Правило 3 сигм как найти

Правило трех сигм

Содержание:

  • В чем заключается правило трех сигм (3-sigma rule) в статистике
  • Нормальное распределение случайной величины
  • Примеры решения задач

В чем заключается правило трех сигм (3-sigma rule) в статистике

Определение

Математическое ожидание — это среднее значение случайной величины. Обозначается как (mu).

Определение

Стандартное или среднеквадратичное отклонение — это наиболее частый показатель рассеивания значений величины относительно математического ожидания. Обозначается символом (sigma), который произносится как «сигма».

Определение

Правило трех сигм заключается в том, что при нормальном распределении практически все значения величины с вероятностью 0,9973 лежат не далее трех сигм в любую сторону от математического ожидания, то есть находятся в диапазоне (left[mu-3sigma;;mu+3sigmaright]).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Приблизительно 99,7% всех значений лежат в пределе трех сигм от математического ожидания, около 95% — в пределах двух сигм, а примерно 68% значений лежат в пределах всего одной сигмы.

Те значения, которые выходят за рамки 3 сигм, принято считать грубыми ошибками. Большое количество таких ошибок может свидетельствовать о том, что распределение на самом деле не является нормальным. В этом заключается практическая польза правила 3 сигм.

График

 

Нормальное распределение случайной величины

Определение

Нормальное распределение (распределение Гаусса) — это такое распределение вероятностей, функция плотности которого совпадает с функцией Гаусса.

(fleft(xright)=frac1{sigmasqrt{2pi}}expleft(-frac{left(x-muright)^2}{2sigma^2}right))

где (mu) — значение математического ожидания, (sigma) – величина среднеквадратического отклонения, (sigma^2) — дисперсия распределения.

Определение

Функция плотности — это функция, которая характеризует сравнительную вероятность реализации определенных значений случайной переменной или переменных.

Иными словами, функция плотности показывает, с какой вероятностью случайное значение будет равно заданному. Чем «выше» значение по оси ординат, тем больше вероятность, что случайное значение будет равно данному по оси абсцисс. Таким образом, на графике нормального распределения наиболее вероятно то значение, которое совпадает с точкой максимума. А те значения, которые находятся в «основании» графика, то есть находятся низко по оси Y, менее вероятны.

Нормальное распределение величины центрировано и нормировано.

График нормального распределения

 

График нормального распределения тесно связан с центральной предельной теоремой (ЦПТ). Согласно ЦПТ, сумма достаточно большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному.

Пример

Нормальное распределение не является абстрактным понятием. Ему соответствуют некоторые характеристики живых организмов в популяции, отклонение от мишени при стрельбе, измерения и их погрешности. Во всех этих случаях наиболее распространена группа близких значений, но есть отклонения как в большую, так и в меньшую сторону.

Примеры решения задач

Рассмотрим несколько простых задач на применение правила 3 сигм.

Задача 1

Имеется выборка жителей богатого дома. Средняя зарплата жильцов составляет 150 000 рублей, среднеквадратичное отклонение равно 20 000 рублей. Определите, жители с какой зарплатой вряд ли могут жить в этом доме: А) 205 000 рублей; Б) 95 000; В) 230 000; Г) 87 000.

Решение

Чтобы решить данную задачу, необходимо определить, каковы верхние и нижние границы возможных зарплат в доме. Для этого воспользуемся правилом 3 сигм.

(s_{нижн.}=mu-3sigma=150;000-3cdot20;000=150;000-60;000=90;000)

(s_{верх.}=mu+3sigma=150;000+3cdot20;000=150;000+60;000=210;000)

Значения А, Б входят в диапазон (left[90;000;;210;000right]). Значения В, Г не входят в него и, следовательно, являются искомыми грубыми ошибками.

Ответ: В, Г.

Задача 2

Завод выпускает партии по 100 цилиндрических деталей. Диаметр каждой детали — случайная величина, распределенная по нормальному закону. Математическое ожидание равно 65 мм, а среднее отклонение составляет 0,9 мм. Для упаковки партии используют коробки шириной 6600 мм. Детали кладут в один ряд. Если детали не поместятся в одну коробку, придется брать еще одну. Найдите вероятность, что понадобится только одна коробка.

Решение

Т. к. диаметр каждой детали распределен нормально, то и их общий диаметр также будет распределен нормально.

Чтобы все детали поместились в одну коробку, необходимо, чтобы отклонение диаметра всех деталей отклонялось от ожидаемого не более чем на 100 мм. Это следует из того, что математическое ожидание общего диаметра всех деталей равно (65cdot100=6500). А ширина коробки составляет 6600 мм.

Для расчета воспользуемся формулами дисперсии и правилом 3 сигм, чтобы вычислить вероятность, что понадобится только одна коробка.

(Pleft|X-M(X)right|<100;Rightarrow2Phileft[frac{100}{100sigma}right]=2Phileft[1,111right]=2cdot0,3665=0,733)

Ответ: 0,733

Нормальным называют распределение вероятностей непрерывной случайной величины

, плотность которого имеет вид:

где

 –
математическое ожидание,

 –
среднее квадратическое отклонение

.

Вероятность того, что

 примет
значение, принадлежащее интервалу

:

где  

 – функция Лапласа:

Вероятность того, что абсолютная
величина отклонения меньше положительного числа

:

В частности, при

 справедливо
равенство:

Асимметрия, эксцесс,
мода и медиана нормального распределения соответственно равны:

,  где

Правило трех сигм

Преобразуем формулу:

Положив

. В итоге получим

если

, и, следовательно,

, то

то есть вероятность того, что
отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонение, равна 0,9973.

Другими словами, вероятность того,
что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна
0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие
события исходя из принципа невозможности маловероятных
событий можно считать практически невозможными. В этом и состоит
сущность правила трех сигм: если случайная величина распределена нормально, то
абсолютная величина ее отклонения от математического ожидания не превосходит
утроенного среднего квадратического отклонения.

На практике правило трех сигм
применяют так: если распределение изучаемой случайной величины неизвестно, но
условие, указанное в приведенном правиле, выполняется, то есть основание
предполагать, что изучаемая величина распределена нормально; в противном случае
она не распределена нормально.

Смежные темы решебника:

  • Таблица значений функции Лапласа
  • Непрерывная случайная величина
  • Показательный закон распределения случайной величины
  • Равномерный закон распределения случайной величины

Пример 2

Ошибка
высотометра распределена нормально с математическим ожиданием 20 мм и средним
квадратичным отклонением 10 мм.

а) Найти
вероятность того, что отклонение ошибки от среднего ее значения не превзойдет 5
мм по абсолютной величине.

б) Какова
вероятность, что из 4 измерений два попадут в указанный интервал, а 2 – не
превысят 15 мм?

в)
Сформулируйте правило трех сигм для данной случайной величины и изобразите
схематично функции плотности вероятностей и распределения.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а) Вероятность того, что случайная величина, распределенная по
нормальному закону, отклонится от среднего не более чем на величину

:

В нашем
случае получаем:

б) Найдем
вероятность того, что отклонение ошибки от среднего значения не превзойдет 15
мм:

Пусть событие

 – ошибки 2
измерений не превзойдут 5 мм и ошибки 2 измерений не превзойдут 0,8664 мм

 – ошибка не
превзошла 5 мм;

 – ошибка не
превзошла 15 мм

в)
Для заданной нормальной величины получаем следующее правило трех сигм:

Ошибка высотометра будет лежать в интервале:

Функция плотности вероятностей:

График плотности распределения нормально распределенной случайной величины

Функция распределения:

График функции
распределения нормально распределенной случайной величины

Задача 1

Среднее
количество осадков за июнь 19 см. Среднеквадратическое отклонение количества
осадков 5 см. Предполагая, что количество осадков нормально-распределенная
случайная величина найти вероятность того, что будет не менее 13 см осадков.
Какой уровень превзойдет количество осадков с вероятностью 0,95?


Задача 2

Найти
закон распределения среднего арифметического девяти измерений нормальной
случайной величины с параметрами m=1.0 σ=3.0. Чему равна вероятность того, что
модуль разности между средним арифметическим и математическим ожиданием
превысит 0,5?

Указание:
воспользоваться таблицами нормального распределения (функции Лапласа).


Задача 3

Отклонение
напряжения в сети переменного тока описывается нормальным законом
распределения. Дисперсия составляет 20 В. Какова вероятность при изменении
выйти за пределы требуемых 10% (22 В).

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 4

Автомат
штампует детали. Контролируется длина детали Х, которая распределена нормально
с математическим ожиданием (проектная длинна), равная 50 мм. Фактическая длина
изготовленных деталей не менее 32 и не более 68 мм. Найти вероятность того, что
длина наудачу взятой детали: а) больше 55 мм; б) меньше 40 мм.


Задача 5

Случайная
величина X распределена нормально с математическим ожиданием a=10и средним
квадратическим отклонением  σ=5. Найти
интервал, симметричный относительно математического ожидания, в котором с
вероятностью 0,9973 попадает величина Х в результате испытания.


Задача 6

Заданы
математическое ожидание ax=19 и среднее квадратическое отклонение σ=4
нормально распределенной случайной величины X. Найти: 1) вероятность
того, что X примет значение, принадлежащее интервалу (α=15;
β=19); 2) вероятность того, что абсолютная величина отклонения значения
величины от математического ожидания окажется меньше δ=18.


Задача 7

Диаметр
выпускаемой детали – случайная величина, распределенная по нормальному закону с
математическим ожиданием и дисперсией, равными соответственно 10 см и 0,16 см2.
Найти вероятность того, что две взятые наудачу детали имеют отклонение от
математического ожидания по абсолютной величине не более 0,16 см.


Задача 8

Ошибка
прогноза температуры воздуха есть случайная величина с m=0,σ=2℃. Найти вероятность
того, что в течение недели ошибка прогноза трижды превысит по абсолютной
величине 4℃.


Задача 9

Непрерывная
случайная величина X распределена по нормальному 
закону: X∈N(a,σ).

а) Написать
плотность распределения вероятностей и функцию распределения.

б) Найти
вероятность того, что в результате испытания случайная величина примет значение
из интервала (α,β).

в) Определить
приближенно минимальное и максимальное значения случайной величины X.

г) Найти
интервал, симметричный относительно математического ожидания a, в котором с
вероятностью 0,98 будут заключены значения X.

a=5; σ=1.3; 
α=4; β=6


Задача 10

Производится измерение вала без
систематических ошибок. Случайные ошибки измерения X
подчинены нормальному закону с σx=10.  Найти вероятность того, что измерение будет
произведено с ошибкой, превышающей по абсолютной величине 15 мм.


Задача 11

Высота
стебля озимой пшеницы – случайная величина, распределенная по нормальному закону
с параметрами a = 75 см, σ = 1 см. Найти вероятность того, что высота стебля:
а) окажется от 72 до 80 см; б) отклонится от среднего не более чем на 0,5 см.


Задача 12

Деталь,
изготовленная автоматом, считается годной, если отклонение контролируемого
размера от номинала не превышает 10 мм. Точность изготовления деталей
характеризуется средним квадратическим отклонением, при данной технологии
равным 5 мм.

а)
Считая, что отклонение размера детали от номинала есть нормально распределенная
случайная величина, найти долю годных деталей, изготовляемых автоматом.

б) Какой
должна быть точность изготовления, чтобы процент годных деталей повысился до
98?

в)
Написать выражение для функции плотности вероятности и распределения случайной
величины.


Задача 13

Диаметр
детали, изготовленной цехом, является случайной величиной, распределенной по
нормальному закону. Дисперсия ее равна 0,0001 см, а математическое ожидание –
2,5 см. Найдите границы, симметричные относительно математического ожидания, в
которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали. Какова
вероятность того, что в серии из 1000 испытаний размер диаметра двух деталей
выйдет за найденные границы?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 14

Предприятие
производит детали, размер которых распределен по нормальному закону с
математическим ожиданием 20 см и стандартным отклонением 2 см. Деталь будет
забракована, если ее размер отклонится от среднего (математического ожидания)
более, чем на 2 стандартных отклонения. Наугад выбрали две детали. Какова вероятность
того, что хотя бы одна из них будет забракована?


Задача 15

Диаметры
деталей распределены по нормальному закону. Среднее значение диаметра равно d=14 мм
, среднее квадратическое
отклонение σ=2 мм
. Найти вероятность того,
что диаметр наудачу взятой детали будет больше α=15 мм и не меньше β=19 мм; вероятность того, что диаметр детали
отклонится от стандартной длины не более, чем на Δ=1,5 мм.


Задача 16

В
электропечи установлена термопара, показывающая температуру с некоторой
ошибкой, распределенной по нормальному закону с нулевым математическим
ожиданием и средним квадратическим отклонением σ=10℃. В момент когда термопара
покажет температуру не ниже 600℃, печь автоматически отключается. Найти
вероятность того, что печь отключается при температуре не превышающей 540℃ (то
есть ошибка будет не меньше 30℃).


Задача 17

Длина
детали представляет собой нормальную случайную величину с математическим
ожиданием 40 мм и среднеквадратическим отклонением 3 мм. Найти:

а)
Вероятность того, что длина взятой наугад детали будет больше 34 мм и меньше 43
мм;

б)
Вероятность того, что длина взятой наугад детали отклонится от ее
математического ожидания не более, чем на 1,5 мм.


Задача 18

Случайное
отклонение размера детали от номинала распределены нормально. Математическое
ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно
0,25 мм, стандартами считаются детали, размер которых заключен между 199,5 мм и
200,5 мм. Из-за нарушения технологии точность изготовления деталей уменьшилась
и характеризуется средним квадратическим отклонением 0,4 мм. На сколько
повысился процент бракованных деталей?


Задача 19

Случайная
величина X~N(1,22). Найти P{2

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 20

Заряд пороха для охотничьего ружья
должен составлять 2,3 г. Заряд отвешивается на весах, имеющих ошибку
взвешивания, распределенную по нормальному закону со средним квадратическим
отклонением, равным 0,2 г. Определить вероятность повреждения ружья, если максимально
допустимый вес заряда составляет 2,8 г.


Задача 21

Заряд
охотничьего пороха отвешивается на весах, имеющих среднеквадратическую ошибку
взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить
вероятность повреждения ружья, если максимально допустимый вес порохового
заряда 2,5 г.


Задача 21

Найти
вероятность попадания снарядов в интервал (α1=10.7; α2=11.2).
Если случайная величина X распределена по
нормальному закону с параметрами m=11; 
σ=0.2.


Задача 22

Плотность
вероятности распределения случайной величины имеет вид

Найти
вероятность того, что из 3 независимых случайных величин, распределенных по
данному закону, 3 окажутся на интервале (-∞;5).


Задача 23

Непрерывная
случайная величина имеет нормальное распределение. Её математическое ожидание
равно 12, среднее квадратичное отклонение равно 2. Найти вероятность того, что
в результате испытания случайная величина примет значение в интервале (8,14)


Задача 24

Вероятность
попадания нормально распределенной случайной величины с математическим
ожиданием m=4 в интервал (3;5) равна 0,6. Найти дисперсию данной случайной
величины.


Задача 25

В
нормально распределенной совокупности 17% значений случайной величины X
 меньше 13% и 47% значений случайной величины X
больше 19%. Найти параметры этой совокупности.


Задача 26

Студенты
мужского пола образовательного учреждения были обследованы на предмет
физических характеристик и обнаружили, что средний рост составляет 182 см, со
стандартным отклонением 6 см. Предполагая нормальное распределение для роста,
найдите вероятность того, что конкретный студент-мужчина имеет рост более 185
см.

Правило трех сигм

На практике достаточно часто требуется
оценить вероятность того, что отклонение
нормально распределенной величины Х
по абсолютному значению не превышает
определенный размер, который обычно
принимается равным положительному
числу δ.

Другими словами, требуется найти
вероятность того, что осуществляется
неравенство |Х-а| < δ.

Это неравенство равносильно следующему:
δ < Х-а
< δ или
(а
δ
)< Х< (а+
δ).

Используя правило, что вероятность
попадания нормально распределенной
случайной величины в заданный интервал
равна разнице значений функции Лапласа
на границах этого интервала, т.е Р(α<
Х
< β)=
=Ф(
)
– Ф(
)=
2Ф,
получим:

Р(|Х-а| < δ)=
Р
((а
δ
)< Х< (а+
δ))=
Ф [
]
– Ф[
]=Ф(
)
– Ф(
)=2Ф(
)
.При
а=0, получим Р(|Х|)< δ)=2Ф(
)..
. . .(5.32).

Если положить, что δ=3σ,
получим Р(|Х-а|
<3σ)=2Ф(3)=2·0,49865=0,9973.

Таким образом, вероятность отклонения
истинного значения случайной величины
Х по абсолютному значению будет
меньше утроенного значения среднего
квадратического отклонения равна
0,9973. Это и есть правило трех сигм.

Формулируется оно следующим образом:

Если случайная величина распределена
нормально, то абсолютная величина ее
максимального отклонения от математического
ожидания не превосходит утроенного
среднего квадратического отклонения.

Это правило применимо и следующим
образом: если распределение случайной
величины неизвестно, но условие указанное
в правиле трех сигм соблюдается, то есть
основание предполагать, что изучаемая
случайная величина распределена
нормально, в противном случае – нет.

Контрольные вопросы

  1. Дифференциальная
    функция распределения результатов
    измерений и случайной погрешности,
    подчиняющаяся нормальному закону.
    Аналитическая зависимость, графический
    вид, начальный и центральные моменты.

  2. Интегральная функция, соответствующая
    нормальному закону распределения.

  3. Правило трех сигм.

5.5.2. Равномерный закон распределения.

Равномерным распределением называют
такое распределение случайной величины,
при котором она может принимать любое
значение в заданных пределах с одинаковой
вероятностью.

Дифференциальная функция равномерного
распределения случайной величины
(плотность вероятности) представлена
на рис. 5.11.

Рис. 5.11

Представленные на рис. 5.11 параметры «а»
и «в» определяют пределы изменения
случайной величины Х.

Область
определения плотности вероятности или
дифференциальной функции равномерного
распределения следующая:

 0, если - 
Ха

Рх = 


,
если аХ
в. . . . . (5.33).

 0, если в
X
+

Интегральная функция равномерного
закона распределения для а
Хв выглядит
следующим

образом:

F(X)=
,
при аХ
в. . . (5.34).

Числовые характеристики моментов
равномерного распределения случайной
погрешности

следующие:

М
=0
– математическое ожидание . . . . . .(5.35),

D
=

– дисперсия . . . . . . . . . . . . . . . . . .. . . .
.(5.36),


=

– среднее квадратичное отклонение. . . .
. .(5.37),

k=
=0
-коэффициент асимметрии . . . . . . . . (5.38),

Ех=
-3=-1,2
– эксцесс. . . . . . . . . . . . . . . . (5.39).

Практически предельное поле рассеивания
при равномерном распределении равно
(в-а), т.е. оно равно 2
.

Г

F(X)


рафик
интегральной функции равномерного
распределения представлен на рис. 3.25.

Рис. 5.12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Преподаватель который помогает студентам и школьникам в учёбе.

Правило «трех сигм» в теории вероятности – определение и вычисление с примерами решения

Правило «трех сигм»:

Пусть случайная величина X имеет закон распределения Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения

т.е. отклонения, большие Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения имеют вероятность 0,003. Во многих приложениях такой вероятностью можно пренебречь и считать, что при единичном наблюдении нормально распределенной случайной величины интервалом практически возможных значений является интервал Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Это утверждение обычно называют правилом «трех сигм». Заметим, что для любой случайной величины из неравенства Чебышева следует, что Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения

Поэтому правилом «трех сигм» иногда пользуются не печалясь о том, что случайная величина вовсе не имеет нормального закона распределения.

Замечание. Последние годы все чаще предпочитают брать не Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения а Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Тогда получается более «симпатичная» вероятностьПравило «трех сигм» в теории вероятности - определение и вычисление с примерами решения

(Величина 0,999 впечатляет больше, нежели 0,997!)

Пример:

Монета подброшена 100 раз. Герб выпал 30 раз. Можно ли считать, что монета было симметричной?

Решение. Подбрасывание монеты можно считать независимым опытом, число которых Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Число появлений события в большой серии опытов имеет примерно нормальный закон распределения с параметрами Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения и Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Если монета симметрична, то Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Тогда Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения и Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Поэтому для симметричной монеты практически возможными значениями числа выпадений герба являются значения от 35 до 65. Число 30 к ним не принадлежит.

Ответ. При симметричной монете такой результат практически невозможен.

Пример:

Некто утверждает, что он экстрасенс. Для проверки был проделан следующий опыт. Взято пять карточек с рисунками простейших геометрических фигур. Испытатель выбирает карточку наугад, а испытуемый, находясь в соседней комнате, пытается определить, руководствуясь сверхчувственным восприятием, какая карточка выбрана экспериментатором. Карточки перемешиваются. Затем опыт повторяется. Так проделали 100 раз. Оказалось, что в 28 случаях испытуемый правильно назвал карточку. Есть ли основания считать, что имело место сверхчувственное восприятие?

Решение. Естественно предположить, что 28 совпадений произошли случайно. Вероятность угадать нужную карточку равна 1/5. Угадывание каждой карточки можно считать независимым опытом. Так как опытов много (Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения), то число совпадений имеет близкий к нормальному закон распределения с параметрами Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения и Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решенияПравило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Тогда Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения и, согласно правилу «трех сигм», практически возможно угадать от Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения до Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения раз. Число 28 входит в интервал возможных значений при простом угадывании. Следовательно, полученные опытные данные не подтверждают сверхчувственного восприятия.

Замечание. Предположим, что экстрасенс все-таки настаивает на своем сверхчуственном восприятии. Серию опытов повторили. Совпадений оказалось 31. В этом случае всего опытов Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения Интервал практически возможных значений: (23;57). Общее число совпадений равно Правило «трех сигм» в теории вероятности - определение и вычисление с примерами решения

Такое число совпадений при простом угадывании практически невозможно. Это может послужить поводом для тщательной проверки условий эксперимента (подавляющее большинство так называемых экстрасенсов – откровенные жулики). Или следует настоять на лабораторном обследовании экстрасенса (от чего экстрасенсы всячески уклоняются, их стихия – работа на публику).

  • Производящие функции
  • Теоремы теории вероятностей
  • Основные законы распределения дискретных случайных величин
  • Непрерывные случайные величины
  • Функции случайных величин
  • Центральная предельная теорема
  • Ковариация в теории вероятности
  • Функциональные преобразования двухмерных случайных величин

Среднеквадрати́ческое отклонение (среднеквадрати́чное отклонение, стандартное отклонение[1]) — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания (аналога среднего арифметического с бесконечным числом исходов). Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.

В литературе обычно обозначают греческой буквой sigma (сигма). В статистике принято два обозначения: sigma  — для генеральной совокупности и {displaystyle sd} (с англ. standard deviation — стандартное отклонение) — для выборки.

Варианты определения[править | править код]

Обычно определяется как квадратный корень из дисперсии случайной величины: {displaystyle sigma ={sqrt {D[X]}}}. Измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

В частности, если x_{i} — i-й элемент выборки, n — объём выборки, {bar {x}} — среднее арифметическое выборки (выборочное среднее — оценка математического ожидания величины):

{displaystyle {bar {x}}={frac {1}{n}}sum _{i=1}^{n}x_{i}={frac {1}{n}}(x_{1}+ldots +x_{n})},

то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией[2]):

{displaystyle S={sqrt {{frac {1}{n}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}}.

Это в буквальном смысле среднее квадратическое разностей измеренных значений и среднего.

Оценка стандартного отклонения на основании несмещённой оценки дисперсии (подправленной выборочной дисперсии[2], в ГОСТ Р 8.736-2011 — «среднее квадратическое отклонение»):

{displaystyle S_{0}={sqrt {{frac {n}{n-1}}S^{2}}}={sqrt {{frac {1}{n-1}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Само по себе, однако, S_{0} не является несмещённой оценкой квадратного корня из дисперсии, то есть извлечение квадратного корня «портит» несмещённость.

Обе оценки являются состоятельными[2].

Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки[3]. Если оценка несмещённая (выборочное среднее — как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

Среднее значение выборки также является случайной величиной с оценкой среднеквадратичного отклонения[3][нет в источнике]:

{displaystyle S_{bar {x}}=S_{0}/{sqrt {n}}={sqrt {{frac {1}{n(n-1)}}sum _{i=1}^{n}left(x_{i}-{bar {x}}right)^{2}}}.}

Правило трёх сигм[править | править код]

Правило трёх сигм ({displaystyle 3sigma }) гласит: вероятность того, что любая случайная величина отклонится от своего среднего значения менее чем на {displaystyle 3sigma }:

{displaystyle P(|xi -Exi mid <3sigma )geqslant {frac {8}{9}}}.

Практически все значения нормально распределённой случайной величины лежат в интервале {displaystyle left(mu -3sigma ;mu +3sigma right)}, где {displaystyle mu =Exi } — математическое ожидание случайной величины. Более строго — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале.

Интерпретация[править | править код]

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, для у всех трёх числовых множеств: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8} средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение[править | править код]

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы[править | править код]

Среднее квадратическое отклонение доходности портфеля sigma ={sqrt {D[X]}} отождествляется с риском портфеля.

В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера, расчёта волатильности.

Оценка рисков и критика[править | править код]

Среднеквадратическое отклонение широко распространено в финансовой сфере в качестве критерия оценки инвестиционного риска. По мнению американского экономиста Нассима Талеба, этого делать не следует. Так, по теории около двух третей изменений должны укладываться в определённые рамки (среднеквадратические отклонения −1 и +1) и что колебания свыше семи стандартных отклонений практически невозможны. Однако в реальной жизни, по мнению Талеба, всё иначе — скачки отдельных показателей могут превышать 10, 20, а иногда и 30 стандартных отклонений. Талеб считает, что риск-менеджерам следует избегать использования средств и методов, связанных со стандартными отклонениями, таких как регрессионные модели, коэффициент детерминации (R-квадрат) и бета-факторы. Кроме того, по мнению Талеба, среднеквадратическое отклонение — слишком сложный для понимания метод. Он считает, что тот, кто пытается оценить риск с помощью единственного показателя, обречён на неудачу[4].

Климат[править | править код]

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт[править | править код]

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Пример[править | править код]

Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

Пусть оценки учеников класса следующие:

{displaystyle 2, 4, 4, 4, 5, 5, 7, 9}.

Тогда средняя оценка равна:

{displaystyle mu ={frac {2+4+4+4+5+5+7+9}{8}}=5}.

Вычислим квадраты отклонений оценок учеников от их средней оценки:

{displaystyle {begin{array}{lll}(2-5)^{2}=(-3)^{2}=9&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(5-5)^{2}=0^{2}=0\(4-5)^{2}=(-1)^{2}=1&&(7-5)^{2}=2^{2}=4\(4-5)^{2}=(-1)^{2}=1&&(9-5)^{2}=4^{2}=16\end{array}}}

Среднее арифметическое этих значений называется дисперсией:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{8}}=4}

Стандартное отклонение равно квадратному корню дисперсии:

{displaystyle sigma ={sqrt {4}}=2}

Эта формула справедлива только если эти восемь значений и являются генеральной совокупностью. Если бы эти данные были случайной выборкой из какой-то большой совокупности (например, оценки восьми случайно выбранных учеников большого города), то в знаменателе формулы для вычисления дисперсии вместо n = 8 нужно было бы поставить n − 1 = 7:

{displaystyle sigma ^{2}={frac {9+1+1+1+0+0+4+16}{7}}approx 4{,}57}

и стандартное отклонение равнялось бы:

{displaystyle sigma ={sqrt {4{,}57}}approx 2{,}14}

Этот результат называется стандартным отклонением на основании несмещённой оценки дисперсии. Деление на n − 1 вместо n даёт неискажённую оценку дисперсии для больших генеральных совокупностей.

Примечания[править | править код]

  1. Встречаются также различные синонимы: среднее квадратическое отклонение, стандартный разброс, стандартная неопределённость; термин «среднее квадратическое» означает «среднее степени 2»
  2. 1 2 3 Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. — М. : Издательство ЛКИ, 2010. — §2.2. Выборочные моменты: точная и асимптотическая теория. — ISBN 978-5-382-01013-7.
  3. 1 2 C. Patrignani et al. (Particle Data Group). 39. STATISTICS. — В: Review of Particle Physics // Chin. Phys. C. — 2016. — Vol. 40. — P. 100001. — doi:10.1088/1674-1137/40/10/100001.
  4. Талеб, Гольдштейн, Шпицнагель, 2022, с. 46.

Литература[править | править код]

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. — СПб.: Питер, 2003. — 688 с. — ISBN 5-272-00078-1..
  • Нассим Талеб, Дениэл Гольдштейн, Марк Шпицнагель. Шесть ошибок руководителей компаний при управлении рисками // Управление рисками (Серия «Harvard Business Review: 10 лучших статей») = On Managing Risk / Коллектив авторов. — М.: Альпина Паблишер, 2022. — С. 41—50. — 206 с. — ISBN 978-5-9614-8186-0.

Добавить комментарий