Загрузить PDF
Загрузить PDF
Некоторые учащиеся не понимают, как найти площадь круга по исходным данным. Для начала нужно запомнить формулу, по которой вычисляется площадь круга: . Формула проста: чтобы найти площадь круга, нужно знать только его радиус. Но нужно уметь преобразовывать другие исходные величины, чтобы воспользоваться этой формулой.
-
1
Найдите радиус круга. Радиус – это отрезок, соединяющий центр круга с любой точкой внешней окружности круга. Радиус можно измерить в любом направлении: он будет одним и тем же. Радиус также равен половине диаметра круга. Диаметр – это отрезок, который проходит через центр круга и соединяет две точки внешней окружности круга.[1]
- Как правило, значение радиуса дано в условиях задачи. Довольно трудно найти точный центр круга, если только он не обозначен на круге, который нарисован на бумаге.
- Например, радиус круга равен 6 см.
-
2
Возведите радиус в квадрат. Формула для вычисления площади круга: , где – радиус, который возведен во вторую степень (в квадрат).[2]
-
3
Полученный результат умножьте на число Пи. Это число обозначается греческой буквой и представляет собой математическую константу, которая характеризует взаимосвязь радиуса и площади круга. Число Пи приблизительно равно 3,14. Точное значение числа Пи включает бесконечное количество цифр. Иногда ответ (площадь круга) записывается с постоянной .[3]
- В нашем примере (r = 6 см) площадь вычисляется так:
-
4
Запишите ответ. Помните, что площадь измеряется в квадратных единицах. Если радиус дан в сантиметрах, площадь измеряется в квадратных сантиметрах. Если радиус дан в миллиметрах, площадь измеряется в квадратных миллиметрах. Уточните у преподавателя, нужно ли представить ответ с постоянной или в числовой форме, используя приблизительное значение числа Пи. Если требование не ясно, запишите оба варианта ответа.[4]
- В нашем примере (r = 6 см) S = 36 см2 или S = 113,04 см2.
Реклама
-
1
Измерьте или запишите диаметр. В некоторых задачах радиус не дан. Вместо радиуса указывается диаметр. Если диаметр нарисован на бумаге, измерьте его с помощью линейки. Скорее всего, числовое значение диаметра будет задано.
- Например, диаметр круга равен 20 мм.
-
2
Разделите диаметр пополам. Помните, что диаметр равен удвоенному радиусу. Поэтому разделите любое значение диаметра на 2, чтобы найти радиус.
- Таким образом, если диаметр круга равен 20 мм, то радиус круга равен 20/2 = 10 мм.
-
3
-
4
Запишите ответ. Помните, что площадь измеряется в квадратных единицах. В нашем примере диаметр дан в миллиметрах, поэтому радиус тоже измеряется в миллиметрах, а площадь в квадратных миллиметрах. В нашем примере S = мм2.
- Также ответ можно представить в численной форме, используя вместо приблизительное значение 3,14. В этом случае S = (100)(3,14) = 314 мм2.
Реклама
-
1
Запишите преобразованную формулу. Если известна длина окружности круга, можно воспользоваться преобразованной формулой для вычисления его площади. Такая формула включает длину окружности, а не радиус, и записывается так:
-
2
Измерьте или запишите длину окружности. В некоторых ситуациях нельзя точно измерить диаметр или радиус. Если диаметр не нарисован или центр не отмечен, очень сложно найти точный центр круга. Длину окружности некоторых предметов (например, сковороды) довольно легко измерить с помощью рулетки, то есть можно найти более точное значение длины окружности, чем диаметра.[5]
- Например, длина окружности круга (или круглого предмета) равна 42 см.
-
3
-
4
Запишите формулу для вычисления площади круга. Запишите преобразованную формулу на основе соотношения между длиной окружности и радиусом. Подставьте последнее равенство в стандартную формулу для вычисления площади круга:[7]
-
5
Воспользуйтесь преобразованной формулой, чтобы решить задачу. Теперь в формуле вместо радиуса присутствует длина окружности, поэтому можно вычислить площадь круга по известной длине окружности. Подставьте значение длины окружности и выполните вычисления следующим образом:[8]
-
6
Запишите ответ. Если длина окружности дана в виде числа, а не произведения числа и , ответ можно записать с в знаменателе. Или вместо числа Пи подставьте его приблизительное значение (3,14).[9]
Реклама
-
1
Запишите известные величины. В некоторых задачах дана площадь сектора круга, по которой нужно найти площадь всего круга. Внимательно прочитайте такую задачу; ее условие может выглядеть так: «Площадь сектора круга равна 15 см2. Найдите площадь всего круга».[10]
-
2
Запомните определение сектора. Сектор круга – это часть круга, которая ограничена дугой и двумя радиусами. Пространство между такими радиусами и дугой называется сектором.[11]
-
3
Измерьте центральный угол сектора. Воспользуйтесь транспортиром, чтобы измерить угол между двумя радиусами. Линейку (прямолинейную шкалу) совместите с одним из радиусов, причем центр линейки должен совпадать с центром круга. Затем найдите величину угла; для этого посмотрите на точку пересечения второго радиуса с угломерной шкалой.[12]
- Не перепутайте внутренний и внешний угол между двумя радиусами. В задаче должно быть указано, с каким углом работать. Помните, что сумма внутреннего и внешнего углов равна 360 градусов.
- Во многих задачах центральный угол дан, то есть измерять его не нужно. Например, в задаче может быть сказано: «Центральный угол сектора равен 45 градусов»; если это не так, измерьте центральный угол.
-
4
Используйте преобразованную формулу для вычисления площади круга. Если известны площадь сектора и его центральный угол, используйте следующую преобразованную формулу, чтобы найти площадь круга: [13]
-
5
-
6
Запишите ответ. В нашем примере сектор составлял одну восьмую полного круга. Поэтому площадь полного круга равна 120 см2. Так как площадь сектора дана с постоянной , скорее всего, ответ тоже можно представить с этой постоянной.[15]
- Чтобы записать ответ в численной форме, умножьте 120 x 3,14 = 376,8 см2.
Реклама
Об этой статье
Эту страницу просматривали 265 096 раз.
Была ли эта статья полезной?
Математика
6 класс
Урок № 76
Длина окружности. Площадь круга
Перечень рассматриваемых вопросов:
- окружность, круг и их элементы: радиус, диаметр, хорда;
- понятие длины окружности, площади круга;
- задачи на вычисление длины окружности и площади круга.
Тезаурус
Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.
Круг – это часть плоскости, ограниченная окружностью.
Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.
Хорда – это отрезок, соединяющий две точки окружности.
Диаметр – это хорда, проходящая через центр окружности.
Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.
Обязательная литература:
- Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
Дополнительная литература:
- Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.
Теоретический материал для самостоятельного изучения
Окружность
Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.
Элементы окружности: центр, радиус, диаметр.
Отрезок, соединяющий две точки окружности, называется хордой.
Диаметр – это хорда, проходящая через центр окружности.
Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)
Как измерить дину окружности?
Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).
Можно прокатить кольцо по ровной поверхности, сделав полный оборот.
Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?
Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).
Результаты измерений можно записать в таблицу в тетради.
Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.
Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.
π = 3,141592653589793238…
При решении обычных задач используют приближенное значение
π ≈ 3,14
иногда используют π ≈ 3
Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:
Следовательно, справедливы формулы:
С = πd или С = 2πR
Круг – это часть плоскости, ограниченная окружностью.
С помощью числа π вычисляют площадь круга.
S = πR2
Разбор заданий тренировочного модуля
Тип 1. Ввод с клавиатуры пропущенных элементов в тексте
Впишите верный ответ.
Радиус круга равен 5 см. Найдите длину окружности С, площадь круга S.
Решение
С = 2πR = 2 ∙ 3,14 ∙ 5 = 31,4 (см).
S = πR2 = 3,14 ∙ 52 = 3,14 ∙ 25 = 78,5 (см2).
Ответ: 31,4 см; 78,5 см.
Тип 2. Множественный выбор
Вычислите площади заштрихованных фигур (размер 1 клетки равен 1 см2).
Варианты ответов
34,24 см2
84,78 см2
50,24 см2
113,04 см2
Фигура 1
Из круга вырезали квадрат.
Sкруга = πR2 = 3,14 ∙ 42 = 3,14 ∙ 16 = 50,24 (см2).
Sквадрата = а2 = 42 = 16 (см2).
Sзаштрих = 50,24 – 16 = 34,24 (см2).
Фигура 2
Из круга вырезали круг.
S1 = πR2 = 3,14 ∙ 62 = 3,14 ∙ 36 = 113,04 (см2).
S2 = πR2 = 3,14 ∙ 32 = 3,14 ∙ 9 = 28,26 (см2).
Sзаштрих = 113,04 – 28,26 = 84,78 (см2).
Выбираем ответы: 34,24 см2 и 84,78 см2.
Прежде чем определится, как рассчитать площадь круга,
необходимо хорошо
усвоить и понять в чём разница между окружностью и кругом. Что
называется окружностью, а что подразумевают под словом круг.
Важно!
Замкнутая кривая (линия),
чьи точки лежат на
одинаковом расстоянии от одной точки её центра, называется
окружностью.
Окружность разбивает плоскость на две области:
внутреннюю и внешнюю.
Важно!
Та часть плоскости, которая лежит
внутри окружности (вместе с самой окружностью)
называется кругом.
Другими словами, для простоты понимания, следует запомнить:
- окружность — это замкнутая линия (
граница круга). - круг — это внутренняя область окружности.
- У окружности нельзя посчитать площадь!
А у круга найти площадь,
зная формулу,
достаточно легко.
Как найти площадь круга
Запомните!
Для расчета площади круга используется формула:
- S = πR2,
где R — радиус круга, - S = π
()2 =
π
=π
, где
D — диаметр круга, т.к.
R =
Как решать задачи на площадь круга
Теперь, зная, по какой формуле считается площадь круга,
решим задачи на
площадь круга.
Зубарева 6 класс. Номер 675(г)
Условие задачи:
Найдите площадь круга, радиус которого равен 1,2 см.
Воспользуемся формулой площади круга:
S = πR2 =
3,14 · 1,22 = 3,14 · 1,44 = 4,5216 см2
Обратите внимание, что площадь измеряется в квадратных единицах.
Всегда проверяйте свои ответы, правильно ли вы указали единицы
измерения.
Зубарева 6 класс. Номер 677(б)
Условие задачи:
Определите радиус круга, площадь которого равна 1,1304 см2.
Выразим из формулы радиус:
S = πR2
R = √
S /
π
= √ 1,1304 /
3,14 = √ 0,36 =
0,6 см
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
Площадь круга
Круг – это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность.
Отрезок, который соединяет центр круга с точками его окружности, называется радиусом. В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром. Формула площади круга рассчитывается с помощью математической константы – числа π..
Это интересно: Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.
Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:
Существует формула площади круга через диаметр. Она также широко применяется для вычисления необходимых параметров. Данные формулы можно использовать для нахождения площади треугольника по площади описанной окружности.
Знания стандартных формул расчета площади круга помогут в дальнейшем легко определять площадь секторов и легко находить недостающие величины.
Мы уже знаем, что формула площади круга рассчитывается через произведение постоянной величины π на квадрат радиуса окружности. Радиус можно выразить через длину окружности и подставить выражение в формулу площади круга через длину окружности:
Теперь подставим это равенство в формулу расчета площади круга и получим формулу нахождения площади круга, через длину окружности
Площадь круга описанного вокруг квадрата
Очень легко можно найти площадь круга описанного вокруг квадрата.
Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда .
После того, как найдем диагональ – мы сможем рассчитать радиус: .
И после подставим все в основную формулу площади круга описанного вокруг квадрата:
Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.
Площадь круга: как найти, формулы
О чем эта статья:
площадь, 6 класс, 9 класс, ЕГЭ/ОГЭ
Определение основных понятий
Прежде чем погрузиться в последовательность расчетов и узнать, чему равна площадь круга, важно выяснить разницу между понятиями окружности и круга.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.
Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.
Если говорить простым языком, окружность — это замкнутая линия, как, например, кольцо и шина. Круг — плоская фигура, ограниченная окружностью, как монетка или крышка люка.
Формула вычисления площади круга
Давайте разберем несколько формул расчета площади круга. Поехали!
Площадь круга через радиус
S = π × r 2 , где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она приблизительно равна 3,14.
Площадь круга через диаметр
S = d 2 : 4 × π, где d — это диаметр.
Площадь круга через длину окружности
S = L 2 : (4 × π), где L — это длина окружности.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Задачи. Определить площадь круга
Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!
Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.
Диаметр окружности равен двум радиусам.
Используем формулу: S = π × d 2 : 4.
Подставим известные значения: S = 3,14 × 12 2 : 4.
Ответ: 113,04 см 2 .
Задание 2. Найти площадь круга, если известен диаметр, равный 90 мм.
Используем формулу: S = π × d 2 : 4.
Подставим известные значения: S = 3,14 × 90 2 : 4.
Ответ: 6358,5 мм 2 .
Задание 3. Найти длину окружности при радиусе 3 см.
Отношение длины окружности к диаметру является постоянным числом.
Получается: L = d × π.
Так как диаметр равен двум радиусам, то формула длины окружности примет вид: L = 2 × π × r.
Подставим значение радиуса: L = 2 × 3,14 × 3.
Ответ: 18,84 см 2 .
Формулы площади круга и расчет онлайн
Здесь вы можете рассчитать площадь круга по известным параметрам. Для вычисления достаточно знать радиус, диаметр круга или длину его окружности.
Окружность и круг — в чём отличие?
Часто понятия круг и окружность путают, хотя это разные вещи. Окружность — это замкнутая линия, а круг — это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко — это окружности, а монета или вкусный блин — это круги.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.
Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.
Окружность и круг
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/ploshad-kruga
http://mnogoformul.ru/formuly-ploshhadi-kruga-i-raschet-onlayn
[/spoiler]
{S = pi r^2}
Здесь вы можете рассчитать площадь круга по известным параметрам. Для вычисления достаточно знать радиус, диаметр круга или длину его окружности.
Содержание:
- калькулятор площади круга
- отличие окружности от круга
- формула площади круга через радиус
- формула площади круга через диаметр
- формула площади круга через длину окружности
- примеры задач
Окружность и круг – в чём отличие?
Часто понятия круг и окружность путают, хотя это разные вещи.
Окружность – это замкнутая линия, а круг – это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко – это окружности, а монета или вкусный блин – это круги.
Круг – бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.
Формула площади круга через радиус
S = pi r^2
r – радиус круга
Формула площади круга через диаметр
S = pi dfrac{d^2}{4}
d – диаметр круга
Формула площади круга через длину окружности
S = dfrac{L^2}{4pi}
L – длина окружности
Примеры задач на нахождение площади круга
Задача 1
Найдите площадь круга, радиус которого равен 4 см.
Решение
Для решения задачи воспользуемся формулой площади круга через радиус.
S = pi r^2 = pi cdot 4^2 = 16 pi : см^2 approx 50.26548 : см^2
Ответ: 16 pi : см^2 approx 50.26548 : см^2
Полученный ответ удобно проверить с помощью калькулятора .
Задача 2
Найдите площадь круга, радиус которого равен 7 см.
Решение
Задача похожа на предыдущую, поэтому решение будет выглядеть аналогично.
S = pi r^2 = pi cdot 7^2 = 49 pi : см^2 approx 153.93804 : см^2
Ответ: 49 pi : см^2 approx 153.93804 : см^2
Проверим ответ на калькуляторе .
Задача 3
Найдите площадь круга, радиус которого равен 9 см.
Решение
Еще одна типовая задача.
S = pi r^2 = pi cdot 9^2 = 81 pi : см^2 approx 254.469 : см^2
Ответ: 81 pi : см^2 approx 254.469 : см^2
Проверим ответ на калькуляторе .