Прямоугольник вписанный в круг как найти углы

Четырехугольники, вписанные в окружность. Теорема Птолемея

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Фигура Рисунок Свойство
Окружность, описанная около параллелограмма Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Окружность, описанная около параллелограмма
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Окружность, описанная около параллелограмма

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромба

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапеции

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоида

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Докажем, что справедливо равенство:

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Из равенства (1) найдем d:

Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:

Ответ:

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac<large d> <large 2>) (3)

Подставляя (3) в (2), получим:

( small R=frac<large sqrt> <large 2>) (4)

Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:

Ответ:

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:

Ответ:

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Из формулы (7) найдем ( small b ) и подставим в (6):

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Вычислим дискриминант квадратного уравнения (10):

Сторона прямоугольника вычисляется из следующих формул:

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac< P><2>>d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна , а периметр равен . Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим , в (11):

Подставляя значения и в первую формулу (12), получим:

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения и в формулу, получим:

Ответ: ,

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

[spoiler title=”источники:”]

http://matworld.ru/geometry/pryamougolnik.php

http://skysmart.ru/articles/mathematic/centralnye-i-vpisannye-ugly

[/spoiler]

Примеры вписанных четырёхугольников.

Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.

Все треугольники имеют описанные окружности, но не все четырёхугольники.
Примером четырёхугольника, который нельзя вписать в окружность, может служить ромб (если только он не является квадратом). Секция «Свойства» ниже даёт необходимые и достаточные условия, чтобы вокруг четырёхугольника можно было описать окружность.

Специальные случаи[править | править код]

Любые квадраты, прямоугольники, равнобедренные трапеции или антипараллелограммы можно вписать в окружность. Дельтоид можно вписать в том и только в том случае, когда у него два угла прямые. Бицентричный четырёхугольник[en] — это вписанный четырёхугольник, который также является и описанным, а внешне бицентричный четырёхугольник — это вписанный четырёхугольник, который является также
внешне описанным[en].

Свойства[править | править код]

  • Первый критерий вписанности четырёхугольника. Выпуклый невырожденный четырёхугольник является вписанным тогда и только тогда, когда четыре серединных перпендикуляра, проведённых к каждой из сторон, пересекаются в одной точке[1].
  • Второй критерий вписанности четырёхугольника. Выпуклый четырёхугольник {displaystyle displaystyle ABCD} является вписанным тогда и только тогда, когда противоположные углы в сумме дают 180°, то есть[2].
A+C=B+D=pi =180^{{circ }}.
  • Другой вариант первого критерия вписанности четырёхугольника. Теорема была Предложением 22 в книге 3 Евклида Начала[3]. Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.
  • Третий критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда любая пара его противоположных сторон антипараллельна.
  • Четвертый критерий вписанности четырёхугольника. Другой критерий для того, чтобы выпуклый четырёхугольник {displaystyle displaystyle ABCD} был вписанным, требует, чтобы угол между стороной и диагональю был равен углу между противоположной стороной и другой диагональю[4]. Например,
angle ACB=angle ADB.
  • Пятый критерий вписанности четырёхугольника. Неравенство Птолемея утверждает, что произведение длин двух диагоналей p и q четырёхугольника равно сумме произведений противоположных сторон, только если четырёхугольник вписан: [5]
displaystyle pq=ac+bd..
  • Шестой критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда любая пара его противоположных сторон антипараллельна.Если две прямые, из которых одна содержит отрезок AC, а другая — отрезок BD, пересекаются в точке E, то четыре точки A, B, C, D лежат на окружности тогда и только тогда, когда[6]
{displaystyle AEcdot EC=BEcdot ED.}

Точка пересечения E может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD, а во втором — вписанный четырёхугольник ABDC. Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка E делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах, поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

  • Седьмой критерий вписанности четырёхугольника. Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда [7]

tan {{frac  {A}{2}}}tan {{frac  {C}{2}}}=tan {{frac  {B}{2}}}tan {{frac  {D}{2}}}=1.

ABCD – циклический четырехугольник, в котором E – точка пересечения диагоналей, F – точка пересечения продолжений сторон AD и BC, G – точка пересечения продолжений сторон AB и CD.(см. рис.) {displaystyle displaystyle omega } – окружность девяти точек треугольника EFG. Точка T пересечения средних линий ABCD принадлежит окружности {displaystyle displaystyle omega }.

.

ABCD является циклическим четырехугольником. E – точка пересечения диагоналей, F – точка пересечения продолжений сторон BC и AD. omega – окружность, диаметр которой является отрезком EF. P и Q – точки Паскаля, сформированные с помощью окружности omega .

(1) {displaystyle displaystyle ABCD} является циклическим четырехугольником тогда и только тогда, когда точки {displaystyle displaystyle P} и {displaystyle displaystyle Q} коллинеарные с центром {displaystyle displaystyle O} окружности {displaystyle displaystyle omega }.[10] [11]

(2) {displaystyle displaystyle ABCD} является циклическим четырехугольником тогда и только тогда, когда точки {displaystyle displaystyle P} и {displaystyle displaystyle Q} являются серединами сторон {displaystyle displaystyle AB} и {displaystyle displaystyle CD}.[10][11] .

  • Замечание. Седьмой и восьмой критерии вписанности четырёхугольника очень похожи и рисунки у них очень похожи. Возможно, что это – один и тот же критерий вписанности четырёхугольника, взятый из разных первоисточников. На обоих рисунках {displaystyle displaystyle P} и {displaystyle displaystyle Q} – точки Паскаля. Есть и другие сходные точки. Хотя формально звучат оба критерия по-разному.
  • Десятый критерий вписанности четырёхугольника. Условие, при котором совмещение двух треугольников с одной равной стороной даёт четырёхугольник, вписанный в окружность[12]. Для того, чтобы два треугольника с тройками длин сторон соответственно (a, b, f) и (c, d, f) при их совмещении вдоль общей стороны с длиной, равной f, давали в итоге четырёхугольник, вписанный в окружность с последовательностью сторон (a, b, c, d), необходимо условие[13]:84
{displaystyle f^{2}={frac {(ac+bd)(ad+bc)}{(ab+cd)}}.}
  • Замечание. Последнее условие даёт выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырёх его сторон (a, b, c, d). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея.

Теорема Микеля-Штейнера для четырёхстронника

  • Одиннадцатый критерий вписанности четырёхугольника. Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля, вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF (см. рис. справа).

Площадь[править | править код]

Площадь S вписанного четырёхугольника со сторонами a, b, c, d задаётся формулой Брахмагупты[14]

S={sqrt  {(p-a)(p-b)(p-c)(p-d)}}

где p, полупериметр, равен {displaystyle p={tfrac {1}{2}}(a+b+c+d)}. Утверждение является следствием соотношения Бретшнайдера, поскольку противоположные углы в сумме дают 180°. Если же d= 0, вписанный четырёхугольник становится треугольником, и равенство превращается в формулу Герона.

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа[15].

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников[16], и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a, b, c и d сторона a может быть противоположной любой из сторон b, c или d. Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины[17].

Площадь вписанного четырёхугольника с последовательными сторонами a, b, c, d и углом B между сторонами a и b можно выразить формулой[5]

{displaystyle S={tfrac {1}{2}}(ab+cd)sin {B}}

или[18]

{displaystyle S={tfrac {1}{2}}(ac+bd)sin {theta }}

где θ — любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой [18]

{displaystyle S={tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})tan {A}.}

Ещё одна формула площади [19]

{displaystyle S=2R^{2}sin {A}sin {B}sin {theta }}

где R — радиус описанной окружности. Прямым следствием будет [20]

{displaystyle Sleq 2R^{2}},

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали[править | править код]

Во вписанном четырёхугольнике с вершинами A, B, C, D (в указанной последовательности) и сторонами a = AB, b = BC, c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны [21][22][17]

p={sqrt  {{frac  {(ac+bd)(ad+bc)}{ab+cd}}}}

и

q={sqrt  {{frac  {(ac+bd)(ab+cd)}{ad+bc}}}}

что даёт равенство Птолемея

pq=ac+bd.

Согласно второй теореме Птолемея[21][22],

{frac  {p}{q}}={frac  {ad+bc}{ab+cd}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство [23]

p+qgeq 2{sqrt  {ac+bd}}.

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим.

Более того[24],

(p+q)^{2}leq (a+c)^{2}+(b+d)^{2}.

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны.

Если M и N являются средними точками диагоналей AC и BD, то[25]

{frac  {MN}{EF}}={frac  {1}{2}}left|{frac  {AC}{BD}}-{frac  {BD}{AC}}right|

где E и F — точки пересечения противоположных сторон.

Если ABCD — вписанный четырёхугольник и AC пересекает BD в точке P, то [26]

{frac  {AP}{CP}}={frac  {AB}{CB}}cdot {frac  {AD}{CD}}.

Формулы углов[править | править код]

Для вписанного четырёхугольника со сторонами a, b, c, d, полупериметром p и углом A между сторонами a и d тригонометрические функции угла A равны[27]

cos A={frac  {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},
{displaystyle sin A={frac {2{sqrt {(p-a)(p-b)(p-c)(p-d)}}}{(ad+bc)}},}
{displaystyle tan {frac {A}{2}}={sqrt {frac {(p-a)(p-d)}{(p-b)(p-c)}}}.}

Для угла θ между диагоналями выполняется[18]

{displaystyle tan {frac {theta }{2}}={sqrt {frac {(p-b)(p-d)}{(p-a)(p-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом phi , то

{displaystyle cos {frac {phi }{2}}={sqrt {frac {(p-b)(p-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

где p — полупериметр[28]

Формула Парамешвары[править | править код]

Для вписанного четырёхугольника со сторонами a, b, c и d (в указанной последовательности) и полупериметром p радиус описанной окружности задаётся формулой[22][29]

{displaystyle R={dfrac {1}{4}}{sqrt {dfrac {(ab+cd)(ac+bd)(ad+bc)}{(p-a)(p-b)(p-c)(p-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешварой[en] в 15 веке.

Используя формулу Брахмагупты, формулу Парамешвары можно преобразовать в

{displaystyle 4SR={sqrt {(ab+cd)(ac+bd)(ad+bc)}}},

где S — площадь вписанного четырёхугольника.

Антицентр и коллинеарность[править | править код]

Четыре отрезка прямых, перпендикулярных одной стороне вписанного четырёхугольника и проходящих через середину противоположной стороны, пересекаются в одной точке[30][31]. Эта точка пересечения называется антицентром. Антицентр симметричен центру описанной окружности относительно “вершинного центроида”. Таким образом, во вписанном четырёхугольнике центр описанной окружности, “вершинный центроид” и антицентр лежат на одной прямой[31].

Если диагонали вписанного четырёхугольника пересекаются в точке P, а середины диагоналей — V и W, то антицентр четырёхугольника является ортоцентром треугольника VWP, а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей [31].

Во вписанном четырёхугольнике “центроид площади” Ga, “центроид вершин” Gv и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство[32]

PG_{a}={tfrac  {4}{3}}PG_{v}.

Другие свойства[править | править код]

  • Теорема Монжа об ортоцентре вписанного четырехугольника. 4 отрезка прямых (4 антимедатрисы), проведенных из середин 4 сторон вписанного четырехугольника перпендикулярно к противолежащим сторонам, пересекаются в ортоцентре Н этого четырехугольника.[33],[34]
  • Японская теорема о вписанном четырёхугольнике. Во вписанном четырёхугольнике ABCD центры вписанных окружностей треугольников ABC, BCD, CDA и DAB являются вершинами прямоугольника. Это одна из теорем, известных как японская теорема. Ортоцентры тех же четырёх треугольников являются вершинами четырёхугольника, равного ABCD. Центроиды этих четырёх треугольников являются вершинами другого вписанного четырёхугольника[4].
  • Следствие теоремы о вписанном угле. Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P — точка пересечения диагоналей AC и BD. Тогда угол APB является средним арифметическим углов AOB и COD. Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника[en].
  • Теорема о перпендикулярности внутренних биссектрис углов при вершинах E и F, образованных на пересечениях двух пар противоположных сторон вписанного четырёхугольника. Если противоположные стороны вписанного четырёхугольника продолжить до пересечения в точках E и F, то внутренние биссектрисы углов в E и F перпендикулярны[16].
  • Теорема о числовом четырехугольнике. Не существует вписанных четырёхугольников с рациональной площадью и неравными рациональными сторонами, образующими арифметическую, либо геометрическую прогрессию[36].
  • Теорема о числовом четырехугольнике. Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию, то четырёхугольник является также внешне описанным[en].

Четырёхугольники Брахмагупты[править | править код]

Четырёхугольник Брахмагупты[37] — это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью.
Все четырёхугольники Брахмагупты со сторонами a, b, c, d, диагоналями e, f, площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t, u и v):

a=[t(u+v)+(1-uv)][u+v-t(1-uv)]
b=(1+u^{2})(v-t)(1+tv)
c=t(1+u^{2})(1+v^{2})
d=(1+v^{2})(u-t)(1+tu)
e=u(1+t^{2})(1+v^{2})
f=v(1+t^{2})(1+u^{2})
{displaystyle S=uv[2t(1-uv)-(u+v)(1-t^{2})][2(u+v)t+(1-uv)(1-t^{2})]}
4R=(1+u^{2})(1+v^{2})(1+t^{2}).

Свойства ортодиагональных вписанных четырёхугольников[править | править код]

Площадь и радиус описанной окружности[править | править код]

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p1 и p2, а другую делит на отрезки длиной q1 и q2. Тогда[38] (первое равенство является Предложением 11 в книге Архимеда «Леммы»)

D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2},

где D — диаметр описанной окружности. Равенство выполняется ввиду того, что диагонали являются перпендикулярными хордами окружности. Отсюда следует, что радиус описанной окружности R удовлетворяет равенству

R={tfrac  {1}{2}}{sqrt  {p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}}}

или, через стороны четырёхугольника

R={tfrac  {1}{2}}{sqrt  {a^{2}+c^{2}}}={tfrac  {1}{2}}{sqrt  {b^{2}+d^{2}}}.

Отсюда также следует, что

a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.

Таким образом, согласно формуле Эйлера, радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R={sqrt  {{frac  {p^{2}+q^{2}+4x^{2}}{8}}}}.

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

{displaystyle S={tfrac {1}{2}}(ac+bd).}

Другие свойства[править | править код]

  • Во вписанном ортодиагональном четырёхугольнике антицентр совпадает с точкой пересечения диагоналей[39].
  • Теорема Брахмагупты утверждает, что во вписанном четырёхугольнике, являющемся также ортодиагональным, перпендикуляр от любой стороны через точку пересечения диагоналей делит противоположную сторону пополам[39].
  • Если вписанный четырёхугольник является также ортодиагональным, расстояние от центра описанной окружности до любой стороны равно половине длины противоположной стороны [39].
  • Во вписанном ортодиагональном четырёхугольнике расстояние между серединами диагоналей равно расстоянию между центром описанной окружности и точкой пересечения диагоналей [39].

См. также[править | править код]

  • Теорема о бабочке
  • Описанная окружность
  • Степень точки относительно окружности
  • Таблица хорд Птолемея[en]
  • Пятиугольник Роббинса
  • Внеописанный четырёхугольник
  • Четырёхугольник

Примечания[править | править код]

  1. Usiskin, 2008, с. 63–65, Глава 10. Cyclic quadrilaterals.
  2. Usiskin, 2008, с. 63–65.
  3. Joyce, 1997, с. Book 3, Proposition 22.
  4. 1 2 Andreescu, Enescu, 2004, с. 2.3 Cyclic quads.
  5. 1 2 Durell, Robson, 2003, с. 25.
  6. Bradley, 2007, с. 179.
  7. Hajja, 2008, с. 103–6.
  8. Fraivert, David. New points that belong to the nine-point circle (англ.) // The Mathematical Gazette  (англ.) (рус. : journal. — 2019. — July (vol. 103, no. 557). — P. 222—232. — doi:10.1017/mag.2019.53.
  9. Fraivert, David. New applications of method of complex numbers in the geometry of cyclic quadrilaterals (англ.) // International Journal of Geometry : journal. — 2018. — Vol. 7, no. 1. — P. 5—16. Архивировано 7 июня 2019 года.
  10. 1 2 3 Fraivert, David; Sigler, Avi & Stupel, Moshe (2020), Necessary and sufficient properties for a cyclic quadrilateral, International Journal of Mathematical Education in Science and Technology, <https://doi.org/10.1080/0020739X.2019.1683772> Архивная копия от 10 июня 2020 на Wayback Machine
  11. 1 2 Фрейверт, Д. М. (2019), Новая тема в евклидовой геометрии на плоскости: теория «точек Паскаля», формируемых с помощью окружности на сторонах четырехугольника, Математическое образование: современное состояние и перспективы : материалы Международной научной конференции, <http://libr.msu.by/handle/123456789/9675> Архивная копия от 10 ноября 2019 на Wayback Machine
  12. См. подраздел «Диагонали» статьи «Вписанный четырёхугольник»
  13. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ. Co., 2007
  14. Durell, Robson, 2003, с. 24.
  15. Peter, 2003, с. 315–6.
  16. 1 2 Coxeter, Greitzer, 1967, с. 57, 60.
  17. 1 2 Johnson, 2007, с. 84.
  18. 1 2 3 Durell, Robson, 2003, с. 26.
  19. Prasolov, 2006, с. 86, Задача 4.44.
  20. Alsina, Nelsen, 2009, с. 64.
  21. 1 2 Durell, Robson, 2003, с. 25,.
  22. 1 2 3 Alsina, Nelsen, 2007, с. 147–9.
  23. Crux, 2007, с. 123, # 2975.
  24. Crux, 2007, с. 64, #1639.
  25. ABCD is a Cyclic quadrilateral. Let M, N be midpoints of diagonals AC, BD respectively… (недоступная ссылка — история). Art of Problem Solving (2010).
  26. A. Bogomolny, An Identity in (Cyclic) Quadrilaterals, Interactive Mathematics Miscellany and Puzzles,
    [1] Архивная копия от 28 мая 2019 на Wayback Machine, Accessed 18 March 2014.
  27. Siddons, Hughes, 1929, с. 202.
  28. Durell, Robson, 2003, с. 31.
  29. Hoehn, 2000, с. 69–70.
  30. Altshiller-Court, 2007, с. 131.
  31. 1 2 3 Honsberger, 1995, с. 35–39, 4.2 Cyclic quadrilaterals.
  32. Bradley, 2011.
  33. Замечательные точки и линии четырехугольников// https://math.mosolymp.ru/upload/files/2018/khamovniki/geom-10/2018-04-17-Zam_pr_ch-ka.pdf Архивная копия от 6 сентября 2022 на Wayback Machine
  34. Теорема Монжа// https://bambookes.ru/stuff/reshenie_zadach/geometrija/4-1-0-8264 Архивная копия от 6 сентября 2022 на Wayback Machine
  35. Вокруг задачи Архимеда. Архивная копия от 29 апреля 2016 на Wayback Machine Упр. 7, рис. 11, следствие, c. 5
  36. Buchholz, MacDougall, 1999, с. 263–9.
  37. Sastry, 2002, с. 167–173.
  38. Posamentier, Salkind, 1970, с. 104–5.
  39. 1 2 3 4 Altshiller-Court, 2007, с. 131,137-8.

Литература[править | править код]

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. — Mathematical Association of America, 2009. — ISBN 978-0-88385-342-9.
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. — 2007. — Т. 7.
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. — 2nd. — Courier Dover, 2007. — ISBN 978-0-486-45805-2. (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. Mathematical Olympiad Treasures. — Springer, 2004. — ISBN 978-0-8176-4305-8.
  • Christopher Bradley. Three Centroids created by a Cyclic Quadrilateral. — 2011.
  • Christopher J. Bradley. The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates. — Highperception, 2007. — ISBN 1906338000.
  • R. H. Buchholz, J. A. MacDougall. Heron quadrilaterals with sides in arithmetic or geometric progression // Bulletin of the Australian Mathematical Society. — 1999. — Т. 59, вып. 2. — doi:10.1017/S0004972700032883.
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta’s formula. — Mathematical Association of America, 1967. — ISBN 978-0-88385-619-2. Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. — Москва: «Наука», 1978. — (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum. — 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. — 2016. — Т. 42. — P. 81–107. — doi:10.18642/jmsaa_7100121742.
  • C. V. Durell, A. Robson. Advanced Trigonometry. — Courier Dover, 2003. — ISBN 978-0-486-43229-8. (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. — 2008. — Т. 8.
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. — 2000. — Т. 84, вып. 499 March. — JSTOR 3621477.
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. — Cambridge University Press, 1995. — Т. 37. — (New Mathematical Library). — ISBN 978-0-88385-639-0.
  • Roger A. Johnson. Advanced Euclidean Geometry. — Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. — 2003. — Т. 34, вып. 4 September. — JSTOR 3595770.
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. — 2nd. — Courier Dover, 1970. — ISBN 978-0-486-69154-1. Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , <http://students.imsa.edu/~tliu/Math/planegeo.pdf> Архивная копия от 21 сентября 2018 на Wayback Machine Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. — 5-е. — Москва: МЦНМО OAO «Московские учебники», 2006. — ISBN 5-94057-214-6.
  • K.R.S. Sastry. Brahmagupta quadrilaterals // Forum Geometricorum. — 2002. — Т. 2.
  • A. W. Siddons , R. T. Hughes. Trigonometry. — Cambridge University Press, 1929.
  • Zalman Usiskin, Jennifer Griffin, David Witonsky, Edwin Willmore. The Classification of Quadrilaterals: A Study of Definition. — IAP, 2008. — (Research in mathematics education). — ISBN 978-1-59311-695-8.
  • D. E. Joyce. Euclid’s Elements. — Clark University, 1997.
  • D. Fraivert. Pascal-points quadrilaterals inscribed in a cyclic quadrilateral // The Mathematical Gazette. — 2019. — Т. 103, вып. 557.

Внешние ссылки[править | править код]

  • Derivation of Formula for the Area of Cyclic Quadrilateral
  • Incenters in Cyclic Quadrilateral at cut-the-knot
  • Four Concurrent Lines in a Cyclic Quadrilateral at cut-the-knot
  • Weisstein, Eric W. Cyclic quadrilateral (англ.) на сайте Wolfram MathWorld.
  • Euler centre and maltitudes of cyclic quadrilateral at Dynamic Geometry Sketches, interactive dynamic geometry sketch.

Вписанный четырехугольникэто четырехугольник, все вершины которого лежат на одной окружности.

Центр окружности, описанной около четырехугольника — точка пересечения серединных перпендикуляров, проведенных к сторонам четырехугольника.

Признаки вписанного четырехугольника

Для того, чтобы четырехугольник был вписанным, необходимо и достаточно, чтобы выполнялось одно из следующих равенств:

Специальные случаи

Любые квадраты, прямоугольники, равнобедренные трапеции можно вписать в окружность.

Свойства вписанного четырехугольника

  • Произведение диагоналей вписанного четырехугольника равняется сумме произведений его противолежащих сторон.
  • Диагонали вписанного четырехугольника относятся как суммы, произведений сторон, сходящихся в концах диагоналей.
  • Диагонали вписанного четырехугольника разбивают его на две пары подобных треугольников.
  • Сумма квадратов противолежащих сторон четырехугольника равна квадрату диаметра описанной окружности.
  • Сумма противолежащих углов четырехугольника равна 180^{circ}.

Использование свойств и признаков вписанного четырехугольника при решении геометрических задач.

Задача 1. Высоты BE и CD остроугольного треугольника ABC пересекаются в точке  F. Докажите, что angle AFE= angle  ACB .

Решение. Рассмотрим четырехугольник ADFE.

angle ADF+angle AEF=90^{circ}+90^{circ}=180^{circ}.

Следовательно, вокруг четырехугольника ADFE можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle ADE=angle AFE.

Рассмотрим четырехугольник CEDB.

angle BEC=angle CDB=90^{circ}.

Следовательно, вокруг четырехугольника CEDB можно описать окружность и по свойству вписанного четырехугольника angle ECB+angle EDB =180^{circ}.

 angle EDB +angle ADE = 180^{circ} — свойство смежных углов.

Следовательно, angle ECB+180^{circ}-angle ADE =180^{circ}.

    [angle ECB =angle ADE]

    [angle ECB =angle AFE]

ч.т.д.

Задача 2. В остроугольном треугольнике  проведены высоты AD и CE. На них из точек E и D опущены перпендикуляры EF  и DG соответственно. Докажите, что прямые FG и AC параллельны.

Решение. Рассмотрим четырехугольник EDGF.

angle EFD=angle EGD=90^{circ}.

Следовательно, вокруг четырехугольника EDGF можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle DFG=angle DEC.

Рассмотрим четырехугольник AEDC.

angle AEC=angle ADC=90^{circ}.

Следовательно, вокруг четырехугольника AEDC можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle DAC=angle DEC.

    [angle DFG=angle DEC=angle DAC]

angle DFG=angle DAC — соответственные углы, образованные при пересечении прямых FG и AC секущей AD.

Следовательно, прямые FG и AC параллельны.

ч.т.д.

Посмотри, углы ( displaystyle alpha ) и ( displaystyle beta ) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами ( displaystyle varphi ) и ( displaystyle psi )? Они вроде бы тоже противоположные?

Можно ли вместо углов ( displaystyle alpha ) и ( displaystyle beta ) взять углы ( displaystyle varphi ) и ( displaystyle psi )?

Конечно, можно!

Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет ( displaystyle 180{}^circ ).

Оставшиеся два угла тогда сами собой тоже дадут в сумме ( displaystyle 180{}^circ ). Не веришь? Давай убедимся.

Смотри:

Пусть ( displaystyle alpha +beta =180{}^circ ). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, ( displaystyle 360{}^circ ).

То есть ( displaystyle alpha +beta +varphi +psi =360{}^circ ) — всегда! ( displaystyle 180{}^circ )

Но ( displaystyle alpha +beta =180{}^circ ), →( displaystyle varphi +psi =360{}^circ -180{}^circ =180{}^circ).

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник вписанный.

Доказательство смотри чуть дальше.

А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна ( displaystyle 180{}^circ ).

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?

Сумма углов четырехугольника

Обновлено 01.02.2022

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    четырехугольник abcd
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    квадрат
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    сумма противоположных углов равна 180 градусам

    Такие четырехугольники называют вписанными.

  4. Если сумма трех углов четырехугольника равна 270°,
    то четвертый угол прямой — 90°.
    ∠A + ∠B + ∠С = 270°, ⇒ ∠D = 90°(прямой угол).
    четырехугольник 360 градусов
  5. Виды четырехугольников: квадрат, прямоугольник,
    параллелограмм, ромб, трапеция.
    Сумма углов четырехугольника

    Это все виды четырехугольников,
    которые изучаются в школьном
    курсе по геометрии.

  6. Сумма внутренних углов любого четырехугольника равна 360°.
    α + β + γ + δ = 360°.
  7. Все углы вписанного четырёхугольника являются вписанными
    в окружность, а также, равны половине дуг, на которые опираются.
    ◡ABC = 180°, ⇒ ∠ADC = 90°.
    ◡BCD = 180°, ⇒ ∠BAD = 90°.
    Квадрат вписанный в окружность
  8.  Формула суммы углов четырехугольника:
    ∠A + ∠B + ∠C + ∠D = (n-2) · 180°,
    где n — количество сторон четырехугольника.
  9. Сумма трех углов четырехугольника равна 300°,
    значит четвертый угол равен 60 градусам.
  10. Сумма внешних и внутренних углов четырехугольника равна 720°.
  11.  Все углы имеют одинаковую градусную меру — 90°,
    только у квадрата и у прямоугольника.
  12. Сумма углов четырехугольника равна сумме углов фигур,
    из которых состоит четырехугольник.
    ∠DCA + ∠ADC + ∠CAD + ∠ACB + ∠CBA + ∠BAC = 360°.
    четырехугольник, состоящий из двух треугольников

Следствия

  • Если в четырехугольнике известны три угла,
    но неизвестен четвертый угол, то его можно найти,
    так: вычесть из 360 сумму всех трех известных углов,
    так мы найдем четвертый угол.
    ∠A = 360° — (∠B + ∠C + ∠D).
  • Если три угла четырехугольника равны
    90 градусов, то четвертый угол равен тоже 90.
  • Чтобы на рисунке измерить углы,
    и найти их градусную меру, нужно
    воспользоваться транспортиром.
  • Сумма углов четырехугольника
    не может быть равна 180 градусам.
    ∠A + ∠B + ∠C + ∠D ≠ 180°.
  • Чтобы найти сумму углов
    четырехугольника, нужно сложить все углы.
  • Сумма двух углов четырехугольника равна 180 градусам,
    только, в том случае, если этот четырехугольник вписан в окружность.

Добавить комментарий