Пример как найти площадь закрашенной фигуры

В едином государственном экзамене по математике в части B есть задача, где нужно вычислить площадь закрашенной фигуры. Несмотря на свою простоту, в этой задаче часто допускают ошибки. В этой статье вы узнаете, как решить задачу части В, зная всего лишь одну формулу (площадь прямоугольного треугольника равна половине произведения катетов).

Пример 1

Простейшая задача ЕГЭ, которую многие не могут решить

Площадь красного квадрата = 6 х 6 = 36.

Площадь фигуры 1 = (6 х 1) / 2 = 3.

Площадь фигуры 2 = (4 х 1) / 2 = 2

Площадь фигуры 3 = 1 х 1 = 1

Площадь фигуры 4 = (3 х 1) / 2 = 1,5

Площадь фигуры 5 = (2 х 6) / 2 = 6

Площадь закрашенной фигуры = 36 – (3 + 2 + 1 + 1,5 + 6) = 36 – 13,5 = 22,5

Пример 2

Простейшая задача ЕГЭ, которую многие не могут решить

Площадь закрашенного треугольника в прямоугольнике 1 = (6 х 4) / 2 = 12

Площадь закрашенного треугольника в прямоугольнике 2 = (6 х 2) / 2 = 6

Площадь закрашенной фигуры = 12 + 6 = 18

Пример 3

Простейшая задача ЕГЭ, которую многие не могут решить

Площадь красного прямоугольника = (7 – 3) х (9 – 1) = 4 х 8 = 32

Площадь фигуры 1 = (7 – 3) х (3 -1) / 2 = 4 х 2 / 2 = 4

Площадь фигуры 3 = (7 – 3) х (9 – 5) / 2 = 4 х 4 / 2 = 8

Площадь закрашенной фигуры (фигуры 2) = 32 – 4 – 8 = 20

Пример 4

Простейшая задача ЕГЭ, которую многие не могут решить

Площадь закрашенной фигуры = (10 – 4) х (9 -1) = 6 х 8 = 48

Пример 5

Простейшая задача ЕГЭ, которую многие не могут решить

Диагональ большого квадрата = 16

Диагональ малого (внутреннего) квадрата = 8

Площадь большого квадрата = 1 / 2 * 16² = 1/2 * 256 = 128

Площадь малого квадрата = 1 / 2 * 8² = 1/2 * 64 = 32

Площадь закрашенной фигуры = 128 – 32 = 96

Если забыли как найти площадь квадрата, зная диагональ, то можно разложить эту фигуру на прямые треугольники и вычислить площадь, как в примерах выше.

Понравилась статья? Ставь лайк и подписывайся на Математику. Впереди много интересного.

Найди площадь закрашенных фигур:
Задание рисунок 1

reshalka.com

ГДЗ учебник по математике 2 класс Петерсон. Часть 2. Урок 39. Решение задач. Номер №5

Решение

Первая фигура.
1) 9 * 3 = 27

(

м

2

)

− площадь всей фигуры;
2) 7 * 1 = 7

(

м

2

)

− площадь не закрашенной части;
3) 277 = 20

(

м

2

)

− площадь закрашенной части.
Ответ: 20

м

2

 
Вторая фигура.
1) 2 * 2 = 4

(

д

м

2

)

− площадь закрашенного квадрата;
2) 5 * 3 = 15

(

д

м

2

)

− площадь закрашенного прямоугольника;
3) 4 + 15 = 19

(

д

м

2

)

− площадь закрашенной части.
Ответ: 19

д

м

2

Задача B5: площадь закрашенного сектора

В этом уроке мы разберем еще одну задачу B5 на площади секторов из ЕГЭ по математике, однако будьте очень внимательны: на первый взгляд все считается очень просто. Но в самом конце решения многие ученики допускают очень обидную ошибку. Сейчас вы поймете, о чем идет речь. Итак, задача:

Задача. Найдите площадь S закрашенного сектора, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см. В ответе укажите величину S /π.

Как решать такую задачу? В первую очередь, поскольку речь идет о площади сектора, нам нужно знать формулу площади круга:

где R — радиус круга. Следовательно, для решения нам потребуется найти этот самый радиус. В данной задаче все очень просто: проводим вертикальный радиус и считаем клеточки.

Отсюда сразу получаем, что радиус R = 4. Таким образом, площадь круга S равна:

Обратите внимание: нам очень повезло с радиусом. Потому что в настоящих задачах далеко не всегда верхняя точка окружности лежит в узлах координатной сетки. Однако где-то на окружности обязательно найдется точка с целочисленными координатами, которая точно будет лежать в узле сетки. Вот ее и надо использовать для вычисления радиуса. Давайте посмотрим, каким образом.

Для этого нам потребуется отдельная сетка. Отметим на ней центр окружности (точку O ) и некую гипотетическую точку A , которая должна лежать на нашей окружности. Допустим, это будет выглядеть следующим образом:

Тогда отрезок OA будет радиусом этой окружности. Как его найти? Достроим до прямоугольного треугольника наш отрезок. Если двигаться вдоль линий координатной сетки, мы получим прямоугольный треугольник OAC с прямым углом C . Разумеется, полученная таким образом точка C не будет лежать на окружности — она лежит где-то внутри. Но этого нам и не требуется. Главное, что мы легко можем найти катеты: OC = 4, AC = 2.

Тогда мы можем найти радиус R (он же — отрезок OA ) по теореме Пифагора:

R 2 = 4 2 + 2 2 = 16 + 4 = 20

И тогда получилось бы, что вместо 16π площадь всего круга равнялась бы 20π. В остальном решение было бы полностью аналогичным, поэтому возвращаемся к нашей исходной задаче. Мы только что нашли площадь круга, а нам надо найти площадь сектора. Давайте схематично перерисуем круг и разделим его на 8 равных частей, как пиццу (стандартная практика в задачах B5). Затем закрашиваем на получившемся рисунке те сектора, которые на исходном чертеже также были закрашены:

Получаем, что закрашенных кусочков было k = 6, а всего их изначально n = 8. Поскольку все части равные, мы можем найти площадь каждого маленького сектора, разделив общую площадь круга на 8:

А поскольку в закрашенном секторе таких кусочков k = 6, то искомая площадь будет равна

S = 6 · S sec = 6 · 2π = 12π

Но в задаче B5 от нас требуется найти не просто площадь сектора, а величину S /π. Поэтому выполняем последний шаг. Подставляем и получаем:

Это и есть ответ. Так в чем же главная ошибка учеников, которые решают подобные задачи? Дело в том, что многие начинают считать площадь меньшего из секторов, изображенных на рисунке. Однако этот сектор не закрашен. В результате при правильных по существу расчетах многие ученики получают неправильный ответ. Согласитесь, обидная ошибка?

Поэтому рекомендация следующая: внимательно читайте условие задачи B5! Если требуется найти площадь закрашенного сектора, то именно закрашенный сектор и нужно искать. Даже если на чертеже он занимает большую часть круга. А если требуется найти площадь незакрашенного сектора, то об этом обязательно будет указано в условии. Поэтому прежде чем записывать ответ, еще раз проверьте, что от вас требуется: закрашенный сектор или незакрашенный? И тогда дополнительный балл на ЕГЭ по математике вам гарантирован.:)

Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

В этой статье — основные типы заданий №5 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам

1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований:

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

Осталось умножить найденное значение синуса на

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

, где и — диагонали.

Получим:

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 – 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки

Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна

Площадь каждого из маленьких треугольников равна

Тогда площадь четырехугольника

9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 – 4 = 32.

Площадь круга, длина окружности, площадь части круга

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.

Значит, нам надо умножить площадь круга на . Получим:

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 – 9 = 7.

Задачи на координатной плоскости

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда

14. Найдите площадь четырехугольника, вершины которого имеют координаты

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

Круг на клетчатой бумаге

Рассмотрим задачи, в которых изображён круг на клетчатой бумаге и требуется по известной площади круга найти площадь заштрихованного сектора либо найти площадь круга по данному значению площади сектора.

Для решения обеих задач надо определить величину соответствующего ему центрального угла.

Градусная мера окружности — 360°. Зная центральный угол, найдем, какую часть площадь закрашенного сектора составляет от площади круга.

Самые простые задания этого вида — те, в которых центральный угол — прямой. 90° составляют четверть от 360°. Отсюда, для нахождения площади сектора площадь круга следует разделить на 4. И наоборот, для нахождения площади круга по известной площади сектора площадь сектора умножаем на 4.

Стороны прямого угла, чаще всего, либо проведены по клеточкам (одна сторона — горизонтально, другая — вертикально), либо делят каждую клеточку по диагонали (как диагональ квадрата).

Определить прямой угол можно даже с помощью листа бумаги (приложив его к центру круга).

1) На клетчатой бумаге изображён круг площадью 60.

Найти площадь заштрихованного сектора.

Так как центральный угол, соответствующий данному сектору, равен 90º, то

2) На клетчатой бумаге изображён круг.

Какова площадь круга, если площадь заштрихованного сектора равна 17?

Так как стороны угла делят каждую клеточку по диагонали, образуя с горизонтальной прямой, проходящей из вершины угла, углы по 45°, то центральный угол равен 90º.

Следовательно, площадь сектора составляет 1/4 от площади круга: Sкруга=Sсектора:(1/4)=17·4=68.

3) Найти площадь круга, если площадь заштрихованного сектора равна 21.

Площадь заштрихованного сектора составляет 3/4 площади круга.

Следовательно, чтобы найти площадь круга, надо площадь сектора разделить на 3/4:

4) Какова площадь круга если известно, что площадь закрашенного сектора равна 11?

Соответствующий центральный угол равен 45° (одно сторона угла проведена по горизонтали, другая делит каждую клеточку по диагонали (является диагональю квадрата).

Так как 45° составляет от 360° 1/8 часть, то

5) На клетчатой бумаге изображен круг площадью 96.

Найдите площадь заштрихованного сектора.

Центральный угол, соответствующий незакрашенной части, равен 45°, то есть составляет 1/8 площади круга.

Sзакрашенного сектора=Sнезакрашенного сектора-Sкруга=96-12=84.

А как определить на клетчатой бумаге центральные углы в 60° и 30°?

Можно рассуждать следующим образом.

Рассмотрим треугольник ABC.

Так как BH — его высота и медиана, то ABC — равнобедренный с основанием AO. Значит, AB=BO.

Но AO=BO (как радиусы).

Следовательно, AB=BO=AO, то есть треугольник ABC — равносторонний. Следовательно, все его углы равны по 60°, в частности, ∠AOB=60°.

6) Найти площадь заштрихованного сектора, если площадь круга равна 30.

Соответствующий центральный угол равен 60°. Значит, площадь сектора составляет 1/6 от площади круга и Sсектора=Sкруга:6=30:6=5.

7) Найти площадь круга, если площадь заштрихованного сектора равна 24.

Так как центральный угол заштрихованного сектора равен 30°, то площадь сектора составляет 1/12 часть от площади круга.

8) Найти площадь круга, изображенного на клетчатой бумаге, если площадь заштрихованного сектора равна 60.

Центральный угол, соответствующий незакрашенному сектору, равен 60°. Значит, площадь незакрашенной части составляет 1/6 площади круга.

Следовательно, на площадь закрашенной части приходится 5/6 круга:

В некоторых случаях центральный угол можно найти как сумму или разность других центральных углов.

9) Центральный угол равен 30+45=75°,

площадь заштрихованного сектора составляет

1/12+1/8=5/24 площади круга, то есть

10) Центральный угол равен 180-30=150°,

площадь заштрихованного сектора составляет 1/2-1/12=5/12 площади круга,

11) Центральный угол равен 60-45=15°,

площадь заштрихованного сектора составляет 1/24 площади круга

12) Центральный угол равен 15+90=105°

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-3-zadachi-na-kletchatoj-bumage-ili-koordinatnoj-ploskosti/

[/spoiler]

Конспект урока: Вычисление площадей с помощью интегралов

Интеграл


Вычисление площадей с помощью интегралов

План урока

  • Вычисление площади криволинейной трапеции
  • Вычисление площади фигуры, ограниченной графиками двух непрерывных функций

Цели урока

  • Уметь изображать на схематическом рисунке фигуру, ограниченную заданными линиями
  • Знать формулу для вычисления площади фигуры, ограниченной графиками двух непрерывных функций
  • Уметь вычислять площадь криволинейной трапеции

Разминка

  1. Что такое криволинейная трапеция?
  2. Как связана площадь криволинейной трапеции с определённым интегралом
  3. Запишите формулу Ньютона-Лейбница
  4. Вычислите ∫-13x3dx

Вычисление площади криволинейной трапеции

Как показывалось ранее, площадь криволинейной трапеции можно вычислить по формуле S=∫abf(x)dx. Рассмотрим пример вычисления площади криволинейной трапеции.


Вычислить площадь фигуры, ограниченной прямыми x=-π4, x=π4, осью Ox и графиком функции y=cos x.


Решение


Рис. 1.

Фигура, площадь которой надо найти, изображена на рисунке 1. Она представляет собой криволинейную трапецию. Поэтому воспользуемся формулой

S=∫abf(x)dx

S=∫-π4π4cos xdx=sin x-π4π4=sinπ4-sin -π4=22+22=2.

Ответ: 2.


Вычисление площади фигуры, ограниченной графиками двух непрерывных функций


Рис. 2.

С помощью интеграла можно вычислять площади не только криволинейных трапеций вида, представленного на рисунке 2, но и плоских фигур более сложного вида.


Рис. 3.

Рассмотрим фигуру, ограниченную прямыми x=a, x=b и графиками непрерывных функций y=f(x), y=g(x) такими, что на отрезке [a; b] выполняется условие g(x)≤f(x) (рис. 3а).

Выполним параллельный перенос данной фигуры на m единиц вверх 
(m>0) так, чтобы данная фигура оказалась расположенной в координатной плоскости выше оси абсцисс (рис. 3б).

Теперь эта фигура ограничена сверху и снизу графиками функций y=f(x)+m и y=g(x)+m соответственно. При этом обе функции непрерывны и неотрицательны на отрезке [a; b]. Найдём площадь этой фигуры:

S=SABCD=SaDCb-SaABb=∫ab(f(x)+m)dx-∫ab(g(x)+m)dx=

=∫ab((f(x)+m)-(g(x)+m))dx=∫ab(f(x)-g(x))dx.

Таким образом, получили следующее правило: площадь S фигуры, ограниченной прямыми x=a, x=b и графиками функций y=f(x), y=g(x), непрерывных на отрезке [a; b] и таких, что для всех x из отрезка [a; b] выполняется неравенство g(x)≤f(x), вычисляется по формуле

S=∫ab(f(x)-g(x))dx.


Вычислите площадь фигуры, ограниченной линиями x=-1, x=1, y=x3, y=-12x+2.


Решение


Рис. 4.

Построим данную фигуру (рис. 4).

Воспользуемся формулой                                                                                                                                                           

S=∫ab(f(x)-g(x))dx

S=∫-11-12x+2-x3dx=

=∫-11-x3-12x+2dx=-x44-x24+2x-11=

=-144-124+2·1–(-1)44-(-1)24+2·(-1)=

=-14-14+2+14+14+2=4.

Ответ: 4.


Вычислите площадь фигуры, ограниченной линиями y=x2+2x-3, y=-x2+2x+5.


Решение


Рис. 5.

Построим данную фигуру (рис. 5) и найдём точки пересечения графиков функции, решив уравнение

x2+2x-3=-x2+2x+5

2×2=8

x2=4

x1=-2; x2=2.

Воспользуемся формулой

S=∫ab(f(x)-g(x))dx

S=∫-22-x2+2x+5-x2+2x-3dx=∫-22-2×2+8dx=

=-2×33+8x-22=-2·233+8·2–2·(-2)33+8·(-2)=

=-163+16-163+16=643=2113.

Ответ: 2113.


1. Вычислите площадь фигуры, ограниченной прямыми x=-π2, x=π2 осью Ox и графиком функции y=1+12 cos x.

2. Вычислите площадь фигуры, ограниченной линиями x=-2, x=1, y=-x, y=3-x4.


Рис. 6.

3. Вычислите площадь фигуры, ограниченной линиями y=x2-4x+3, y=-x2+6x-5.

4. На рисунке 6 изображён график некоторой функции y = f(x). Функция F(x)=-x3-27×2-240x-8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Контрольные вопросы

  1. Запишите формулу площади криволинейной трапеции.
  2. Запишите формулу площади фигуры, ограниченной графиками двух непрерывных функций.

Предыдущий урок

Первообразная

Интеграл

Следующий урок

Статистическая вероятность

Статистика

10
Авг 2013

Категория: 07 Производная, ПО

07. Первообразная

2013-08-10
2022-09-11

Задача 1. На рисунке изображён график некоторой функции y=f(x)  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8)-F(2), где F(x)  — одна из первообразных функции f(x).

у

Решение: + показать



Задача 2. На рисунке изображён график некоторой функции  y=f(x). Функция F(x)=x^3+12x^2+51x-3 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

ed

Решение: + показать



Задача 3. На рисунке изображён график некоторой функции y=f(x). Функция F(x)=-frac{4}{9}x^3-frac{34}{3}x^2-frac{280}{3}x-frac{18}{5} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

u

Решение: + показать



Задача 4. На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции f(x), определённой на интервале (-2;4). Пользуясь рисунком, определите количество решений уравнения f(x)=0  на отрезке [-1;3].

r

Решение: + показать



колоЗагляните –> + показать


тест

Вы можете пройти тест «Первообразная»

Автор: egeMax |

комментариев 7

Добавить комментарий