Привет как найти площадь треугольника

Площадь треугольника. Онлайн-калькулятор

Онлайн-калькулятор для расчета площади треугольника поможет Вам найти площадь треугольника несколькими способами в зависимости от известных данных. Наш калькулятор не просто рассчитает площадь треугольника, но и покажет подробное решение, которое будет показано под калькулятором. Поэтому данный калькулятор удобно использовать не только для быстрых расчетов, но и для проверки своих вычислений. С помощью данного калькулятора вы сможете найти площадь треугольника по следующим формулам: через основание и высоту, через две стороны и угол, по трем сторонам (формула Герона), через радиус вписанной окружности, через радиус описанной окружности.

Расчет площади треугольника. Рисунок.

Выберите способ расчета площади:

Основание треугольника:

a =

Рассчитать

Треугольник – это геометрическая фигура, которая образована тремя отрезками. Эти отрезки называются сторонами треугольниками, а точки соединения отрезков – вершинами треугольника. В зависимости от соотношения сторон треугольники бывают нескольких видов: равнобедренный треугольник (две стороный треугольника равны между собой, эти стороны называются боковыми сторонами, а третья сторона называется основанием треугольника), равносторонний треугольник (у треугольника все три стороны равны), прямоугольный треугольник (один угол треугольника прямой).

Как найти площадь треугольника?

Найти площадь треугольника очень просто, достаточно воспользоваться нашим калькулятором или рассчитать самостоятельно, воспользовавшись формулой площади треугольника. В зависимости от того, какие данные известны, для расчета площади треугольника использует несколько способов:

1) через основание и высоту

Формула площади треугольника. Расчет площади по высоте и основанию.

a – основание треугольника,
h – высота треугольника.

2) через две стороны и угол

Формула площади треугольника. Расчет площади по двум сторонам и углу.

a, b – стороны треугольника,
α – угол между сторонами.

3) По трем сторонам. Формула Герона.

Формула площади треугольника. Расчет площади с помощью формулы Герона.

a, b, с – стороны треугольника,
p – полупериметр треугольника.

4) Через радиус вписанной окружности.

Формула площади треугольника. Расчет площади через радиус вписанной окружности.

a, b, с – стороны треугольника,
p – полупериметр треугольника,
r – радиус вписанной окружности.

5) Через радиус описанной окружности.

Формула площади треугольника. Расчет площади через радиус описанной окружности.

a, b, с – стороны треугольника,
R – радиус описанной окружности.

Вы всегда сможете проверить правильность расчета площади треугольника с помощью нашего калькулятора.

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона


Треугольник с тремя сторонами


Формула Герона для нахождения площади треугольника:

– полупериметр треугольника; a,b,c – стороны треугольника.


Через основание и высоту


Треугольник с основанием и высотой


Формула нахождения площади треугольника с помощью половины его основания и высоту:

a – основание треугольника; h – высота треугольника.


Через две стороны и угол


Треугольник с двумя сторонами и углом


Формула нахождения площади треугольника через две стороны и угол между ними:

a,b – стороны треугольника; α – угол между сторонами.


Через сторону и два прилежащих угла


Треугольник со стороной и двумя углами


Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<

a– сторона треугольника; α и β – прилежащие углы.


Площадь прямоугольного треугольника


Площадь прямоугольного треугольника


Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

a, b – катеты треугольника.


Площадь равнобедренного треугольника через стороны


Площадь равнобедренного треугольника


Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

a, b – стороны треугольника.


Площадь равнобедренного треугольника через основание и угол


Площадь равнобедренного треугольника


Формула нахождения площади равнобедренного треугольника через основание и угол:

a – основание равнобедренного треугольника; α – угол между сторонами.


Площадь равностороннего треугольника через стороны


Площадь равностороннего треугольника


Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

a – сторона равностороннего треугольника.


Площадь равностороннего треугольника через высоту


Площадь равностороннего треугольника


Формула нахождения площади равностороннего треугольника через высоту:

h – высота равностороннего треугольника.


Площадь равностороннего треугольника через радиус вписанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

r – радиус вписанной окружности равностороннего треугольника.


Площадь равностороннего треугольника через радиус описанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

r – радиус описанной окружности равностороннего треугольника.


Площадь треугольника через радиус описанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.


Площадь треугольника через радиус вписанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.

Всем привет, сегодня я покажу как выводятся 4-основные формулы для нахождения площади треугольника, для понимания следующего материала нужно знать теорему синусов, площадь прямоугольника.

*UDP доказательство формулы Герона в этой статье*

Для начала поймем один частный случай(если это понимаете, пролистывайте дальше).

Площадь прямоугольного треугольника.

У нас есть прямоугольный треугольник с катетами a,b, нужно найти его площадь.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Достраиваем до прямоугольника.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Площадь такого прямоугольника будет a * b, а значит площадь прямоугольного треугольника будет 1/2 * a * b(т.е. половинка от площади прямоугольника).

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Этот факт нам понадобится для доказательства первой формулы.

Площадь треугольника через основание и высоту.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Мы опустили высоту на основание a, замечаем что исходный треугольник разбился на два прямоугольный треугольника, значит посчитаем их площадь, но для начала назовём отрезки x, y , на которые высота делит основание a.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Найдем площадь 1,2 треугольника и сложим их(т.к он и состоит из этих площадей).

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

А теперь вот здесь выносим общий множитель за скобку.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

x + y – это и есть a, => получаем формулу половина основания на высоту.

Площадь через синус угла между сторонами.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Опустим высоту на основание b и назовём её x. Посмотрим на этот прямоугольный треугольник

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Нам нужно найти x, как это можно сделать если нам известен только угол альфа и гипотенуза a? Очевидно, расписать синус этого угла и выразить от туда x.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Ну и теперь используем ранее доказанную формулу “половина основания на высоту”.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Произведение всех сторон на 4 радиуса описанной окружности.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Чтобы доказать эту формулу, нужно знать теорему синусов. и помнить ранее доказанную формулу.

Выразим синус угла альфа из теоремы синусов.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Подставляем синус альфа в ранее доказанную формулу.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Вот и вся формула. Изи, не правда ли? Теперь чуть посложнее.

Площадь треугольника через полупериметр и радиус вписанной окружности.

У нас есть треугольник ABC со сторонами a,b,c , в него вписана окружность радиуса r с центром O, которая касается сторон в точках K, L, M.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Проведём радиус в точки касания и соединим вершины треугольника с центром окр.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Теперь считаем площадь вот этих трех выделенных треугольников

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Площадь AOC = 1/2 r * a, AOB = 1/2 r * b, COB = 1/2 r * c.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

значит площадь ABC = AOC + AOB + COB

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

1/2 * r выносим за скобки.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

(a + b + c )/ 2 это полупериметр p.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Вот и наша формула.

Как легко доказываются формулы площади треугольника? ЕГЭ, ОГЭ.

Если хотите узнать доказательство формулы Герона, заходите на эту статью.

Спасибо за внимание.

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Понятие площади

Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.

Свойство 1: Если геометрические фигуры равны, то значения их площадей также равны.

Свойство 2: Любая фигура может быть разбита на несколько фигур. Причем площадь первоначальной фигуры равняется сумме значений площадей всех составляющих её фигур.

Рассмотрим пример.

Пример 1

Найти площадь треугольника на рисунке ниже, если клетка имеет площадь, равную единице

Решение.

Очевидно, что одна из сторон треугольника является диагональю прямоугольника, у которого одна сторона имеет длину $5$ (так как $5$ клеток), а вторая $6$ (так как $6$ клеток). Следовательно, площадь этого треугольника будет равняться половине такого прямоугольника. Площадь прямоугольника равняется

$5cdot 6=30$

Тогда площадь треугольника равняется

$30:2=15$

Ответ: $15$.

Далее рассмотрим несколько методов для нахождения площадей треугольников, а именно с помощью высоты и основания, с помощью формулы Герона и площадь равностороннего треугольника.

Как найти площадь треугольника через высоту и основание

Теорема 1

Площадь треугольника можно найти как половину произведения длины стороны, на высоту, проведенную к этой стороне.

Математически это выглядит следующим образом

$S=frac{1}{2}αh$

где $a$ – длина стороны, $h$ – высота, проведенная к ней.

Доказательство.

Рассмотрим треугольник $ABC$, в котором $AC=α$. К этой стороне проведена высота $BH$, которая равняется $h$. Достроим его до квадрата $AXYC$ как на рисунке 2.

Площадь прямоугольника $AXBH$ равняется $hcdot AH$, а прямоугольника $HBYC$ равняется $hcdot HC$. Тогда

$S_ABH=frac{1}{2}hcdot AH$, $S_CBH=frac{1}{2}hcdot HC$

Следовательно, искомая площадь треугольника, по свойству 2, равняется

$S=S_ABH+S_CBH=frac{1}{2}hcdot AH+frac{1}{2}hcdot HC=frac{1}{2}hcdot (AH+HC)=frac{1}{2}αh$

Теорема доказана.

«Как найти площадь треугольника. Формулы треугольника» 👇

Пример 2

Найти площадь треугольника на рисунке ниже, если клетка имеет площадь, равную единице

Решение.

Основание этого треугольника равняется $9$ (так как $9$ составляет $9$ клеток). Высота также равняется $9$. Тогда, по теореме 1, получим

$S=frac{1}{2}cdot 9cdot 9=40,5$

Ответ: $40,5$.

Формула Герона

Теорема 2

Если нам даны три стороны треугольника $α$, $β$ и $γ$, то его площадь можно найти следующим образом

$S=sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

здесь $ρ$ означает полупериметр этого треугольника.

Доказательство.

Рассмотрим следующий рисунок:

По теореме Пифагора из треугольника $ABH$ получим

$h^2=γ^2-x^2$

Из треугольника $CBH$, по теореме Пифагора, имеем

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Из этих двух соотношений получаем равенство

$γ^2-x^2=α^2-β^2+2βx-x^2$

То есть

$x=frac{γ^2-α^2+β^2}{2β}$

Получим

$h^2=γ^2-(frac{γ^2-α^2+β^2}{2β})^2$

$h^2=frac{(α^2-(γ-β)^2 )((γ+β)^2-α^2)}{4β^2}$

$h^2=frac{(α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α)}{4β^2}$

Так как $ρ=frac{α+β+γ}{2}$, то $α+β+γ=2ρ$, значит

$h^2=frac{2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α)}{4β^2}$

$h^2=frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2 }$

$h=sqrt{frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2}}$

$h=frac{2}{β}sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

По теореме 1, получим

$S=frac{1}{2} βh=frac{β}{2}cdot frac{2}{β} sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}=sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

Теорема доказана.

Площадь равностороннего треугольника

Теорема 3

Площадь равностороннего треугольника определяется как произведение квадрата стороны с числом $frac{sqrt{3}}{4}$.

Математически это выглядит следующим образом

$S=frac{α^2sqrt{3}}{4}$

где $α$ – сторона треугольника.

Доказательство.

Пусть нам дан равносторонний треугольник, у которого сторона равняется $α$. Проведем высоту $h$ (рис. 5).

Высота равностороннего треугольника является также и медианой, значит, по теореме Пифагора

$h^2=α^2-frac{α^2}{4}$

$h^2=frac{3}{4} α^2$

$h=frac{αsqrt{3}}{2}$

Значит по теореме 1:

$S=frac{α^2sqrt{3}}{4}$

Теорема доказана.

Пример 3

Найти площадь равностороннего треугольника, если его сторона равняется $2$.

Решение.

Используя теорему 3, получим

$S=frac{4sqrt{3}}{4}=sqrt{3}$

Ответ: $sqrt{3}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий