Загрузить PDF
Загрузить PDF
Диагональ — это отрезок, который соединяет две противолежащие вершины прямоугольника.[1]
В прямоугольнике две равные диагонали.[2]
Если известны стороны прямоугольника, диагональ можно найти по теореме Пифагора, потому что диагональ делит прямоугольник на два прямоугольных треугольника. Если стороны не даны, но известны другие величины, например, площадь и периметр или отношение сторон, можно найти стороны прямоугольника, а затем по теореме Пифагора вычислить диагональ.
-
1
-
2
-
3
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
4
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[5]
Вы найдете , то есть гипотенузу треугольника, а значит и диагональ прямоугольника.Реклама
-
1
Запишите формулу для вычисления площади прямоугольника. Формула: , где — площадь прямоугольника, — длина прямоугольника, — ширина прямоугольника.[6]
(На рисунке вместо S использовано обозначение А.) -
2
В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо .
- Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула запишется так: .
-
3
Перепишите формулу так, чтобы обособить . Для этого разделите обе стороны уравнения на . Затем полученное выражение нужно подставить в формулу для вычисления периметра.
-
4
Запишите формулу для вычисления периметра прямоугольника. Формула: , где — длина прямоугольника, — ширина прямоугольника.[7]
-
5
В формулу подставьте значение периметра прямоугольника. Это значение подставляется вместо .
- Например, если периметр прямоугольника равен 24 сантиметра, формула запишется так: .
-
6
Разделите обе стороны уравнения на 2. Вы получите сумму сторон прямоугольника, а именно .
-
7
В формулу подставьте выражение для вычисления . Это выражение, полученное при обособлении .
-
8
Избавьтесь от дроби. Для этого обе части уравнения умножьте на .
-
9
Приравняйте уравнение к 0. Для этого из обеих сторон уравнения вычтите член с переменной первого порядка.
-
10
Упорядочьте члены уравнения. Первым членом будет член с переменной второго порядка, затем член с переменной первого порядка, а затем свободный член. При этом не забудьте про знаки («плюс» и «минус»), которые стоят перед членами. Обратите внимание, что уравнение запишется в виде квадратного уравнения.
-
11
Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.
-
12
Найдите . Для этого приравняйте каждый множитель к нулю и вычислите . Вы получите два значения (это корни уравнения), которые в случае прямоугольника являются его длиной и шириной.
-
13
-
14
-
15
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
16
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[10]
Вы найдете , то есть гипотенузу треугольника, а значит, и диагональ прямоугольника.Реклама
-
1
-
2
-
3
В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо .
- Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула примет вид: .
-
4
В формулу подставьте выражение, характеризующее отношение сторон. В случае прямоугольника можно подставить выражение для вычисления или .
-
5
Запишите квадратное уравнение. Для этого раскройте скобки и приравняйте уравнение к нулю.
-
6
Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.
-
7
Найдите . Для этого приравняйте каждый множитель к нулю и вычислите . Вы получите два значения (так называемые корни уравнения).
-
8
Подставьте найденное значение ширины (или длины) в уравнение, характеризующее отношение сторон. Так можно найти другую сторону прямоугольника.
-
9
-
10
-
11
Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.
-
12
Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[16]
Вы найдете , то есть гипотенузу треугольника, а значит и диагональ прямоугольника.Реклама
Об этой статье
Эту страницу просматривали 555 940 раз.
Была ли эта статья полезной?
При решении задач по физико-математическим дисциплинам иногда необходимо найти диагонали прямоугольника. Формула в интернете не всегда является достоверной. Очень важно на начальных стадиях вычислений правильно идентифицировать фигуру, чтобы применить к ней нужные свойства и соотношения. Специалисты рекомендуют не приступать сразу к практике, а разобраться с теорией.
Оглавление:
- Общая информация
- Формулы и соотношения
- Пример расчета параметров
Общая информация
Прямоугольник — геометрическая плоская фигура, состоящая из четырех попарно параллельных сторон, между которыми образованы прямые углы. Ее можно перепутать с квадратом, имеющим похожие свойства и тождества. При решении задачи очень важно правильно найти фигуру, имеющую определенные признаки определения. Некоторые учащиеся путают последние со свойствами. Эти два термина отличаются между собой.
Методика идентификации
Признак — совокупность некоторых критериев, позволяющих правильно различать фигуры. Прямоугольник возможно идентифицировать по таким правилам:
- Неравенство сторон, являющихся смежными.
- Диагонали при пересечении не образуют угол в 90 градусов.
- Диагонали не являются биссектрисами углов больших треугольников, полученных при пересечении.
- Окружность можно только описать, а не вписать.
Если для искомой фигуры применим хотя бы один из признаков, то ее возможно классифицировать как прямоугольник.
После успешной идентификации необходимо перейти к рассмотрению свойств, которые рекомендовано специалистами использовать при расчетах параметров и доказательстве утверждений (тождеств и теорем).
Важные свойства
Свойства — набор или список утверждений и тождеств, используемых при вычислениях требуемых величин, а также для доказательства теорем, а именно:
- Все углы прямые, а их алгебраическая сумма равна 360.
- Несмежные стороны параллельны и равны.
- Точка пересечения диагоналей – центр симметрии и делит их на две части. Кроме того, средняя линия проходит через нее.
- Формула диагонали (m) прямоугольника через стороны p и t: m=(рp+tt]^1/2), т. е. квадратичное значение диагонали равно сумме сторон, каждая из которых умножена на эквивалентное значение.
- Подобность малого и большого треугольников, образованных диагоналями.
- Существует только описанная окружность, диаметр которой эквивалентен диагонали прямоугольника.
- При проведении диагонали образуются два равных треугольника, являющиеся прямоугольными.
Следует отметить, что вышеописанные свойства – это требуемый минимум, которого недостаточно для выполнения вычислений и доказательства других тождеств.
Формулы и соотношения
Чтобы ориентироваться в формулах, нужно ввести некоторые обозначения. К ним принадлежат следующие:
- Диагональ – m.
- Стороны – k и l.
- Периметр – P.
- Полупериметр – р.
- Площадь – S.
- Острый угол, который образуют две диагонали – Z, а тупой – Y.
- Диаметр – D.
После этого необходимо рассмотреть основные тождества. Их рекомендуется применять при вычислениях различных параметров фигуры.
К ним относятся такие выражения:
- Периметр: P=2S/к + (2/к)k 2 =2k+2(m 2 -k 2 )^(1/2))=2k+2(D 2 -k 2 )^(1/2)).
- Площадь: S=[Pк — 2к 2 ]/2=[Pl — 2l 2 ]/2=k[m 2 -k 2 ]=[sin(Z)/2]m^2 .
- Диагонали: m=[k 2 +l 2 ]^(1/2)=(1/k)(S 2 +k 4 )^(1/2).
Кроме того, найти диагональ прямоугольника возможно, используя формулу такого вида: m=((2k+2l) 2 -4(2k(k+l)+8k 2 )^(1/2) * 0,5. Величины «(2k+2l)» можно заменить периметром Р, когда он известен.
Следует отметить, что найти длину диагонали прямоугольника возможно при известном D. Соотношение имеет следующий вид: m=2R=D.
Пример расчета параметров
У прямоугольника известна диагональ (m=10) и периметр (Р=28). Необходимо узнать длину его сторон. Решать задачу нужно по такому алгоритму:
- Диагональ находится по следующему выражению: m^2=k^2+l^2.
- Формула для вычисления периметра: P=2(k+l).
- Составить систему уравнений для нахождения сторон: 100=k^2+l^2 и 28=2(k+l).
- Выразить из второго уравнения одну из сторон: k=14-l.
- Подставить в первое: (14-l)^2+l^2=100.
- Раскрыть скобки: 196-28l+l^2+l^2=2l^2-28l+196=100.
- Уравнение имеет такой вид: l^2-14l+48=0.
- Вычислить его корни: l1=6 и l2=8.
- Подставить в четвертый пункт и посчитать стороны: l=6 и к=8.
Следует отметить, что расчет корней производится подстановкой, при которой возникают дубли решений. Среди них требуется выбрать любых две пары. Исходя из девятого пункта, можно рассчитать значение площади, зная две стороны. Используя формулы, можно находить и другие параметры. Например, высчитать значение острого угла.
Таким образом, перед решением задач по геометрии математики рекомендуют правильно идентифицировать геометрическую фигуру при помощи признаков, а затем использовать какие-либо соотношения.
Диагональ прямоугольника делит его на два прямоугольных треугольника и является гипотенузой обеих. Чтобы найти длину, проще всего воспользоваться теоремой Пифагора, которая в нашем случае будет звучать так
Это будет основная формула, но так как не всегда в условии заданы значения сторон прямоугольника, на помощь придут другие:
И теперь на нескольких примерах решим наше задание
Пример 1
найдем длину диагонали прямоугольника, если известна его а)сторона и периметр б) сторона и площадь.
Для этого сначала найдем неизвестную сторону, затем значения обеих сторон подставим в главную формулу
Пример 2
найдем длину диагонали прямоугольника, если известны его периметр и площадь.
Для этого составим систему уравнений, решим ее и подставим значения сторон в основную формулу
Пример 3
нужно найти длину диагонали прямоугольника, если известны его а)площадь и угол между диагональю и стороной б)периметр и угол между диагональю и стороной.
Решение аналогично предыдущему примеру
Как видим, без теоремы Пифагора во всех этих случаях никак не обойтись.
Диагональ прямоугольника
Диагональ
Четырехугольник, противоположные стороны которого параллельны друг другу, а все углы прямые, называется прямоугольником. Отрезок, который соединяет две противоположные вершины прямоугольника, будет его диагональю d. В прямоугольнике обе диагонали равны. Если провести в прямоугольнике диагональ, то она поделит его на 2 одинаковых прямоугольных треугольника, у которых диагональ d будет гипотенузой, а стороны прямоугольника a, b — катетами. Если известны длины сторон прямоугольника, несложно определить его диагональ, используя теореме Пифагора. Согласно теоремы квадрат гипотенузы равен сумме квадратов катетов.
d2 = a2 + b2
Исходя из этого, гипотенуза равна корню квадратному из суммы квадратов катетов. Как было отмечено выше, гипотенуза является диагональю прямоугольника, соответственно она вычисляется по формуле:
Калькулятор для расчета диагонали прямоугольника зная стороны
Диагональ прямоугольника этот прямая проложенная из противоположных вершин прямоугольника.
Смотрите на рисунке что это:
Считается диагональ по правилам прямоугольного треугольника как корень суммы квадратов сторон.
Вроде бы всё элементарно. Верно?
Если лень вычислять квадратный корень, то для вас мы создали специальную программу – расчет диагонали прямоугольника.
Всё просто! В любом прямоугольнике есть две диагонали и их длина рассчитывается по правилам прямоугольного треугольника.