1. Формула длины оснований прямоугольной трапеции через среднюю линию
a – нижнее основание
b – верхнее основание
m – средняя линия
Формулы длины оснований :
2. Формулы длины оснований через боковые стороны и угол при нижнем основании
a – нижнее основание
b – верхнее основание
c , d – боковые стороны
α – угол при нижнем основании
Формулы длины оснований :
3. Формулы длины оснований трапеции через диагонали и угол между ними
a – нижнее основание
b – верхнее основание
c – боковая сторона под прямым углом к основаниям
d1 , d2 – диагонали трапеции
α , β – углы между диагоналями
Формулы длины оснований :
4. Формулы длины оснований трапеции через площадь
a – нижнее основание
b – верхнее основание
c – боковая сторона под прямым углом к основаниям
h – высота трапеции
Формулы длины оснований :
Формулы площади произвольной трапеции
Формулы площади равнобедренной трапеции
Формула периметра трапеции
Все формулы по геометрии
- Подробности
-
Опубликовано: 15 октября 2013
-
Обновлено: 13 августа 2021
Что такое прямоугольная трапеция и какими свойствами она обладает?
Определение.
Прямоугольная трапеция — это трапеция, у которой одна боковая сторона перпендикулярна основаниям.
Рисунок прямоугольной трапеции
ABCD- прямоугольная трапеция,
AD ∥ BC — основания трапеции,
AB и CD — ее боковые стороны,
Свойства прямоугольной трапеции:
1) Высота прямоугольной трапеции равна ее меньшей боковой стороне.
AB — высота трапеции ABCD.
2) У прямоугольной трапеции два угла — прямые, один — острый и один — тупой.
∠A и ∠B — прямые, ∠D — острый, ∠C — тупой.
3) Высота, проведенная из вершины тупого угла, делит прямоугольную трапецию на прямоугольник и прямоугольный треугольник.
ABCD — прямоугольник (так как у него все углы — прямые). Следовательно, AF=BC, CF=AB.
FCD — прямоугольный треугольник. FD=AD-AF,
отсюда FD=AD-BC. Если AD=a, BC=b, CF=AB=h, то
и по теореме Пифагора
4) Квадрат меньшей диагонали прямоугольной трапеции равен сумме квадратов ее высоты и меньшего основания.
Треугольник ABC — прямоугольный.
По теореме Пифагора,
5) Квадрат большей диагонали прямоугольной трапеции равен сумме квадратов ее высоты и большего основания.
Треугольник ABD — прямоугольный.
По теореме Пифагора,
Задачи с трапецией не кажутся сложными в ряде фигур, которые изучены ранее. Как частный случай рассматривается прямоугольная трапеция. А при поиске ее площади иногда бывает удобнее разбить ее на две уже знакомые: прямоугольник и треугольник. Стоит только немного подумать, и решение обязательно найдется.
Определение прямоугольной трапеции и ее свойства
У произвольной трапеции основания параллельны, а боковые стороны могут иметь произвольное значение углов к ним. Если рассматривается прямоугольная трапеция, то в ней одна из сторон всегда перпендикулярна основаниям. То есть два угла в ней будут равны 90 градусам. Причем они всегда принадлежат смежным вершинам или, другими словами, одной боковой стороне.
Другие углы в прямоугольной трапеции − это всегда острый и тупой. Причем их сумма всегда будет равна 180 градусам.
Каждая диагональ образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, а другая − прямоугольный треугольник. Кстати, эта сторона всегда равна высоте трапеции.
Какие обозначения приняты в представленных формулах?
Все величины, используемые в разных выражениях, которые описывают трапецию, удобно сразу оговорить и представить в таблице:
Величина | Ее обозначение |
a | большее основание |
b | меньшее основание прямоугольной трапеции |
c, h | перпендикулярная к основаниям боковая сторона, высота |
d | наклонная боковая сторона |
α | острый угол |
β | тупой угол |
м | средняя линия трапеции |
д1 | меньшая диагональ |
д2 | большая диагональ |
Формулы, которые описывают элементы прямоугольной трапеции
Самая простая из них связывает высоту и меньшую боковую сторону:
c = h.
Еще несколько формул для этой стороны прямоугольной трапеции:
с = d *sinα;
c = (a – b) * tg α;
c = √ (d2 – (a – b)2).
Первая вытекает из прямоугольного треугольника. И говорит о том, что катет к гипотенузе дает синус противолежащего угла.
В том же треугольнике второй катет равен разности двух оснований. Поэтому справедливо утверждение, которое приравнивает тангенс угла к отношению катетов.
Из того же треугольника можно вывести формулу, основываясь на знании теоремы Пифагора. Это третье записанное выражение.
Можно записать формулы для другой боковой стороны. Их тоже три:
d = (a – b) /cosα;
d = c / sin α;
d = √ (c2 + (а – b)2).
Первые две опять получаются из соотношения сторон в том же прямоугольном треугольнике, а вторая выводится из теоремы Пифагора.
Какой формулой можно воспользоваться для расчета площади?
Той, что дана для произвольной трапеции. Только нужно учесть, что высотой является сторона, перпендикулярная к основаниям.
S = (a + b) * h / 2.
Эти величины не всегда даны явно. Поэтому чтобы вычислить площадь прямоугольной трапеции, потребуется выполнить некоторые математические выкладки.
Как быть, если нужно вычислить диагонали?
В этом случае нужно увидеть, что они образуют два прямоугольных треугольника. Значит, всегда можно воспользоваться теоремой Пифагора. Тогда первая диагональ будет выражаться так:
d1 = √ (с2 + b2)
или по-другому, заменив «с» на «h»:
d1 = √ (h2 + b2).
Аналогичным образом получаются формулы для второй диагонали:
d2 = √ (с2 + b2) или d2 = √ (h2 + а2).
Задача №1
Условие. Площадь прямоугольной трапеции известна и равна 120 дм2. Ее высота имеет длину 8 дм. Необходимо вычислить все стороны трапеции. Дополнительным условием является то, что одно основание меньше другого на 6 дм.
Решение. Поскольку дана прямоугольная трапеция, в которой известна высота, то сразу же можно сказать о том, что одна из сторон равна 8 дм, то есть меньшая боковая сторона.
Теперь можно сосчитать другую: d = √ (с2 + (а – b)2). Причем здесь сразу даны и сторона с, и разность оснований. Последнее равно 6 дм, это известно из условия. Тогда d будет равняться квадратному корню из (64 + 36), то есть из 100. Так найдена еще одна боковая сторона, равная 10 дм.
Сумму оснований можно найти из формулы для площади. Она будет равна удвоенному значению площади, разделенному на высоту. Если считать, то получается 240 / 8. Значит, сумма оснований — это 30 дм. С другой стороны, их разность равна 6 дм. Объединив эти уравнения, можно сосчитать оба основания:
а + b = 30 и а – b = 6.
Можно выразить а как (b + 6), подставить его в первое равенство. Тогда получится, что 2b будет равняться 24. Поэтому просто b окажется 12 дм.
Тогда последняя сторона а равна 18 дм.
Ответ. Стороны прямоугольной трапеции: а = 18 дм, b = 12 дм, с = 8 дм, d = 10 дм.
Задача №2
Условие. Дана прямоугольная трапеция. Ее большая боковая сторона равняется сумме оснований. Ее высота имеет длину 12 см. Построен прямоугольник, стороны которого равны основаниям трапеции. Необходимо вычислить площадь этого прямоугольника.
Решение. Начать нужно с искомого. Нужная площадь определится как произведение a и b. Обе эти величины не известны.
Потребуется использовать дополнительные равенства. Одно из них построено на утверждении из условия: d = а + b. Необходимо воспользоваться третьей формулой для этой стороны, которая дана выше. Получится: d2 = с2 + (a – b)2 или (a + b)2 = с2 + (a – b)2.
Необходимо сделать преобразования, подставив вместо с его значение из условия – 12. После раскрытия скобок и приведения подобных слагаемых получается, что 144 = 4 ab.
В начале решения шла речь о том, что а*b дает искомую площадь. Поэтому в последнем выражении можно заменить это произведение на S. Простой расчет даст значение площади. S = 36 см2.
Ответ. Искомая площадь 36 см2.
Задача №3
Условие. Площадь прямоугольной трапеции 150√3 см². Острый угол равняется 60 градусам. Такое же значение имеет угол между маленьким основанием и меньшей диагональю. Нужно вычислить меньшую диагональ.
Решение. Из свойства углов трапеции получается, что ее тупой угол равен 120º. Тогда диагональ делит его на равные, потому что одна его часть уже 60 градусов. Тогда и угол между этой диагональю и вторым основанием тоже 60 градусов. То есть треугольник, образованный большим основанием, наклонной боковой стороной и меньшей диагональю, является равносторонним. Таким образом, искомая диагональ будет равна а, как и боковая сторона d = а.
Теперь нужно рассмотреть прямоугольный треугольник. В нем третий угол равен 30 градусам. Значит катет, лежащий против него, равен половине гипотенузы. То есть меньшее основание трапеции равно половине искомой диагонали: b = a/2. Из него же нужно найти высоту, равную боковой стороне, перпендикулярной основаниям. Сторона с здесь катет. Из теоремы Пифагора:
с = (a/2) * √3.
Теперь осталось только подставить все величины в формулу площади:
150√3 = (a + a/2) * (a/2 * √3) / 2.
Решение этого уравнения дает корень 20
Ответ. Меньшая диагональ имеет длину 20 см.
Прямоугольная трапеция. Формулы, признаки и свойства прямоугольной трапеции
Определение.
Прямоугольная трапеция — это трапеция у котрой одна из боковых стороны перпендикулярна основам.
Рис.1 |
Признаки прямоугольной трапеции
Трапеция будет прямоугольной если выполняется одно из этих условий:
1. В тапеции есть два смежных прямых угла:
∠BAD = 90° и ∠ABC = 90°
2. Одна боковая сторона перпендикулярна основам:
AB ┴ BC, AB ┴ AD
Основные свойства прямоугольной трапеции
1. В трапеции есть два смежных прямых угла:
∠BAD = ∠ABC = 90°
2. Одна боковая сторона перпендикулярна основам:
AB ┴ BC ┴ AD
3. Высота равна меньшей боковой стороне:
h = AB
Стороны прямоугольной трапеции
Формулы длин сторон прямоугольной трапеции:
1. Формулы длины оснований через стороны и угол при нижнем основании:
a = b + d cos α = b + c ctg α = b + √d 2 – c2
b = a – d cos α = a – c ctg α = a – √d 2 – c2
2. Формулы длины оснований через стороны, диагонали и угол между ними:
a = | d1d2 | · sin γ – b = | d1d2 | · sin δ – b |
c | c |
b = | d1d2 | · sin γ – a = | d1d2 | · sin δ – a |
c | c |
3. Формулы длины оснований трапеции через площадь и другие стороны:
a = | 2S | – b b = | 2S | – a |
c | c |
4. Формула боковой стороны через другие стороны и угол при нижнем основании:
c = √d 2 – (a – b)2 = (a – b) tg α = d sin α
5. Формулы боковой стороны через основы, диагонали и угол между ними:
c = | d1d2 | · sin γ = | d1d2 | · sin δ |
a + b | a + b |
6. Формулы боковой стороны через площадь, основы и угол при нижнем основании:
d = | S | = | 2S |
m sin α | (a + b) sin α |
7. Формула боковой стороны через другие стороны, высоту и угол при нижнем основании:
d = | a – b | = | c | = | h | = √c2 + (a – b)2 |
cos α | sin α | sin α |
Средняя линия прямоугольной трапеции
Формулы длины средней линии прямоугольной трапеции:
1. Формулы средней линии через основание, высоту (она же равна стороне c ) и угол α при нижнем основании:
m = | a – h · | ctg α | = | b + h · | ctg α |
2 | 2 |
2. Формулы средней линии через основания и боковые стороны сторону:
m = | a – | √d 2 – c2 | = | b + | √d 2 – c2 |
2 | 2 |
В данной публикации мы рассмотрим определение и основные свойства прямоугольной трапеции.
Напомним, трапеция называется прямоугольной, если углы при одной из ее боковых сторон прямые, т.е. равняются 90°.
- Свойство 1
-
Свойство 2
- Свойство 3
- Свойство 4
Свойство 1
Два угла прямоугольной трапеции обязательно являются прямыми, принадлежат одной боковой стороне, а вершины данных углов – смежные.
Для рисунка выше:
- ∠BAD = ∠ABC = α = 90°
- ∠BAD и ∠ABC принадлежат боковой стороне AB
- Вершины A и B – смежные.
Свойство 2
Одна из боковых сторон прямоугольной трапеции перпендикулярна ее основаниям.
На рисунке выше: AB ⊥ AD и AB ⊥ BC.
Свойство 3
Высота прямоугольной трапеции (h) совпадает с меньшей боковой стороной (AB), перпендикулярной основаниям.
Свойство 4
Каждая из диагоналей прямоугольной трапеции делит ее на два треугольника, один из которых, также, является прямоугольным.
- Диагональ AC делит трапецию на треугольники ABC и ACD, причем ΔABC является прямоугольным с прямым углом в вершине B.
- Диагональ BD делит трапецию на ΔABD (прямоугольный) и ΔBCD.
Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.