь которых надо было померить, были в основном близки к прямоугольным и погрешность в таком случае оставалась небольшой. Историк математики А. П. Юшкевич предполагает, что египтяне могли и не знать, что пользуются приближённой формулой. В задаче 50 папируса Ринда содержится формула вычисления площади круга, которая считалась равной площади квадрата со стороной 8/9 диаметра круга[7]. Такими же формулами пользовались и в Вавилоне, однако для площади круга приближение было менее точным. Кроме того, вавилоняне могли приближённо посчитать площади правильных пяти-, шести- и семиугольника со стороной равной единице. В шестидесятиричной системе им соответствовали 1,40, 2,37,20 и 3,41, соответственно[8].

Основным приёмом вычисления площади при этом являлось построение квадрата, площадь которого равна площади заданной многоугольной фигуры, в частности в книге I «Начал» Евклида, которая посвящена планиметрии прямолинейных фигур, доказывается, что треугольник равновелик половине прямоугольника, имеющего с ним равные основания и высоту[9]. Метод разложения, основанный на том, что две равносоставленные фигуры равновелики, позволял также вычислить площади параллелограммов и любых многоугольников[5].

Следующим шагом было вычисление площадей круга, кругового сектора, лунок и других фигур. Основу вычислений при этом составлял метод исчерпывания многоугольниками[1][5], с которого берёт начало теория пределов. Метод заключается в построении последовательности площадей, которые при постепенном нарастании «исчерпывают» требуемую площадь. Метод исчерпывания, получивший своё название только в XVII веке, основан на аксиоме непрерывности Евдокса — Архимеда и приписывается Евдоксу Книдскому, который с его помощью показал, что площади кругов относятся друг к другу как квадраты их диаметров. Метод описан в «Началах» Евклида: аксиома Евдокса сформулирована в книге V, а сам метод исчерпывания и основанные на нём отношения — в книге XII[9]. Особого совершенства в применении метода достиг Архимед, который с его помощью посчитал площадь сегмента параболы и другие[10][11]. Труд Архимеда «О спиралях» включает много утверждений, касающихся площадей различных витков спирали и их отношений[12]. Архимеду принадлежит идея использования площадей или объёмов как вписанных, так и описанных фигур для определения требуемой площади или объёма[13].

Индийцы поначалу пользовались той же формулой для вычисления четырёхугольников, что египтяне и греки. Брахмагупта пользовался формулой для площади четырёхугольников, выраженной через его полупериметр., которая верна для вписанного в окружность четырёхугольника. Формулы вычисления площади обычно не доказывались, но демонстрировались с наглядными рисунками[14]. Формула Брахмагупты представляет собой аналог формулы Герона для площади треугольника, которую тот привёл в своей «Метрике»[15].

Развитие и обобщение метода исчерпывания произошло только в XVII веке. В 1604 году в работе «Три книги о центре тяжести тел» Валерио широко использует теорему, по которой разность между площадями вписанной и описанной фигур, составленных из параллелограммов можно сделать меньше любой данной площади[16]. Настоящий прорыв был сделан Кеплером, которому для астрономических расчётов нужно было уметь вычислять площадь эллипса. Кеплер рассматривал площадь как «сумму линий» и, разлиновывая эллипс с шагом в один градус, показал[17], что int limits _{0}^{varphi }sin xdx=1-cos varphi . Кавальери, обосновывая подобный метод, названный «методом неделимых», сравнивал площади плоских фигур, используя сечение фигур параллельными прямыми[18]. Применение первообразной для нахождения площади плоской фигуры является наиболее универсальным методом. С помощью первообразной доказывается принцип Кавальери, по которому две плоские фигуры имеют равную площадь, если при пересечении каждой из них прямой, параллельной фиксированной, получаются отрезки одинаковой длины. Принцип был известен задолго до формирования интегрального исчисления[1][5].

Площадь поверхности[править | править код]

Вычислением площадей кривых поверхностей занимался Архимед, определив, в частности, площадь поверхности шара[13]. В общем случае для определения площади поверхности нельзя пользоваться ни развёрткой (не подходит для сферы), ни приближением многогранными поверхностями, то есть аналогом метода исчерпывания. Последнее показал Шварц, построив для боковой последовательности цилиндра последовательности, которые приводят к разным результатам (так называемый сапог Шварца)[1][19].

Общий приём вычисления площади поверхности на рубеже XIX—XX веков предложил Минковский, который для каждой поверхности строил «окутывающий слой» малой постоянной толщины, тогда площадь поверхности будет приближённо равна объёму этого слоя, делённому на его толщину. Предельный переход при толщине, стремящейся к нулю даёт точное значение площади. Однако, для площади по Минковскому не всегда выполняется свойство аддитивности. Обобщение данного определения приводит к понятию линии по Минковскому и другим[20].

Примечания[править | править код]

  1. 1 2 3 4 5 6 7 8 9 10 Площадь // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 4.
  2. Чиркова, Наталья Ивановна, and Валентина Николаевна Зиновьева. Формирование у младших школьников представлений о площади предметов и её измерении Архивная копия от 28 апреля 2019 на Wayback Machine // Вестник Калужского университета 1 (2017): 92-97.
  3. 1 2 3 Геометрия, 1966, с. 7—13.
  4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — Изд. 6-е. — М.: ФИЗМАТЛИТ, 1966. — Т. 2. — С. 186—224. — 800 с.
  5. 1 2 3 4 Болтянский В. О понятиях площади и объёма. Архивная копия от 5 мая 2017 на Wayback Machine Квант, № 5, 1977, c.2—9
  6. Хренов Л. С. Вычисление площадей многоугольников по способу Саррона// Матем. просвещение. 1936. Выпуск 6. С. 12-15
  7. История математики, т. I, 1970, с. 30—32.
  8. История математики, т. I, 1970, с. 47—53.
  9. 1 2 История математики, т. I, 1970, с. 111—114.
  10. Исчерпывания метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 2.
  11. История математики, т. I, 1970, с. 101—105.
  12. Boyer & Merzbach, 2010, p. 127—128.
  13. 1 2 История математики, т. I, 1970, с. 117—124.
  14. История математики, т. I, 1970, с. 197—198.
  15. Boyer & Merzbach, 2010, p. 172, 219.
  16. История математики, т. II, 1970, с. 131—135.
  17. История математики, т. II, 1970, с. 166—171.
  18. История математики, т. II, 1970, с. 174—181.
  19. В. Н. Дубровский, В поисках определения площади поверхности Архивная копия от 27 июня 2017 на Wayback Machine. Квант. 1978. № 5. С.31—34.
  20. В. Н. Дубровский, Площадь поверхности по Минковскому Архивная копия от 15 февраля 2017 на Wayback Machine. Квант. 1979. № 4. С.33—35.

Литература[править | править код]

  • Энциклопедия элементарной математики. Книга пятая. Геометрия / под редакцией П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М.: Наука, 1966. — 624 с.
  • Рашевский П. К. Риманова геометрия и тензорный анализ. Изд. 3-е, М.: Наука, 1967.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — М.: ФИЗМАТЛИТ, 1960. — Т. 2. — 680 с. — ISBN 5-9221-0155-2.
  • История математики: в 3 т / под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. I: С древнейших времён до начала Нового времени.
  • История математики: в 3 т / под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. II: Математика XVII столетия.
  • Boyer C. B., Merzbach U. C. A History of Mathematics. — John Wiley & Sons, 2010. — 640 p. Архивная копия от 9 июля 2019 на Wayback Machine (англ.)

Добавить комментарий