Правильный треугольник как найти радиус описанной окружности

Радиус описанной окружности равностороннего треугольника


радиус описанной окружности равностороннего треугольника

сторона – сторона треугольника

высота – высота

радиус – радиус описанной окружности

Формула радиуса  описанной  окружности  равностороннего  треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Формула радиуса  описанной  окружности  равностороннего  треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Подробности

Автор: Administrator

Опубликовано: 09 сентября 2011

Обновлено: 13 августа 2021

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

  • Формулы вычисления радиуса описанной окружности

    • Произвольный треугольник

    • Прямоугольный треугольник

    • Равносторонний треугольник

  • Примеры задач

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Формула расчета радиуса описанной вокруг треугольника окружности

Треугольник abc с описанной вокруг окружностью с радиусом R

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Прямоугольный треугольник с описанной вокруг окружностью

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Формула расчета радиуса описанной около равностороннего треугольника окружности

Равносторонний треугольник c описанной вокруг окружностью

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Пример расчета площади треугольника по формуле Герона

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Пример расчета радиуса описанной вокруг треугольника окружности через его стороны и площадь

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Пример нахождения гипотенузы в прямоугольном треугольнике по Теореме Пифагора

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Окружность, описанная около правильного треугольника, обладает всеми свойствами описанной около произвольного треугольника окружности и, кроме того, имеет свои собственные свойства.

1) Центр описанной около треугольника окружности — точка пересечения серединных перпендикуляров к его сторонам.

Поскольку в равностороннем треугольнике медианы, высоты и биссектрисы совпадают, центр описанной около правильного треугольника окружности лежит в точке пересечения его медиан, высот и биссектрис.

okruzhnost-opisannaya-okolo-pravilnogo-treugolnikaНапример, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр описанной окружности.

AK, BF и CD — медианы, высоты и биссектрисы треугольника ABC.

    [AK cap BF = O,]

    [AK cap CD = O.]

2) Расстояние от центра описанной окружности до вершин треугольника равно радиусу. Так как центр описанной около равностороннего треугольника окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус описанной окружности составляет две трети от длины медианы:

    [BO = frac{2}{3}BF,]

    [R = frac{2}{3} cdot frac{{asqrt 3 }}{2} = frac{{asqrt 3 }}{3}.]

Таким образом, формула радиуса описанной около правильного треугольника окружности

    [R = frac{{asqrt 3 }}{3}]

И обратно, сторона равностороннего треугольника через радиус описанной окружности

    [a = frac{{3R}}{{sqrt 3 }} = Rsqrt 3 .]

3) Формула для нахождения площади правильного треугольника по его стороне —

    [S = frac{{{a^2}sqrt 3 }}{4}.]

Отсюда можем найти площадь через радиус описанной окружности:

    [ S = frac{{a^2 sqrt 3 }}{4} = frac{{(Rsqrt 3 )^2 cdot sqrt 3 }}{4} = frac{{R^2 cdot 3sqrt 3 }}{4}. ]

Таким образом, формула площади площади правильного треугольника через радиус описанной окружности

    [ S = frac{{3sqrt 3 cdot R^2 }}{4}. ]

4) Центр описанной около правильного треугольника окружности совпадает с центром вписанной в него окружности.

5) Радиус описанной около равностороннего треугольника окружности в два раза больше радиуса вписанной окружности:

    [left. begin{array}{l} BO = R,OF = r\ BO = frac{2}{3}BF,OF = frac{1}{3}BF end{array} right} Rightarrow R = 2r.]

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Радиус описанной окружности равностороннего треугольника

– сторона треугольника

– высота

– радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Калькулятор – вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

(1)

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

( small r=frac<large a> <large 2>cdot sqrt<frac<large 2a-a><large 2a+a>> ) ( small =frac<large a> <large 2>cdot sqrt<frac<large a><large 3a>> ) ( small =frac<large a><large 2 cdot sqrt<3>> )

( small r=frac<large a><large 2 cdot sqrt<3>> ) (2)

или, умножив числитель и знаменатель на ( small sqrt <3>):

( small r=frac<large sqrt<3>> <large 6 >cdot a ) (3)

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Ответ:

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

( small h^2+left( frac<large a> <large 2>right) ^2=a^2.)

( small h^2+ frac<large a^2> <large 4>=a^2; ; ) ( small frac<large 3><large 4>a^2 =h^2; ; ) ( small a^2=frac<large4h^2><large 3>.)

( small a= frac<large 2h><large sqrt<3>> .) (4)

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

( small r= large frac> ) (5)

Подставляя (4) в (5), получим:

( small r= large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 4h^2><large 3>+4h^2>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 16h^2><large 3>>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+frac<large 4h><large sqrt<3>>> ) ( small = large frac< 2h^2>< 6h>small =large frac<1> <3>small cdot h )

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

( small r = large frac<1> <3>small cdot h ) (6)

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Ответ:

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

( small S= 3cdot sqrt<3>r^2.)

( small r^2= large frac<3 cdot sqrt<3>> ) ( small = large frac <sqrt<3> cdot S > <9>)
( small r= large frac <sqrt[4]<3>> <3>small cdot sqrt ) (7)

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Ответ:

[spoiler title=”источники:”]

http://www-formula.ru/2011-09-22-04-51-34

http://matworld.ru/geometry/radius-vpisannoj-okruzhnosti-v-ravnostoronnij-treugolnik.php

[/spoiler]

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})

Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!

Итак, ещё раз:

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. (R=2cdot r)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка( O) – центр треугольника.

Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).

Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Поэтому (OB=2cdot OK), то есть (R=2cdot r).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Добавить комментарий